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a b s t r a c t

A Bose–Einstein condensate (BEC) confined in a one-dimensional lattice under the effect of an external
homogeneous field is described by the Gross–Pitaevskii equation. Here we prove that such an equation
can be reduced, in the semiclassical limit and in the case of a lattice with a finite number of wells, to a
finite-dimensional discrete nonlinear Schrödinger equation. Then, by means of numerical experiments
we show that the BEC’s center of mass exhibits an oscillating behavior with modulated amplitude; in
particular, we show that the oscillating period actually depends on the shape of the initial wavefunction
of the condensate as well as on the strength of the nonlinear term. This fact opens a question concerning
the validity of a method proposed for the determination of the gravitational constant by means of the
measurement of the oscillating period.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Laser-cooled atoms have drawn a lot of attention as for po-
tential applications to interferometry and high-precision mea-
surements, from the determination of gravitational constants to
geophysical applications [1–4], see also [5,6] for a recent review.
The idea of using ultracold atoms moving in an accelerated opti-
cal lattice [7–11] has opened the field to multiple applications. In
particular, by means of the method proposed by Cladé et al. [12], a
value for the constant g has been measured using ultracold Stron-
tium atoms confined in a vertical optical lattice [13]; such a result
has been improved by using a larger number of atoms and reducing
the initial temperature of the sample [14]. Determination of g has
been obtained by measuring the period T of the Bloch oscillations
of the atoms in the vertical optical lattice; recalling that

T =
2π h̄
mgb

, (1)
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wherem is themass of the Strontium atom, h̄ is the Planck constant
and b is the lattice period, then a precise value of the constant g
has been obtained by means of the experimental measurements
of the oscillating period. Since Bloch oscillations with period (1)
have been predicted by the Bloch Theorem [15] only for a one-
body particle in a periodic field and under the effect of a Stark
potential then it has been chosen, in the experiments above, a
particular Strontium’s isotope 88Sr; in fact, the scattering length
as of atoms 88Sr is very small and thus it has been assumed
by [13,14] that the effects of the atomic binary interactions are
negligible. The obtained value for the constant g was consistent
with the one obtained by classical gravimeters; but it was affected
by a relative uncertainty of order 6 × 10−6 because of a larger
scattering in repeated measurements, mainly due to the initial
position instability of the trap. Such a technique is also proposed
to measure surface forces [16], too.

The critical point of this experimental procedure concerns the
validity of the Bloch Theorem and the estimate of the effect of the
atomic binary interactions on the oscillating period of the BEC. In
order to discuss this point here we are inspired by a realistic model
of a one-dimensional cloud of cold atoms in a periodical optical
lattice under the effect of the gravitational force. The periodic
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potential has the shape

Vper(x) = V0 sin2(kLx) (2)

where b =
1
2λL is the period, and λL =

2π
kL
. The one-dimensional

BEC is governed by the time-dependent Gross–Pitaevskii equation
with a periodic potential and a Stark potential

ih̄∂tψ = HBψ + fxψ + γ |ψ |
2ψ, f = mg, (3)

where the wavefunction ψ(·, t) ∈ L2(R, dx) is normalized to one:

∥ψ(·, t)∥L2 = ∥ψ0(·)∥L2 = 1,

and where

HB = −
h̄2

2m
∂2xx + Vper(x)

is the Bloch operator with periodic potential Vper(x). By γ we
denote the effective one-dimensional nonlinearity strength.

It is a well known fact (see Section 6.1 by [15]) that when the
wavefunctionψ is prepared on the first band of the Bloch operator
and if the nonlinear term is absent, i.e. γ = 0, then the dominant
termof thewavefunctionψ exhibits a periodic behaviorwith Bloch
period T within an interval with amplitude B1

|f | , where B1 is the
width of the first band and where f ∈ R is the strength of the
external homogeneous field (in the case of f = mg then f takes
only positive values, obviously). Therefore, for times of the order
of the Bloch period T we may assume that the motion of the BEC
occurs in a finite interval. Hence, we can restrict ourselves to the
analysis of Eq. (3) in a suitable finite interval and then we may
assume to consider a multiple-well potential VN(x) (with a fixed
number N of wells) and that the Stark potential x is replaced by
a Stark-type potential WN(x) due to a homogeneous external field
which acts only in a bounded region containing the N wells (see
Fig. 1). That is, instead of (3) we consider, as a model for a BEC in
an optical lattice under an external homogeneous field, the time-
dependent non-linear Schrödinger equation (NLS)iϵ∂tψ = HNψ + fWN(x)ψ + γ |ψ |

2ψ,

HN = −ϵ2∂2xx + VN
ψ(x, 0) = ψ0(x)

(4)

where ϵ > 0 plays the role of the semiclassical parameter (we
prefer to denote here the small semiclassical parameter by ϵ
instead of the usual notation h̄ because in a subsequent section
we will discuss a real physical model where h̄will assume its fixed
physical value; with such a notation it turns out that the Bloch
period is given by T =

2πϵ
|f |b ). We assume that the N wells have

all the same shape and we denote by b > 0 the distance between
the adjacent absolute minima points.

The study of the dynamics of the wavefunction ψ , solution of
(4), is then achieved by means of a discrete nonlinear Schrödinger
equation (DNLS). The idea is basically simple and it consists
in assuming that the wavefunction ψ may be written as a
superposition of vectors uℓ(x) localized on the ℓth cell of the
lattice; that is

ψ(x, t) ∼

N
ℓ=1

cℓ(t)uℓ(x).

Such an approach has been successfully used in the cases of
semiclassical NLS with multiple-well potentials [17–19] or with
periodic potentials (see [20–22]), without the external field with
potential WN . Eventually, uℓ(x) may coincide with the Wannier
function W1(x − xℓ) associated to the first band of the Bloch
operator HB or with the semiclassical single well ground state
eigenfunction usc

ℓ (x). By means of such an approach the unknown
Fig. 1. Plot of the multiple-wells potential VN (full line) and of the Stark-type
potential WN (broken line), where N = 11. By b > 0 we denote the distance
between the adjacent absolute minima points.

functions cℓ(t) turn out to be the solutions of a system of time-
dependent equations in which dominant terms are given by (here
we denote˙= d

dt )

iϵċℓ = −λDcℓ − β (cℓ+1 + cℓ−1)+ γ ∥uℓ∥4
L4 |cℓ|

2cℓ

+ fbℓcℓ, ℓ = 1, . . . ,N (5)

where λD is the ground state of a single cell potential and where
β is the hopping matrix element between neighboring sites. In
fact, the parameter β is expected to be such that 4β is equal to
the amplitude B1 of the first band [23]. In (5) we will fix c0 ≡

cN+1 ≡ 0. Eq. (5) represents a discrete nonlinear Schrödinger
equation (DNLS).

Our approach is both semiclassical and perturbative. It is semi-
classical in the sense that it holds true in the semiclassical regime
of ϵ small enough; and it is perturbative in the sense that the ex-
ternal field f and the nonlinearity power strength γ must be small
when ϵ goes to zero (see Hypothesis 3 for details). Under these
conditions we prove the validity of the N-mode approximation (5)
with a rigorous estimate of the remainder term for times of the or-
der of the Bloch period. Then, we numerically solve the N-mode ap-
proximation (5), andwe compute the oscillating period taking into
account the nonlinear interaction. In fact, the behavior of thewave-
function is not simply periodic in time; it turns out that the center
of mass ⟨x⟩t = ⟨ψ, xψ⟩ shows an oscillating motion with modu-
lated amplitude. The oscillating period turns out to be depending
on the nonlinearity parameter strength γ and we see that it also
depends on the distribution of the initial wavefunction ψ0. In par-
ticular, when ψ0 is a symmetric wavefunction then the oscillating
period is almost constant for small γ and it practically coincides
with the Bloch period T ; on the other hand when ψ0 is an asym-
metrical function the oscillating period actually depends on γ . This
fact is in contradiction with the Bloch Theorem (which holds true
when γ = 0), which implies that the Bloch period T does not de-
pend on the shape of the initial wavefunction, and it may explain
the relatively large uncertainty observed by [14] in their experi-
ments, as discussed in the Conclusions.

The paper is organized as follows. In Section 2 we derive the
DNLS (5) from the NLS (4) in the semiclassical limit ϵ → 0 for
times of the order of the Bloch period T with a rigorous estimate of
the remainder term. In particular: in Section 2.1 we introduce the
assumptions andwe recall some preparatory results; in Section 2.2
we derive the DNLS by making use of some ideas, previously
given by [18], adapted to the case of multiple-well potential with
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an external Stark-type perturbation. In Section 3 we consider a
realistic experiment and we compute the wavefunction dynamics
by making use of the DNLS. In particular: in Section 3.1 we discuss
the validity of the N-mode approximation for different values
of the parameters; in Section 3.2 we numerically compute the
wavefunction for times of the order of the Bloch period. In the
Appendix we write theWannier functions in terms of the Mathieu
functions.
Notation. Let g be a quantity depending on the semiclassical
parameter ϵ. In the following

g = Õ

e−S0/ϵ


means that for any ϵ⋆ > 0 and any ρ ∈ (0, S0) there exists
C := Cρ,ϵ⋆ > 0 such that

|g| ≤ Ce−(S0−ρ)/ϵ, ∀ϵ ∈ (0, ϵ⋆).

By

g =

ϵ+∞


means that for any ϵ⋆ > 0 and any M ∈ N there exists C :=

CM,ϵ⋆ > 0 such that

|g| ≤ CϵM , ∀ϵ ∈ (0, ϵ⋆).

Hereafter, by C we denote a generic positive constant indepen-
dent of ϵ.

Let N ∈ N, then by NN := {1, 2, . . . ,N} we denote the set of
first N positive integer numbers.

By ∥·∥Lp we denote the norm of the Banach space Lp(R), by ⟨·, ·⟩
we denote the scalar product of the Hilbert space L2(R).

2. Derivation of the DNLS (5)

2.1. Assumptions and preliminary results

We consider the time-dependent non-linear Schrödinger
equation (4) where VN is a multiple-well potential and WN(x) is
a bounded Stark-type potential. In particular we assume that

Hypothesis 1. Let V (x) ∈ C∞

0 (R) be an even (i.e. V (−x) = V (x))
smooth function with compact support with a non degenerate
minimum value at x = 0:

V (x) > Vmin = V (0), ∀x ∈ R, x ≠ 0.

The multiple-well potential is defined as

VN(x) =

N
ℓ=1

V (x − xℓ)

for some fixed N > 1, where xℓ =

ℓ−

N+1
2


b and where b > 0 is

such that supp V ⊂

−

b
2 ,+

b
2


.

Hence, by construction the potential VN(x) has exactly N wells
with not degenerate minima at x = xℓ, ℓ ∈ NN .

Remark 1. We assume that V (x) is an even function just for
argument’s sake. As discussed in Remark 6 this assumption may
be removed. Furthermore, we assume that v is a smooth function
as usual; in fact, a lesser regularity (e.g. C2) would be enough.

Hypothesis 2. Let WN(x) ∈ C(R) be the monotone not decreasing
function defined as

WN(x) =


−L if x < −L
x if x ∈ [−L, L]
L if x > L

for some L > N+1
2 b.
That is the Stark-type potential WN is linear in the region
containing thewells and it is a constant function outside this region
(see Fig. 1). In the ‘‘limit’’ where N goes to infinity the potential
VN becomes a periodic potential with period b and the external
potentialWN becomes the Stark potential x.

Remark 2. We restrict ourselves to a multiple-well potential VN
with a finite number of wells only for sake of simplicity; one could
consider the case of a periodic potential by making use of the
tools developed by [20]. On the other side, the assumption on WN
is not merely for the sake of simplicity; actually, the Stark-type
potential WN is a bounded operator while the Stark potential x is
not a bounded operator and this fact is a source of several technical
problems. In fact, in real experiments the BEC is trapped in a finite
spatial region.

Hypothesis 3. We assume to be in the semiclassical limit, that is
we look for the solution of (4) in the limit of ϵ that goes to zero.We
assume also that the other two parameters γ and f are small for ϵ
small. That is we assume that there exists ϵ⋆ > 0 such that

Ce−(S0−ρ)/ϵ ≤ |f | ≤ Cϵs, ∀ϵ ∈ (0, ϵ⋆),

for some s > 2, C > 0 and ρ ∈ (0, S0) independent of ϵ;
furthermore, we assume also that

|γ |ϵ−1/2

|f |
≤ C (6)

for some positive constant C and for any ϵ ∈ (0, ϵ⋆).

The self-adjoint extension of the linear Schrödinger operator
formally defined on L2(R) as

HN = −ϵ2∂2xx + VN

has an almost degenerate ground state with dimension N . More
precisely, let {λ}ℓ∈NN be the collection of the N lowest eigenvalues
of HN with each λℓ associated normalized eigenvectors vℓ. In
particular we have that (see Lemma 2 [23])

λℓ = λD − 2β cos

ℓ

π

N + 1


+ O(ϵ∞)e−S0/ϵ, ℓ ∈ NN ,

where

S0 =

 x1

x0


VN(x)− Vmin dx > 0

is the Agmon distance between two wells. By λD we denote
the ground state of the single well operator with associated
eigenvectorw;
−ϵ2∂2xx + V


w = λDw, (7)

where the single well potential V has been introduced by
Hypothesis 1. By wsc we denote the semiclassical approximation
of the eigenvectorw. Since V is an even function then

w(−x) = w(x) and wsc(−x) = wsc(x).

The numerical pre-factorβ is the hoppingmatrix element between
neighboring wells, and it is such that 4β is asymptotic to the
amplitude of the first band of the periodic Bloch operator HB;
i.e. 4β ∼ B1 := Et

1 − Eb
1 where Eb

1 and Et
1 are, respectively, the

bottom and the top of the first band. Such a numerical pre-factor
is going to be exponentially small, i.e.

β = Õ(e−S0/ϵ) as ϵ → 0+.

Remark 3. Hypothesis 3means that, fromapractical point of view,
the parameter f cannot be arbitrarily small, but it has a lower
bound of order β . On the other hand, the parameter γ may be
arbitrarily small.
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The associated normalized eigenvectors are given by [23]

vℓ =

N
j=1

αℓ,jusc
j + O(ϵ∞)e−S0/ϵ

where

αj,ℓ = αℓ,j =


2

N + 1
sin


jℓ

π

N + 1


and where usc

j (x) is the semiclassical single well ground state
eigenfunction localized on the jth cell; by construction

usc
j (x) = wsc(x − xj). (8)

Now, let Π be the projection operator associated with the N
eigenvalues λℓ, i.e.

Π =

N
ℓ=1

⟨vℓ, ·⟩vℓ

and let

Πc = 1 −Π .

Let F = Π(L2(R)) be the N-dimensional space spanned by the N
eigenvectors vℓ, ℓ ∈ NN .

Remark 4. Let σ(HN) be the spectrum of HN ; then it is a well
known semiclassical result that

C−1ϵ ≤ dist

{λℓ}

N
ℓ=1 , σ (HN) \ {λℓ}

N
ℓ=1


≤ Cϵ

for some positive constant C > 0. Hence, since HN is a self-adjoint
operator then (see formula 3.16 in Ch.V by [24]).[HN − λD]

−1Πc


L(L2→L2) ≤ Cϵ−1

for some C > 0.

Remark 5. By [20] it has been proved that there exists a suitable
orthonormal base uℓ, ℓ ∈ NN , of the space F . The functions uℓ are
practically localized on the ℓth well. More precisely, they are such
that

i. ∥uℓ−usc
ℓ ∥Lp = Õ


e−S0/ϵ


for any p ∈ [2,+∞] and any ℓ ∈ NN ;

ii. ∥uℓuj∥L1 = Õ

e−S0|j−ℓ|/ϵ


for any j, ℓ ∈ NN ;

iii. ∥uℓ∥Lp ≤ Cϵ−
p−2
4p , p ∈ [2,+∞], and ∥∂xuℓ∥L2 ≤ Cϵ−1/2 for any

ℓ ∈ NN ;
iv. The matrix with elements ⟨uℓ,HNuj⟩ can be written as

⟨uℓ,HNuj⟩


= λD1N − βT + DN

where T is the tridiagonal Toeplitz matrix such that

Tj,ℓ =


0 if |j − ℓ| ≠ 1
1 if |j − ℓ| = 1

and where the remainder term DN is a bounded linear operator
from ℓp(NN) to ℓp(NN)with bound

∥DN∥L(ℓp(NN )→ℓp(NN )) = Õ

e−(S0+α)/ϵ


, p ∈ [1,+∞],

for some α > 0.

We finally assume that the initial state is prepared on the first
N ‘‘ground states’’. That is

Hypothesis 4. Πcψ0 = 0.
It is well known that under the assumptions above the NLS (4)
is locally well posed, and the conservation of the norm and of the
energy [25,26]

E(ψ) = ⟨ψ,HNψ⟩ +
1
2
γ ∥ψ∥

4
L4 + f ⟨ψ,WNψ⟩

easily follow:

∥ψ(·, t)∥L2 = ∥ψ0(·)∥L2 and E (ψ(·, t)) = E (ψ0(·)) .

Furthermore the following a priori estimate follows, too.

Lemma 1. There exists a positive constant C > 0 such that

∥ψ∥H1 ≤ Cϵ−1/2 and ∥ψ∥
p
Lp ≤ Cϵ−

p−2
4 , ∀p ∈ [2,+∞].

Proof. Indeed, from Theorem 2 by [18] and its remarks it follows
that

∥∇ψ∥L2 ≤ C
√
Λ and ∥ψ∥Lp ≤ CΛ

p−2
4p

for some C > 0 and ϵ small enough, where

Λ =
E(ψ0)− V f

min

ϵ2

and where V f
min = minx[VN(x) + fWN(x)]. In particular, since

fWN(x) ≥ −fL = O(ϵs) for some s > 2, because L is fixed, and
sinceΠcψ0 = 0 thenΛ ∼ ϵ−1; therefore

∥∇ψ∥L2 ≤ Cϵ−1/2 and ∥ψ∥Lp ≤ Cϵ−
p−2
4p . �

Hence, the global well-posedness of the NLS follows [25,26].

2.2. N-mode approximation

Letψ be the normalized solution of the NLS equation written in
the formula

ψ = ψ1 + ψc, ψ1 = Πψ =

N
ℓ=1

cℓuℓ and ψc = Πcψ, (9)

for some complex-valued functions cℓ(t). By substituting (9) into
the NLS (4) then it takes the formula

iϵ∂tcℓ = ⟨uℓ,HNψ1⟩ + γ ⟨uℓ, |ψ(·, τ )|2ψ(·, τ )⟩
+ f ⟨uℓ,WNψ(·, τ )⟩

iϵ∂tψc = HNψc + γΠc |ψ(·, τ )|
2ψ(·, τ )

+ fΠcWNψ(·, τ ).

(10)

We are going now to get an a priori estimate of the remainder
term ψc . First of all we rescale the time t → τ =

β

ϵ
t and

we redefine the wavefunction up to a gauge factor ψ(x, t) →

ψ(x, τ ) := e−iλDt/ϵψ(x, t) (with abuse of notation let us denote
by ψ both the former wavefunction ψ(x, t) as well as the new
wavefunction ψ(x, τ ) depending on the slow time τ and obtained
by the former one up to a phase factor). The Bloch period becomes

τB =
β

ϵ
T =

2πβ
|f |b

.

Hence, (10) becomes (where ′ denotes the derivative with respect
to τ )

iβc ′

ℓ = ⟨uℓ, (HN − λD)ψ1⟩ + γ ⟨uℓ, |ψ(·, t)|2ψ(·, t)⟩
+ f ⟨uℓ,WNψ(·, t)⟩

iβψ ′

c = (HN − λD)ψc + γΠc |ψ(·, t)|2ψ(·, t)
+ fΠcWNψ(·, t).

(11)
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Theorem 1. Suppose Hypotheses 1–4 be satisfied. Then the remain-
der ψc can be estimated in the time interval with size of order of the
Bloch period. That is for any fixed M ∈ N it follows that

max
τ∈[0,MτB]

∥ψc(·, τ )∥L2 ≤ C
|f |
ϵ

for some positive constant C > 0.

Proof. From the first equation of (11) and recalling that
N
ℓ=1

|cℓ(τ )|2 = ∥ψ1∥
2
L2 = 1 − ∥ψc∥

2
L2 ≤ 1

then a priori estimate follows

|c ′

ℓ| ≤
⟨uℓ, (HN − λD)ψ1⟩

β
+

|γ |

β
∥ψ∥

2
L∞ +

|f |
β

∥WN∥L∞

≤ C +
|γ |ϵ−1/2

β
+

|f |
β

L (12)

because ∥uℓ∥L2 = 1 and ∥ψ∥L2 = 1, and from Remark 5iv. and
Lemma 1.

Concerning ψc it satisfies to the following integral equation

ψc = I + II

where we set

I := −
i
β

 τ

0
e−i(HN−λD)(τ−s)/βΠcAds

II := −
i
β

 τ

0
e−i(HN−λD)(τ−s)/βΠcBds

and where A and B are defined as

A := γ |ψ1|
2ψ1 + fWNψ1

B := γ

ψ̄1ψ

2
c + |ψc |

2ψc + 2|ψ1|
2ψc + 2|ψc |

2ψ1 + ψ2
1 ψ̄c


+ fWNψc

such that

A + B = γ |ψ |
2ψ + fWNψ.

By means of standard arguments [18] and making use of the fact
that the operatorWN is bounded then it follows that

Lemma 2. Let

Γ = |γ |ϵ−1/2
+ |f |.

Then the functions A and B are such that

∥A∥L2 ≤ CΓ , ∥B∥L2 ≤ CΓ ∥ψc∥L2 and ∂A∂τ

L2

≤ CΓ 2β−1.

Proof. Indeed,

∥A∥L2 ≤ |γ | ∥ψ1∥
2
L∞∥ψ1∥L2 + |f |∥WN∥L∞∥ψ1∥L2

≤ C

|γ |ϵ−1/2

+ |f |


since ∥ψ1∥L∞ ≤ C maxℓ ∥uℓ∥L∞ ≤ Cϵ−1/4. Similarly, the estimate
of the function B follows recalling that ∥ψc∥L∞ ≤ Cϵ−1/4 from
Lemma 1. Finally, the estimate concerning ∂A

∂τ
immediately follows

from (12). �

Hence, the estimates of the integrals I and II follow; in
particular, integral II can be simply estimated as

∥II∥L2 ≤ CΓ β−1
 τ

0
∥ψc(·, s)∥L2ds
sincee−i(HN−λD)(τ−s)/β


L(L2→L2) = 1.

On the other hand, before to get the estimate of integral I we
perform an integration by parts in order to gain a pre-factor β:

I =

−ie−i(HN−λD)(τ−s)/β

[HN − λD]
−1ΠcA

τ
0

+ i
 τ

0
e−i(HN−λD)(τ−s)/β

[HN − λD]
−1Πc

∂A
∂s

ds.

From this fact and recalling that (Remark 4)

∥[HN − λD]
−1Πc∥L(L2→L2) ≤ Cϵ−1

then

∥I∥L2 ≤ Cϵ−1 max
s∈[0,τ ]


∥A∥L2 + τ

∂A∂s

L2


≤ Cϵ−1Γ [1 + Γ β−1τ ].

Therefore, we have that

∥ψc∥L2 ≤ CΓ β−1
 τ

0
∥ψc(·, s)∥L2 ds + Cϵ−1Γ (1 + Γ β−1τ).

From the Gronwall’s lemma it follows that

∥ψc(·, τ )∥L2 ≤ Cϵ−1Γ (1 + Γ β−1τ)eCΓ β
−1τ .

In particular we observe that

max
τ∈[0,MτB]

∥ψc(·, τ )∥L2 ≤ Cϵ−1Γ (1 + β−1ΓMτB)eCΓ β
−1MτB

≤ CΓ ϵ−1
≤ C

|f |
ϵ

proving the Theorem since Γ ≤ C |f | from Hypothesis 3 and since
τB =

2π
b
β

|f | . �

We are going now to estimate the solutions cℓ of the first
equation of (11) which can be written as

iβc ′

ℓ = ⟨uℓ, (HN − λD)ψ1⟩ + ⟨uℓ, A⟩ + ⟨uℓ, B⟩

where the term ⟨uℓ, (HN − λD)ψ1⟩ can be represented by property
iv. of Remark 5. Concerning the term ⟨uℓ, B⟩ the following estimate
uniformly holds with respect to the index ℓ

|⟨uℓ, B⟩| ≤ ∥B∥L2 ≤ CΓ ∥ψc∥L2 .

Furthermore

⟨uℓ, A⟩ = γ

N
j,k,m=1

c̄jckcm⟨uℓ, ūjukum⟩ + f
N
j=1

cj⟨uℓ,WNuj⟩

= γ |cℓ|2cℓ∥uℓ∥4
L4 + fcℓ⟨uℓ,WNuℓ⟩ + γ raℓ + frbℓ

where

raℓ =


j,k,m∈NN :|j−ℓ|+|m−ℓ|+|k−ℓ|>0

c̄jckcm⟨uℓ, ūjukum⟩

and

rbℓ =


j,ℓ∈NN , j≠ℓ

cj⟨uℓ,WNuj⟩

are remainder terms.
We have that

Lemma 3. The following estimates uniformly hold with respect to the
indexes ℓ, j, m and k:

i. ⟨uℓ,WNuℓ⟩ = ℓb −
N+1
2 b + Õ


e−S0/ϵ


;

ii. ⟨uℓ,WNuj⟩ = Õ

e−S0|j−ℓ|/ϵ


;
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iii. ⟨uℓ, ūjumuk⟩ = Õ

e−S0r/ϵ


where

r = max [|j − ℓ|, |m − ℓ|, |k − ℓ|, |j − m|, |j − k|, |k − m|] .

Proof. Indeed, let Iℓ = [xℓ − b, xℓ + b] , ℓ = 1, 2, . . . ,N , then

⟨uℓ,WNuℓ⟩ =


Iℓ

|uℓ(x)|2xdx +


R\Iℓ

|uℓ(x)|2WN(x)dx

where uℓ(x) = w(x − xℓ) + Õ

e−S0/ϵ


from (8) and Remark 4.

Therefore
Iℓ

|uℓ(x)|2xdx = xℓ


I0

|w(x)|2dx +


I0

|w(x)|2xdx + Õ

e−S0/ϵ


= xℓ


∥w∥

2
L2 − ∥w∥

2
L2(R\I0)


+ Õ


e−S0/ϵ


where w is normalized and


I0

|w(x)|2xdx = 0 because w(x) =

w(−x). From this fact and since ∥uℓ∥L2(R\Iℓ) = Õ(e−S0/h̄) (see
Lemma 4iii. and Lemma 5 by [20]) then the asymptotic behavior
i. follows. The other two asymptotic behaviors ii. and iii. similarly
follow from property ii. by Remark 5; indeed

|⟨uℓ,WNuj⟩| ≤ ∥WN∥L∞∥uℓuj∥L1 = Õ

e−S0|j−ℓ|/ϵ


and, where we assume that r = |j − ℓ|,

|⟨uℓ, ūjumuk⟩| ≤ ∥um∥L∞∥u∥L∞∥uℓuj∥L1 = Õ

e−S0r/ϵ


proving so the estimates ii. and iii. �

From this lemma, from the previous computation and from the
gauge transformation (cℓ → cℓe

−i N+1
2β bτ ) it follows that the first

equation of (11) becomes a DNLS of the form

iβc ′

ℓ = −β

N
m=1

Tℓ,mcm + γ ∥uℓ∥4
L4 |cℓ|

2cℓ + f ℓbcℓ + Õ

e−S0/ϵ


(13)

where

∥uℓ∥4
L4 = ∥w∥

4
L4 + Õ


e−S0/ϵ


and where the remainder terms Õ


e−S0/ϵ


are uniform with

respect to the index ℓ.

Remark 6. In fact, if V (x) is not an even function then by means
of standard semiclassical arguments it follows that property
Lemma 3i. becomes

⟨uℓ,WNuℓ⟩ = ℓb + c + Õ

e−S0/ϵ


for some constant c independent of the index ℓ. In such a case we
must add the term fccℓ to the right hand side of the DNLS above

and, bymeans of a gauge choice cℓ → cℓe
−i fc

β
τ , we can remove this

term obtaining again Eq. (13).

Now, we are able to prove that

Theorem 2. Let dℓ(τ ) be the solutions of the DNLS

iβd′

ℓ = −β

N
m=1

Tℓ,mdm + γ ∥wsc
∥
4
L4 |dℓ|

2dℓ + f ℓbdℓ (14)

satisfying the initial conditions dℓ(0) = cℓ(0), where cℓ(τ ) and ψc
are the solutions of (11). Then, for any fixed M ∈ N it follows that

max
τ∈[0,MτB], ℓ=1,2,...,N

|cℓ(τ )− dℓ(τ )| = Õ

e−S0/ϵ


as ϵ → 0.

Proof. The proof is a simply consequence of Eq. (13) and from the
fact that τB =

2π
b
β

f and Hypothesis 3. �
3. Numerical analysis of a real model

We consider the experiment where a cloud of ultracold
Strontium atoms 88Sr are trapped in a one-dimensional optical
latticewith potential (2). Realistic data for the experiment are [14]:

– Lattice period: b = λL/2 = 266 nm, λL = 532 nm;
– Lattice potential depth: V0 = Λ0 · ER where ER is the photon

recoil energy ER =
2π2 h̄2

mλ2L
= 50.38 kHz · h̄ and where Λ0 is

between 3 and 10;
– Mass of the Strontium 88 isotope: m = 87.91 a.u. = 1.46 ·

10−22 gr;
– Effective one-dimensional nonlinearity strength: let γ3D =

4N πas h̄2
m be the effective nonlinearity strength for the three-

dimensional Gross–Pitaevskii equation, then it is expected that
the effective one-dimensional nonlinearity strength γ is of the
order [27]

γ ≈
γ3D

2πd2
⊥

where d⊥ is the oscillator length of the transverse confinement;
here as denotes the scattering length of the Strontium 88
isotope: as = −a0 ÷ 13a0, where a0 is the Bohr radius; N is
the number of atoms of the condensate; in typical experiments
d⊥ ≈ 180 · 10−6 m and N = 105

÷ 106;
– Acceleration constant g = 9.807 m/s2.

The confined BEC is governed by Eq. (4) and here we make use
of the N-mode approximation (14), that is the wavefunctionψ has
the form ψ ∼


ℓ cℓuℓ where cℓ are the solutions of (14) and

where uℓ are functions localized on the ℓth lattice site. In order
to justify the validity of such an approximation we will check if
the model is in the semiclassical regime, that is if the first band is
almost flat and if semi-classical approximation usc

ℓ agrees or not
with theWannier function W1(x− xℓ). Such a qualitative criterion
has been also adopted by other authors [28–30] and we will see
that our results agree with the results contained in these papers. In
particular, in [30] has been computed the hoppingmatrix elements
⟨uℓ,HNuj⟩ too, where it has been numerically verified that these
coefficients are negligible when |j − ℓ| > 1 forΛ0 ≥ 10; thus, for
such values of Λ0 it is admitted that the N-mode approximation,
consisting to describe (4) in terms of a nearest-neighbor model
(14), works.

3.1. Validity of the semiclassical approximation

The semiclassical approximation wsc(x) of the wavefunction
has dominant behavior

wsc(x) =
(mµ)1/8

(π h̄)1/4
e−

√
mµx2/2h̄ (15)

in the semiclassical limit, where µ =
d2Vper (0)

dx2
= 2V0k2L , V0 =

Λ0ER; it is normalized ∥wsc
∥L2 = 1. We may remark that the

effective semiclassical parameter in adimensional units is given by

1
√
Λ0

=
2π2h̄

b2
√
mµ

,

and then the semiclassical approximation may be written as

wsc(x) =


2π

√
Λ0

b2

1/4

e−x2π2√Λ0/b2 .

Hence

∥wsc
∥
4
L4 =


mµ
(π h̄)2

1/4 
π

2
=
πΛ

1/4
0

b
.
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Fig. 2. Here we plot in the left hand side panel the first three band functions En(k), n = 1, 2, 3 and k ∈

−
π
b ,+

π
b


, for the Bloch operator HB where Λ0 = 3. It turns out

that the width of the first gap is of the same order of the width of the first band. In the right hand side panel we plot the graph of the functionswsc (broken line) and W1 (full
line).
We will see that for Λ0 ‘‘large enough’’ (i.e. Λ0 ≥ 10) then the
first band is almost flat and the semiclassical function wsc well
approximates the Wannier function W1, as we expect to observe
in the semiclassical limitΛ0 → ∞ (see, e.g., [31]).

Remark 7. By the scaling

x → 2kLx, t → ERt/h̄, ψ(x) →
1

√
2kL

ψ


x
2kL


and setting

F =
mg

2ERkL
, ζ =

γ

2ERkL
, ϵ =

1
√
Λ0

then (3) takes the form

i∂tψ = −∂2xxψ +
1
ϵ2

sin2(x/2)+ Fxψ + ζ |ψ |
2ψ,

∥ψ∥L2 = 1.
(16)

Eq. (16) is equivalent, up to a change of scale of the time, to the
equation

iϵ∂tψ = −ϵ2∂2xxψ + sin2
 x
2


ψ + fxψ + γ |ψ |

2ψ

where we set

t → t/
√
ϵ, f = Fϵ2, γ = ϵ2ζ

andwhere ϵ = Λ
−1/2
0 plays the role of the semiclassical parameter.

We computenow theband functions and theWannier functions
for different values of Λ0. The semiclassical wavefunction wsc

is computed by (15), while the Wannier function W1(x) may be
computed by means of the Mathieu functions (see Appendix).

3.1.1. ModelΛ0 = 3
The first bands of the Bloch operator HB = −

h̄2
2m∂

2
xx +

Λ0ER sin2(kLx) have endpoints

(n = 1) Eb
1 = 1.43 · ER and Et

1 = 2.11 · ER;
(n = 2) Eb

2 = 2.86 · ER and Et
2 = 5.49 · ER;

(n = 3) Eb
3 = 5.56 · ER and Et

3 = 10.51 · ER.
Hence, the values of the width of the first two bands are given
by

B1 := Et
1 − Eb

1 = 0.68 · ER and B2 := Eb
2 − Et

1 = 2.63 · ER.

Furthermore it follows that the first gap has amplitude g1 = Eb
2 −

Et
1 = 0.77 · ER of the order of the first band amplitude, while the

width of the other gaps is very small (see Fig. 2, left hand side
panel). If we compare the first Wannier function W1(x) and the
semiclassical approximationwsc(x) it turns out that (see also Fig. 2,
right hand side panel)

∥W1 − wsc
∥
2
L2 = 0.091.

3.1.2. ModelΛ0 = 10
The first bands of the Bloch operator HB have endpoints

(n = 1) Eb
1 = 4.32 · ER and Et

1 = 4.58 · ER;
(n = 2) Eb

2 = 7.02 · ER and Et
2 = 8.87 · ER;

(n = 3) Eb
3 = 9.54 · ER and Et

3 = 14.07 · ER.

Hence, the values of the width of the first two bands are given
by

B1 := Et
1 − Eb

1 = 0.26 · ER and B2 := Eb
2 − Et

1 = 1.85 · ER.

Furthermore it also follows that the first gap has amplitude g1 =

Eb
2 − Et

1 = 2.44 · ER is much larger than the amplitude of the first
band and that the width of the other gaps is very small (see Fig. 3,
left hand side panel). If we compare the first Wannier function
W1(x) and the semiclassical approximationwsc(x) it turns out that
(see also Fig. 3, right hand side panel)

∥W1 − wsc
∥
2
L2 = 0.055.

Hence, we may conclude that for Λ0 = 10 the N-mode approxi-
mation properly works.

3.2. Numerical analysis of the model forΛ0 = 10

We have seen that for Λ0 ≥ 10 the N-mode approximation is
justified. ForΛ0 = 10 we have that

β ∼
1
4
B1 = 0.065 · ER.

Eq. (14) takes the form

id′

ℓ = −

N
m=1

Tℓ,mdm + η|dℓ|2dℓ + ℓδdℓ, ℓ ∈ NN ,
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Fig. 3. Here we plot in the left hand side panel the first three band functions En(k), n = 1, 2, 3 and k ∈

−
π
b ,+

π
b


, for the Bloch operator HB whereΛ0 = 10. It turns out

that the first band is almost flat, in fact its width is 1/10th of the width of the first gap. In the right hand side panel we plot the graph of the functionswsc (broken line) and
W1 (full line).
where we set

η =
γ ∥wsc

∥
4
L4

β
≈

4N πas h̄2

m
πΛ

1/4
0

b
1

2πd2
⊥

1
β

= −0.151 · 10−1
÷ 0.197

and

δ =
fb
β

=
mgb
β

= 1.103.

The Bloch period is given by

T =
2π h̄
mgb

= 1.740 ms.

Hence, the parameters f , γ and β are in a suitable range as
discussed in Remark 3. Furthermore, the motion of the Bloch
oscillator occurs in an interval with width

B1

|f |
=

0.26 · ER
mg

= 9.65 · 10−7 m ≈ 3.6 · b. (17)

Hence, the N-mode approximation with N = 40 properly works.
We consider three different situations. In the first one we as-

sume that the state is initially prepared on a single lattice site, that
isψ0 is aWannier type function. In the other two cases we assume
that the initial wavefunction ψ0 is a symmetric or asymmetrical
wavefunction initially prepared on different lattice sites.

3.2.1. ψ0 is initially prepared on a single lattice cell
We consider a numerical experiment where ψ0(x) = uN/2(x),

that is cℓ(0) = 0, for ℓ ≠ N/2, and cN/2(0) = 1 (where
N = 40). In fact, in such a case we observe a breathing motion
for the wavefunction; that is, the wavefunction, initially prepared
in a Wannier state localized on a single site of the optical lattice,
symmetrically spreads in space and it periodically returns to its
initial shape (Fig. 4, top panel, obtained for η = 0.2). Then the
expected value of the center of mass

⟨x⟩t = ⟨ψ(·, t), xψ(·, t)⟩

is practical constant ⟨x⟩t ≈ 0 up to small fluctuations.
Fig. 4. In the top panel we plot the absolute value of the wavefunction ψ(x, t)
initially prepared on a single Wannier state for η = 0.2, it turns out that it
symmetrically spreads in space and periodically returns to its initial shape without
motion of the center of mass. In the bottom panel we plot the absolute value of
the wavefunction initially prepared on several lattice sites for η = 0.2; it turns
out that the center of mass oscillates with no marked changes of the shape of the
wavefunction. Here T denotes the Bloch period and b is the distance between two
adjacent wells. Dark regions mean that |ψ(x, t)| is practically zero there, white
regions mean that |ψ(x, t)| has its maximum value there.

3.2.2. ψ0 is a symmetric wavefunction initially prepared on different
lattice cells

We consider a numerical experiment where N = 40 and
ψ0(x) =

40
ℓ=0 cℓuℓ(x), where cℓ have a symmetric Gaussian-

type distribution around ℓ = N/2. That is the initial value of the
coefficients cℓ(t) is given in Table 1, the initial wavefunction ψ0 is
plotted in Fig. 5, left hand side panel. In such a case the center of
mass ⟨x⟩t oscillates in space and the wavefunction moves with no
marked changes in shape (see Fig. 4, bottom panel). In particular,
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Table 1
Initial values of the coefficients cℓ := cℓ(0) of the wavefunction. The initial wavefunction ψ0 has a symmetric shape and
its width is of order of several lattice periods.

c0 = 0 c10 = 0.396 · 10−3 c21 = 0.429 c31 = 0.898·10−4

c1 = 0 c11 = 0.151 · 10−2 c22 = 0.347 c32 = 0.177·10−4

c2 = 0 c12 = 0.502 · 10−2 c23 = 0.244 c33 = 0.303·10−5

c3 = 0 c13 = 0.149 · 10−1 c24 = 0.149 c34 = 0
c4 = 0 c14 = 0.363 · 10−1 c25 = 0.788 · 10−1 c35 = 0
c5 = 0 c15 = 0.788 · 10−1 c26 = 0.363 · 10−1 c36 = 0
c6 = 0 c16 = 0.149 c27 = 0.149 · 10−1 c37 = 0
c7 = 0.303 · 10−5 c17 = 0.244 c28 = 0.502 · 10−2 c38 = 0
c8 = 0.177 · 10−4 c18 = 0.347 c29 = 0.151 · 10−2 c39 = 0
c9 = 0.898 · 10−4 c19 = 0.429 c30 = 0.396 · 10−3 c40 = 0

c20 = 0.460
Table 2
Initial values of the coefficients cℓ := cℓ(0) of the wavefunction. The initial wavefunction ψ0 has an asymmetrical shape
and its width is of order of several lattice periods.

c0 = 0 c10 = 0.180 · 10−3 c21 = 0.252 c31 = 0.175·10−4

c1 = 0 c11 = 0.814 · 10−3 c22 = 0.170 c32 = 0.323·10−5

c2 = 0 c12 = 0.330 · 10−2 c23 = 0.103 c33 = 0
c3 = 0 c13 = 0.121 · 10−1 c24 = 0.546 · 10−1 c34 = 0
c4 = 0 c14 = 0.414 · 10−1 c25 = 0.257 · 10−1 c35 = 0
c5 = 0 c15 = 0.133 c26 = 0.106 · 10−1 c36 = 0
c6 = 0 c16 = 0.351 c27 = 0.386 · 10−2 c37 = 0
c7 = 0 c17 = 0.496 c28 = 0.123 · 10−2 c38 = 0
c8 = 0.614 · 10−5 c18 = 0.471 c29 = 0.340 · 10−3 c39 = 0
c9 = 0.354 · 10−4 c19 = 0.411 c30 = 0.826 · 10−4 c40 = 0

c20 = 0.336
Fig. 5. Here we plot the absolute value of the initial wavefunction ψ0 prepared on several lattice sites; the left hand side panel corresponds to the symmetric initial
wavefunction, the right hand side panel corresponds to the asymmetrical one.
the function ⟨x⟩t exhibits, for η ≠ 0, an oscillating motion where
the wavefunction amplitude is modulated (see Fig. 6) and where
the oscillating (pseudo-)period (that is the time interval between
two consecutive minima or maxima points) depends on η. In Fig. 7
weplot themean value of the oscillating period of themotion of the
center ofmass after 14 oscillations for η in the range [−0.1,+0.2];
it turns out that the relative uncertainty with respect to the Bloch
period is of order 2.4 · 10−5.

3.2.3. ψ0 is an asymmetrical wavefunction initially prepared on
different lattice cells

We consider a numerical experiment where N = 40 and
ψ0(x) =

40
ℓ=0 cℓuℓ(x), where cℓ have an asymmetrical Gaussian-

type distribution. That is the initial value of the coefficients cℓ(t) is
given in Table 2, the initial wavefunction is plotted in Fig. 5, right
hand side panel. As in the symmetric case the center of mass ⟨x⟩t
oscillates in space and the wavefunction moves with no marked
changes in shape. Even in such a case the function ⟨x⟩t exhibits, for
η ≠ 0, an oscillating motion where the wavefunction amplitude
is modulated (see Fig. 8). In contrast with the symmetric case the
oscillating (pseudo-)period (that is the time interval between two
consecutive minima or maxima points) actually depends on η; in
Fig. 7 we plot the mean value of the oscillating period of the center
ofmass after 14 oscillations for η in the range [−0.1,+0.2] and it is
not almost constant like in the previous case, in particular it turns
out that the relative uncertainty with respect to the Bloch period
is of order 4.6 · 10−4, which is 20 times the relative uncertainty
observed in the symmetrical case.

4. Conclusion

In this paper we have proved that in the semiclassical limit the
N-mode approximation (14), corresponding to a discrete nonlinear
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Fig. 6. Here we plot the motion of the center of mass of the wavefunction initially
prepared on several lattice sites. The initial wavefunction is a symmetric function.
Top panel corresponds to the case of η = 0.1, bottom panel corresponds to the case
of η = 0.2. The center of mass rapidly oscillates with modulation of the amplitude.
The width of the oscillations is in a range lesser or equal to 3b in agreement with
(17).

Schrödinger equation with a finite number of modes, gives the so-
lution of the Gross–Pitaevskii equation (4) for a BEC in a multiple-
well lattice in a Stark-type external field. Furthermore, we have
numerically solved the N-mode approximation considering a real
model, where for some values of the physical parameters the va-
lidity of the N-mode approximation (14) seems to be justified. In
particular, we have seen that a state initially prepared on several
wells has an oscillating behavior with modulated amplitude, the
oscillating (pseudo-)period is computed for different values of the
nonlinear strength and it turns out that such a period is practically
constant when the initial state is a symmetric one; on the other
side, such a period actually depends on the nonlinear strength
when the initial state is an asymmetrical one. This observation
opens a question about the validity of the method proposed by
Cladé et al. [12] for the determination of the gravitational constant
g by means of the measurement of the oscillating period [13,14],
where it has been assumed that the oscillating period coincides
with the Bloch period T independently from the shape of the initial
wavefunction and of the value of the nonlinearity strength param-
eter.
Fig. 7. Here we plot the mean value of the pseudo-period of the oscillating motion
of the center of mass after 14 oscillations, as function of the effective nonlinearity
parameter η. Broken line corresponds to the case of a symmetric wavefunction
prepared on several lattice sites; it turns out that in such a case the oscillating
period is almost constant. Full line corresponds to the case of an asymmetrical
wavefunction prepared on several lattice sites; it turns out that it actually depends
on η. Here T denotes the Bloch period, while t denotes the oscillating period.
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Appendix. Band functions and Wannier functions

For a generic one-dimensional Bloch operator HB the spectrum
is given by a sequence of infinitely many closed intervals named
bands. These intervals are the image of functions named band
functions. The band functions of HB are denoted by En(k), where
the quasimomentum k runs in the Brillouin zone


−
π
b ,+

π
b


. The

spectrum of the Bloch operator HB is given by the bands σ(HB) =

∪
∞

n=1[E
b
n, E

t
n] where

Eb
n =


En(0) if n is even
En(π/b) if n is odd ,

Et
n =


En(π/b) if n is even
En(0) if n is odd.

In the case of potential (2) the band functions may be explicitly
computed. In particular let us look for the Bloch functions of the
equation

HBψ = Eψ, HB = −
h̄2

2m
d2

dx2
+ V0 sin2(kLx).

If we set

E =


E −

1
2
V0


2m
h̄2 , q = 2kL,

Ṽ0 =
V0m
h̄2 =

mΛ0Er
h̄2 =

1
2
Λ0k2L

and recalling that sin2(θ) =
1
2 [1 − cos(2θ)] then the Mathieu

equation takes the form
H̃B − E


ψ = 0 where H̃B = −

d2

dx2
− Ṽ0 cos(qx). (18)
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Fig. 8. Here we plot the motion of the center of mass of the wavefunction initially
prepared on several lattice sites. The initial wavefunction is an asymmetrical
function. Top panel corresponds to the case of η = 0.1, bottom panel corresponds
to the case of η = 0.2. The center of mass rapidly oscillates with modulation of the
amplitude. The width of oscillation is in a range lesser or equal to 3b in agreement
with (17).

It has a fundamental set of solutions [32]

φ1(x, E) = C


4E

q2
,−

Ṽ0

q2
,
1
2
qx


and

φ2(x, E) =
2
q
S


4E

q2
,−

Ṽ0

q2
,
1
2
qx



where S and C denote the two Mathieu’s functions, satisfying the
conditions

φ1(0, E) = 1,
∂φ1(0, E)

∂y
= 0 and

φ2(0, E) = 0,
∂φ2(0, E)

∂y
= 1.

Hence, the band functions En(k) associated to the spectral
problem (18) are the solutions of the equation µ(E) = cos(kb)
where

µ(E) = φ1(b, E) = C


4E

q2
,−

Ṽ0

q2
, π


.

Let λ = eikb, then the equation µ(E) = cos(kb) can be written
as µ(E) =

1
2 (λ + λ−1). We observe that for k ∈


0, πb


then

sin(kb) =

1 − µ2(E). The Bloch function is given by [33]

ψ(x, E) =
χ(x, E)
√
N(E)

where

χ(x, E) = φ2(b, E)φ1(x, E)+
1
2
[λ(E)− λ−1(E)]φ2(x, E)

= φ2(b, E)φ1(x, E)+ i

1 − µ(E)2φ2(x, E)

and

N(E) = −
4π
b
φ2(b, E)

dµ
dE
.

We recall that the Bloch functionψn(x, k) = ψ(x, En(k)), where En

is the band function associated to H̃B, is normalized to one:

2π
b

 b

0
|ψn(x, k)|2dx = 1

and furthermore it is such that

ψn(x,−k) = ψn(x, k).

Finally, the Wannier function on the zero-th cell associated to
the nth band is given by

Wn(x) =


b
2π

1/2 
+π/b

−π/b
ψn(x, k)dk

= 2


b
2π

1/2 
+π/b

0
ℜψn(x, k)dk

= 2


b
2π

1/2  π/b

0

φ2(b, En(k))φ1(x, En(k))
√
N(En(k))

dk

=
b

√
2π

 π/b

0

√
φ2(b, En(k))φ1(x, En(k))

−
dµ(En(k))

dE

dk

=
1

√
2π

 En(π/b)

En(0)

√
φ2(b, E)φ1(x, E)


−

dµ(E)
dE

1 − µ2(E)
dE

since the Mathieu functions are real valued when their arguments
are real numbers. In particular,

W1(x) =
1

√
2π

 E t
1

Eb
1

√
φ2(b, E)φ1(x, E)


−

dµ(E)
dE

1 − µ2(E)
dE .
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