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projected onto a chosen fully (anti-)symmetric representation. By considering F families

of auxiliary variables, we describe how to extend the model to arbitrary tensor products

of F reducible representations, which realises a U(F ) “flavour” symmetry on the world-
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are fixed through the introduction of Chern-Simons terms. We verify this projection by
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1 Introduction

The worldline formalism [1, 2] is proving to be a valuable alternative to the more tra-

ditional approaches to quantum field theory. In particular it provides computationally

efficient methods of obtaining scattering amplitudes, having been originally applied to

re-derive the Bern-Kosower master formulae [3, 4] without recourse to string theory. It

has now been applied to many problems, such as multi-loop amplitudes [5], the analysis

of effective actions [6], field theory on curved space time [7] and photon-graviton mix-

ing [8], higher spin fields [9, 10] and tree-level scattering [11, 12], amongst many others.

There are also phenomenological applications such as in photon / gluon scattering [13],

bound states computations [14], and the description of standard model matter [15] and

its unification [16]. These first quantised theories involve actions which realise a worldline

supersymmetry, with the super-partners to the worldline coordinates providing the field’s

spin degrees of freedom. The interaction between the matter field and the gauge field is

expressed through the gauge invariant Wilson-loop coupling.

More recently the worldline approach to non-Abelian field theory has been im-

proved [17, 18], and the difficulty related to the path ordering of the Wilson loop (necessary
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to guarantee the gauge invariance) has been lifted, thus making the perturbative expan-

sion more manageable. This was achieved by representing colour degrees of freedom (and

the coupling to the Lie algebra valued gauge field) with additional auxiliary fields [19–

21]. These fields enlarge the Hilbert space of the quantum theory but lead to the matter

field transforming in a reducible representation of the gauge group. The Hilbert space

may be finite-dimensional or infinite dimensional, depending on how the colour degrees of

freedom have been included in the worldline theory. Either way, projection onto a finite-

dimensional irreducible representation has been achieved by coupling the colour variables

to a U(1) gauge field, including an additional Chern-Simons term whose level is fixed so

as to select the required representation [22, 23]. The worldline gauge field does not modify

the theory in any other way than to impose the constraint enforcing irreducibility, since in

one dimension the U(1) theory has trivial dynamics. By tuning the Chern-Simons coupling

constant it is possible to pick out each representation at will.

One of the limitations that previous approaches have encountered is that it has only

been possible to describe fully anti-symmetric or fully symmetric representations of the

gauge group. This has followed from the use of additional fields which are anti-commuting

(Grassmann variables) or commuting respectively. This is certainly sufficient to describe

standard model fermions — which transform in (conjugate-)fundamental or trivial repre-

sentations [15] — and the multiplets used in SU(5) unification — which are fully anti-

symmetric [16] — but more exotic matter and a worldline description of gluons require a

generalisation of these ideas. It is also interesting to uncover the additional structure the

worldline theory requires in order to accommodate the description of more complex matter.

In this article we intend to explain how this generalisation can be achieved by introducing

several “families” of the auxiliary fields and partially gauging a unitary symmetry that

rotates between them.

The Hilbert space that arises will be shown to be the tensor product of the spaces

associated to each set of fields which provides a much richer structure. For this reason a

more general procedure of projecting onto an irreducible representation is required which

we will construct. In the present article we first deal with the case that the colour fields are

fermionic, before repeating our analysis in the event that they are bosonic so as to provide a

complete picture of our approach. For both scenarios we will study the phase-space theory

that is familiar from the worldline approach and describe the introduction of the colour

fields and the projection onto an arbitrary irreducible representation of the gauge group.

To demonstrate that our construction is correct we will functionally quantise the resulting

theories on the circle, using the path integral to compute the number of degrees of freedom

associated to the matter field.

This article begins by revising the quantum mechanical description of spinning point

particles and the incorporation of a coupling to the gauge field. In section 3 we then discuss

additional anti-commuting worldline fields that carry the particle’s colour information, and

the extra worldline global symmetry that arises. We achieve irreducibility by partially

gauging this symmetry. In section 4 we carry out the functional quantisation of the colour

fields to count the number of degrees of freedom they associate to the matter field. Having

achieved this for fermionic colour fields, in sections 5 and 6 we briefly provide an account of
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the worldline theory for bosonic auxiliary fields, again quantising the theory on the circle

to count the number of degrees of freedom in section 7.

2 Worldline theory and anti-commuting colour fields

First quantised approaches to quantum field theory begin with a quantum mechanical

description of the dynamical and spin degrees of freedom of the field. For example, the

phase-space description of a classical spin 1/2 point particle in Minkowski space (which is

relevant for a worldline description of the Dirac field) takes the following form [24, 25]

S [ω, p, ψ, e, χ] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ − eH − iχQ

]
, (2.1)

where the ωµ represent the embedding of the particle’s worldline in space and the ψµ

describe its spin degrees of freedom. We have also introduced the functions H = 1
2p

2

(Hamiltonian) and Q = p·ψ (super-charge) which are constrained to vanish by the equations

of motion of the einbein, e(τ), and the gravitino, χ(τ), respectively. Through Poisson

(Dirac) brackets1 these functions generate the local super-symmetry transformations of

the matter fields.

δωµ = ξ(τ)pµ + iη(τ)ψµ(τ); δpµ = 0; δψµ = −η(τ)pµ (2.2)

where ξ(τ) is the generator of reparameterisations and η(τ) is the (Grassmann) generator

of local supersymmetry transformations. Invariance of the action is achieved through the

accompanying transformations of the super-gravity multiplet:

δe = ξ̇(τ) + 2iχη(τ); δχ = η̇(τ), (2.3)

whilst the constraint functions satisfy the N = 1 supersymmetry algebra

{Q,Q}
PB

= −2iH. (2.4)

In the canonical quantisation scheme, the phase space variables are promoted to linear

operators with the fundamental relations [x̂µ, p̂µ] = iδµν and {ψ̂µ, ψ̂ν} = δµν and the

constraints must be imposed as operator equations which define the physical state space:

p̂2 |phys〉 = 0 and ψ̂ · p̂ |phys〉 = 0. The anti-commutation algebra can be solved by taking

ψµ = 1√
2
γµ, which shows that the purpose of the spin degrees of freedom is to generate the

γ-matrices. The constraints are then seen to ensure that the physical states are on shell

and satisfy the Dirac equation.

To couple this particle (and consequently the underlying field which it is representing)

to an Abelian gauge potential requires the modification of H and Q. Minimal coupling is

achieved by replacing the conjugate momentum, pµ, by its covariant version, πµ = pµ−Aµ,

where we have absorbed the coupling strength into the gauge field Aµ. The effect of this

1We take {xµ, pν}PB = δµν and {ψµ, ψν}PB = −iδµν which generate gauge transformations through

δz =
{
z, ξ(τ)H + iη(τ)Q

}
PB

.
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is to the re-define the susy generator as Q ≡ ψ · π = ψ · (p−A). Now the Hamiltonian, H,

is determined by the supersymmetry algebra (2.4) where a further change is encountered:

{Q,Q}
PB

= −2iH ⇒ H =
1

2
π2 +

i

2
ψµFµνψ

ν , (2.5)

where Fµν is the field strength tensor built out of Aµ as Fµν = ∂µAν − ∂νAµ. This idea

can be extended to the non-Abelian case, where the vector potential is Lie algebra valued.

We will take the generators of this algebra, {T a}, to be Hermitian and choose them in the

fundamental representation of the symmetry group (we limit attention to the gauge group

SU(N) for physical reasons), so Aµ = AaµT a. These additional details can be incorporated

into the worldline action at a classical level by introducing additional Grassmann variables

which carry the colour degrees of freedom that upon quantisation will create the associated

Hilbert space [19, 20]. To do this we follow [17] and [15, 16], defining N pairs of Grassmann

fields, c̄r and cr, which transform in the (anti-)fundamental representation of SU(N), giving

them the following Poisson brackets:

{c̄r, cs}PB = −iδrs ; {c̄r, c̄s}PB = 0 = {cr, cs}PB . (2.6)

By taking [T a, T b] = ifabcT c, it is easy to check that the expressions

Ra ≡ c̄r(T a)rscs , (2.7)

which can be used to absorb the gauge group indices of the generators, supply us with a

(classical) representation of the Lie algebra, i.e.{
Ra, Rb

}
PB

= fabcRc . (2.8)

To correctly produce the above Poisson brackets between the auxiliary fields, their dynamics

is specified as S[c̄, c] =
∫
dτ ic̄r ċr. In the path integral formulation this first order action is

responsible for producing the path-ordering prescription that is required to maintain gauge

invariance for the coupling to a non-Abelian field. The full particle action thus reads

S [ω, p, ψ, e, χ, c̄, c] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄r ċr − eH̃ − iχQ̃

]
, (2.9)

where

H̃ = π̃2 +
i

2
ψµF aµνψ

ν c̄r(T a)r
scs; Q̃ = ψ · π̃; π̃µ = pµ −Aaµc̄r(T a)rscs (2.10)

and F aµν = ∂µA
a
ν − ∂νAaµ + ifabcAbµA

c
ν has been completed to the full (non-Abelian) field

strength tensor. The above charges provide the modified constraints which impose the

new mass-shell condition and the covariant Dirac equation γ ·D |phys〉 = 0 in the presence

of the gauge field. Due to (2.8), the terms in H̃ and Q̃ which couple the gauge field to

the particle worldline retain the correct group structure, while keeping the particle action

gauge-invariant. This is easy to verify. By calling U a generic SU(N) gauge transformation,

the coloured fields transform as (colour indices are left implied when unnecessary)

Aµ → U
(
Aµ + i∂µ

)
U†, c → Uc, c̄ → c̄ U† (2.11)
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and the momentum π̃µ can be made gauge-invariant by imposing the gauge transformation

pµ → pµ − ic̄ U†∂µUc (2.12)

that in turn makes the symplectic form
∫
dτ(p · ω̇+ ic̄ċ) gauge-invariant. So the additional

fields simply ensure the desired interactions are maintained without the need to rely on

algebra valued potentials which would require path ordering upon functional quantisation.

It is easy to see that there is an additional global U(1) symmetry in (2.9) which acts

on the auxiliary Grassmann fields as cr → e−iϑcr and c̄r → c̄reiϑ. The conserved current

associated to this symmetry is L = c̄rcr and it is useful to gauge this symmetry by modifying

the action to

S [ω, p, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄r ċr − eH̃ − iχQ̃− a(L− s)

]
, (2.13)

where the new gauge field a(τ) transforms under the U(1) symmetry as δa = ϑ̇. We have

also introduced a constant, s = n − N
2 , to build a gauge invariant Chern-Simons term for

the gauge field SCS =
∫
dτ a(τ)s, which modifies the constraint produced by the equation

of motion for a(τ) to L + N
2 = n. To see why these quantities should be introduced we

must examine the Hilbert space of the additional Grassmann fields. The anti-commutation

relations associated to the canonical quantization of (2.6) can be realised by promoting c̄r

and cr to creation and annihilation operators, ĉ† r and ĉr, acting on coherent states

〈ū| = 〈0|eūr ĉr ; 〈ū| ĉ†r = ūr 〈ū| ; 〈ū| ĉr = ∂ūr 〈ū| , (2.14)

whereby the operators naturally act by multiplication or derivation with respect to the

Grassmann variables ūr. Wave functions are then built out of components which transform

as anti-symmetric tensor products of the original representation of the gauge field — for a

state |Ψ〉 its associated wave function Ψ(x, ū) = 〈ū, x|Ψ〉 has a finite expansion

Ψ(x, ū) = ψ(x) + ψr1(x)ūr1 + ψr1r2(x)ūr1 ūr2 + . . .+ ψr1r2...rN (x)ūr1 ūr2 · · · ūrN , (2.15)

with totally antisymmetric tensors ψr1r2...rl . The wave function is consequently not de-

scribed by an irreducible representation of the gauge group. However, the constraint func-

tion, L, becomes the number operator L̂ = ĉ† rcr whose eigenvalues indicate the occupation

of each state. Acting on the Fock space we solve an operator ordering ambiguity by choos-

ing the anti-symmetric combination L̂ = 1
2 (ūr∂ūr − ∂ūr ūr) so that the constraint imposed

by the gauge field becomes(
L̂+

N

2

)
|Ψ〉 = n |Ψ〉 −→

(
ūr

∂

∂ūr
− n

)
Ψ(x, ū) = 0. (2.16)

This constraint selects from (2.15) the component that transforms with n fully anti-

symmetrised indices, ψr1...rn , by enforcing all other components to vanish, therefore acting

to project the wavefunction onto a single irreducible representation. This method has been

used in the past to construct worldline theories describing higher spin fields [22, 26], differ-

ential forms [23, 27] and one-loop gluon amplitudes in the presence of bosonic and spinor

matter [17, 18].
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There is an obvious limitation, however, in using the worldline action (2.13) because

the representations in which the matter field can transform are restricted to those built out

of fully antisymmetric tensor products of the original representation of the gauge group.

In this work we generalise the worldline action to overcome this inadequacy and provide

the means to project onto any, arbitrarily chosen representation of the symmetry group.

This provides a complete framework in which the worldline approach can be applied to any

form of fermionic matter field by merely introducing some additional degrees of freedom

to take part in quantisation whose rôle is to ensure that the contribution from undesired

wavefunction components are excluded from physical results.

3 Extension of the worldline action

To achieve a richer Hilbert space associated to the additional Grassmann fields the simple

generalisation we propose is to include F families of these “colour” fields. We will denote the

families by an additional subscript (continuing to prescribe to the summation convention)

and define the generalised Poisson brackets

{c̄rf , cgs}PB = −iδfgδrs ; {c̄rf , c̄sg}PB = 0 = {cfr, cgs}PB . (3.1)

The worldline action (2.9) is modified to

S [ω, p, ψ, e, χ, c̄, c] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċrf − eH̃ − iχQ̃

]
, (3.2)

where in the tilded quantities the conjugate momentum now involves a sum over the F

families: π̃µ = pµ−Aaµc̄rf (T a)r
scfs. This action remains invariant under local supersymme-

try transformations generated by Q̃ and local reparameterisations generated by H̃, but the

global U(1) symmetry that was previously encountered has been enlarged to a non-Abelian

“flavour group” U(F ). Specifically, if Λ = e−iλ is an element of the global symmetry group,

the action (3.2) is invariant under cfr → Λfgcgr and c̄rf → c̄rgΛ
†
gf .

We find the conserved currents associated to these transformations by using the

Noether trick. The result is a generalisation of the occupation number2 Lfg = c̄rfcfg.

These currents satisfy the following U(F ) algebra{
Lfg, Lf ′g′

}
PB

= iδfg′Lf ′g − iδf ′gLfg′ (3.3)

so they can be used to build an infinitesimal U(F ) transformation by taking Poisson brack-

ets with λ = λfgLfg:

δλcfr = {cfr, λ}
PB

= −iλfgcgr; δλc̄
r
f =

{
c̄rf , λ

}
PB

= ic̄rgλgf . (3.4)

The Fock space associated to the Grassmann fields is also more complicated, because one

can now act on the vacuum with creation operators associated to different families:

Ψ(x, ū) =
∑

{n1,n2,...nF }

ψr1...rn1 ,s1...sn2 ,...,t1...tnF (x) ūt1F . . . ū
tnF
F · · · ūs12 . . . ū

sn2
2 ūr11 . . . ū

rn1
1 (3.5)

2Note that setting g = f , then Lff coincides with the familiar current related to the occupation number

of family f .
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where each component is completely antisymmetric in the blocks of indices associated to the

individual families (but has no special symmetry between indices from separate families).

So wavefunctions are in general described by a reducible representation of the symmetry

group, with the components in (2.15) transforming as tensor products of the representation

created by each family — affecting a Young tableaux notation we may write

Ψ(x, ū) ∼
∑

{n1,n2,...nF }

..

︸︷︷︸
nF

⊗ . . .⊗ ..

︸︷︷︸
n2

⊗ ..

︸︷︷︸
n1

(3.6)

to highlight how the components transform (the f th term in the product has nf boxes,

representing nf fully anti-symmetrised indices). We have made a positive step in terms of

enlarging the Hilbert space to include components transforming in more general represen-

tations, but it is now necessary to generalise the procedure which projects out undesired

contributions to physical phenomena in order to select a chosen component that transforms

irreducibly from (3.6).

3.1 Gauging the U(F ) symmetry

To attain the desired projection we follow the ideas of section 2 by gauging the U(F )

symmetry (3.4) through the introduction of gauge fields afg(τ). Under a local U(F ) trans-

formation afg(τ) is taken to transform as

δλafg(τ) = λ̇fg(τ) + i [a(τ), λ(τ)]fg (3.7)

which ensures the invariance of

S [ω, p, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċrf − eH̃ − iχQ̃− afgLfg

]
, (3.8)

under local U(F ) transformations. At this juncture, we would also like to introduce an

appropriate Chern-Simons term for each of the diagonal entries Lf ≡ Lff (no sum implied),

so as to project onto the subspace of components which have a given number of indices

associated with each family. This means that it is not possible to gauge the entire U(F )

group, since in that case the only Abelian invariant3 is L =
∑

f Lf . This would only allow

the addition of a single Chern-Simons term s
∫
dτ
∑

f aff and we would be unable to control

the occupation number of individual families separately. Instead, we begin by gauging the

U(1)F ⊂ U(F ) subgroup of the full symmetry group by introducing the diagonal fields

af ≡ aff and diagonal generators Lf only. In this case the F diagonal gauge fields af have

an Abelian transformation. We can thus introduce F Chern-Simons terms so as to impose

the constraints on the Fock space(
L̂f +

N

2

)
|Ψ〉 = nf |Ψ〉 −→

(
ūrf

∂

∂ūrf
− nf

)
Ψ(x, ū) = 0, (3.9)

3Note that {Lf , Lf ′}PB = 0 but {Lf , Lgg′}PB = iδfgLfg′−iδfg′Lgf does not vanish in general. Summing

over f , however, is sufficient to produce an invariant U(1) generator L.
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which is sufficient to project onto the wavefunction component with nf antisymmetric

indices associated to each family, ψr1...rn1 ,s1...sn2 ,...,t1...tnF (x).

Gauging only U(1)F is not sufficient to achieve irreducibility, since the selected wave-

function component itself transforms as a tensor product of the antisymmetric representa-

tion created by each family (see (3.6) for illustration). To then pick out a single irreducible

representation we must gauge a larger part of the U(F ) symmetry whilst keeping this sub-

group invariant. Consider the partial gauging of those Lfg with 1 6 g 6 f 6 F , for which

the following first class sub-algebra holds{
Lfg, Lf ′f

}
PB

= −iδf ′gLf + iLf ′g g′ = f{
Lfg, Lf ′g′

}
PB

= −iδf ′gLfg′ g′ < f{
Lfg, Lf ′g′

}
PB

= 0 f < g′. (3.10)

So the subalgebra is first class. Later we will refer to the group associated to these genera-

tors as the “auxiliary gauge group.” With this choice it is easy to check that the diagonal

elements of the gauge field still transform in an Abelian manner,

δλafg(τ) = λ̇fg(τ) + i
∑
g6k6f

(afk(τ)λkg(τ)− λfk(τ)akg(τ)) (3.11)

⇒ δλaff (τ) = λ̇ff (τ), (3.12)

which means that F independent Chern-Simons terms remain admissible and the con-

straints (3.9) continue to be imposed. We therefore arrive at the complete expression for

the worldline action in phase-space

S′ [ω, p, ψ, e, χ, c̄, c, a]=

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċrf − eH̃ − iχQ̃

−
F∑
f=1

af (Lf − sf )−
∑
g<f

afgLfg

]
, (3.13)

where we have used the notation af ≡ aff . This is the worldline theory that we will use

for the rest of this paper. First we examine the effect that the larger gauging has on the

Fock space of the Grassmann fields and in the next section we will quantise the worldline

theory in the path integral formulation.

In canonical quantisation the U(F ) generators Lfg become (for g < f) L̂fg = ūrf∂ūrg
when acting on coherent states and the equation of motion for afg imposes the constraint

L̂fg |Ψ〉 = 0 −→ ūrf
∂

∂ūrg
Ψ(x, ū) = 0. (3.14)

To understand how this additional constraint acts on the wavefunction selected by the Lf ,

it suffices to recall that ψr1...rn1 ,s1...sn2 ,...,t1...tnF (x) can be written as a sum over compo-

nents transforming in irreducible representations with various symmetries between indices

belonging to the different families. For example, taking F = 2, and n2 = 2, n1 = 1, the
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surviving part — satisfying (3.9) — of Ψ(x, ū) can be written (exploiting the SF symmetry

allowing the permutation of the nf ) as

Ψ(x, ū) = ψr1r2,s1(x) ūr12 ū
r2
2 ū

s1
1

=

[
ψ[r1r2,s1](x) +

1

3

(
2ψr1r2,s1(x)− ψs1r1,r2(x)− ψr2s1,r1(x)

)]
ūr12 ū

r2
2 ū

s1
1 , (3.15)

which represents the tensor product decomposition ⊗ = ⊕ . The constraints (3.14)

imply that only the components in the kernel of all the L̂fg survive. Each L̂fg acts as an

“anti-symmetriser,” i.e. it replaces a ūrg with a ūrf and anti-symmetrises over the indices

involved. For the current example, the only non-diagonal number operator that exists is

L̂21, which acts as

L̂21 ū
r1
2 ū

r2
2 ū

s1
1 = ūt2

∂

∂ūt1
ūr12 ū

r2
2 ū

s1
1

= ūs12 ū
r1
2 ū

r2
2 (3.16)

which is now anti-symmetric under interchange of the indices r1, r2 and s1. It is easy to

verify that the result of contracting the indices of the term in rounded brackets of (3.15) with

the above product identically vanishes (this component transforms in the representation

which implies symmetrisations over the r1, s1 and r2, s1 pairs). This means that the

constraint acts as

0 = L̂21Ψ(x, ū) = ψ[r1r2,s1](x)ūr12 ū
r2
2 ū

s1
2 =⇒ ψ[r1r2,s1](x) = 0 (3.17)

so that the only surviving component of the wavefunction is that which transforms in the

representation. This is described by a Young tableau with n2 rows in the first column

and n1 rows in the second column.

In general, the effect of the constraints can be summarised as follows. The diagonal

operators L̂f act to select the occupation number of each family of Grassmann fields to

be equal to nf , picking out a single wavefunction component (i.e. with fixed nf ) from the

tensor product (3.6). The off-diagonal operators L̂fg then select from this reducible sum

a single component with compatible symmetries. To lie in the kernel of all of the L̂fg
requires the maximum inter-family symmetry so that the single surviving component that

the constraints project onto transforms in the representation with Young tableau

Ψ(x, ū) ∼

nF ...

..

...

. . .

...

...n1

..

︸ ︷︷ ︸
F columns

(3.18)

which has nF rows in the first column, nF−1 rows in the second and so forth, where

N > nF > nF−1 > . . . > n2 > n1. The symmetrisation between indices associated to
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different families implied by (3.18) means that this is the only component that lies in the

kernel of all of the L̂fg. This ensures that the wavefunction transforms in an irreducible

representation of SU(N). The conclusion is that with the current approach it is possible

to project onto an arbitrary representation, without being restricted to those with single-

column tableaux. We provide a much more versatile method for the worldline description

of SU(N)-charged matter fields forming any multiplet.

In the next section we verify this analysis by carrying out functional quantisation for

a particle traversing a closed path. This has application in the worldline formalism where

it is related to the partition function and one-loop effective action of the quantum field

theory describing matter interacting with a gauge field. We will do so by counting the

number of degrees of freedom (DoF) associated to the matter field for comparison with the

dimension of the representation denoted by (3.18).

4 Path integral quantisation

To facilitate the path integral quantisation of the particle described by (3.13) we first

rewrite the action in configuration space by solving the equation of motion for pµ and

putting it on-shell. This leads to a (Euclidean) path integral∫
DeDχDωDψD c̄DcDa

Vol(Gauge)
exp (−S [ω, ψ, e, χ, c̄, c, a]) (4.1)

where

S [ω, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
e−1 ω̇

2

2
+

1

2
ψ · ψ̇ − χ

e
ω̇ · ψ + c̄rf ċfr − ic̄rfAa(T a)rscfs

+
F∑
f=1

iaf
(
c̄rfcfr−sf

)
+
∑
g<f

iafg c̄
r
fcgr

]
. (4.2)

Above, the division by the volume of the gauge group (i.e. diffeomorphisms, supersymmetry

and auxiliary gauge group) takes care of summing only over gauge-inequivalent configu-

rations. In equation (4.2) we have denoted A = ω̇ · A − e
2ψ

µFµνψ
ν which makes up the

Wilson loop exponent as W = Pei
∫ 1
0 A(τ)dτ and we denote the F independent Chern-

Simons levels by sf . The path ordering prescription is now taken care of by the inclusion

of the additional Grassmann fields. The ends of the interval are identified to form S1 —

the boundary conditions on ω, e and a are periodic, whereas the Grassmann fields ψ, χ, c̄

and c are taken to be anti-periodic. This form of the action would be crucial in the context

of the worldline formalism where it would form the basis for the calculation of multi-loop

scattering amplitudes. Indeed, the quantisation of the N = 1 point particle leads to the

functional integrals involving the embedding coordinates, ω, its spin degree of freedom, ψ

and the worldline supergravity multiplet e and χ. For simplicity, however, we will focus

here only on the dimension associated to the colour degrees of freedom. This allows us

to focus on the restricted path integral relating to the auxiliary Grassmann fields and to
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temporarily drop the coupling to the external gauge field (so we set A = 0). The restricted

path integral which counts the particle degrees of freedom is then

1

Vol(Gauge)

∫ ∏
f,r

D c̄rfDcfr
∏
h<g

Dagh
∏
f

Daf

× exp

− ∫ 1

0
dτ

 F∑
f=1

(
c̄rfDfcfr − isfaf

)
+
∑
h<g

iaghc̄
r
fcgr

, (4.3)

we we have used the diagonal gauge fields to construct the covariant derivative Df ≡(
d
dτ + iaf

)
, and “Vol(Gauge)” now only refers to the auxiliary gauge group. The calculation

of this functional integral will be shown to yield the correct number of degrees of freedom

associated to the colour space for any choice of s = (s1, s2, . . . , sF ).

The action in (4.3) enjoys the (local) auxiliary gauge group symmetry that was dis-

cussed in the previous section and so to compute the path integral we must first employ a

gauge fixing procedure. On the circle, it is not possible to entirely gauge away the fields

afg; at best one may set the akj to be constant (see appendix A). The most general form

of akj would be a constant upper-triangular matrix, however as discussed in appendix A

the functional integral over the colour fields is independent of the off-diagonal entries so it

suffices to take

âfg =


θ1 0 · 0

0 θ2 · 0

· · · ·
0 0 · θF

 . (4.4)

The {θf} then remain as moduli to be integrated over and can be identified as angles in

[0, 2π] by examining large U(1)F transformations. This gauge fixing can be compensated

for by introducing Faddeev-Popov ghosts, γfg and γ̄fg, which ensure that gauge invariance

is maintained. The precise form of the ghost action depends on how the global U(F )

symmetry was gauged. With the partial gauging discussed in the previous section, the

gauge transformation of the âfg is given by (3.11):

δâgh = λ̇gh + i
∑
h6k6g

(θgδgkλkh − θhλgkδkh)

=

(
d

dτ
+ i (θg − θh)

)
λgh (4.5)

which leads to a ghost action

Sg [γ̄, γ, {θ}] =

∫ 1

0
dτ
∑
h6g

γ̄gh

(
d

dt
+ i (θg − θh)

)
γgh. (4.6)

The result of these calculations is the following gauge fixed path integral

F∏
f=1

∫ 2π

0

dθf
2π

∫
D(c̄, c)D(γ̄, γ) exp

(
−
∫ 1

0
dτ

[
F∑
f=1

(
c̄rfDfcfr − iθfsf

)
+
∑
h6g

γ̄gh

(
d

dt
+i (θg−θh)

)
γgh

])
(4.7)
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where on the chosen gauge slice Df →
(
d
dτ + iθf

)
and the sf are determined by our choice

of population numbers for each family of colour fields. The ghosts are taken to be periodic

around the circle. The functional integration leads to a product of various determinants

which we now calculate.

4.1 Evaluation of the functional integrals

The integration over the colour degrees of freedom factorises due to our choice of gauge

fixing the fields of the auxiliary gauge group to âfg and provides a product of functional

determinants
F∏
f=1

[
Det
APB

(
d

dτ
+ iθf

)]N
(4.8)

which we define as the product of their eigenvalues for functions on S1 with anti-periodic

boundary conditions (APB). In appendix B we show that this yields

F∏
f=1

(
2 cos

(
θf
2

))N
. (4.9)

Similarly, integrating over the ghosts leads to a product of functional determinants on

functions with periodic boundary conditions (PB), defined as the product of their non-zero

eigenvalues, which effectively provides a measure for the U(F ) moduli:

µ ({θk}) =
F∏
f=1

Det
PB

(
d

dτ

)
×
∏
h6g

Det
PB

(
d

dτ
+ i (θg − θh)

)
(4.10)

which evaluates to (see appendix B)

µ ({θk}) =
∏
h<g

2i sin

(
θg − θh

2

)
. (4.11)

Putting this together we find that the number of colour degrees of freedom is represented

by a simple multiple integral

KF

F∏
f=1

∫ 2π

0

dθf
2π

eiθf sfµ ({θk})
(

2 cos

(
θf
2

))N
(4.12)

which represents the main result of this article. In this formula, KF is a normalisation

constant whose inverse is equal to the number of fundamental domains included in the

integration over the U(F ) moduli.

We illustrate the application of this formula in a few special cases, before rewriting it in

terms of more convenient variables. We first verify that for F = 1 formula (4.12) reduces

to the previously calculated result for totally anti-symmetric representations. Then we

demonstrate the case F = 2 to prove that the correct counting of DoF is reached for the

example discussed in (3.15). So starting with only one family of additional Grassmann
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fields we take s1 = n1 − N
2 and note that the measure, µ (θ1) = 1, is trivial and K1 = 1.

Then (4.12) becomes

∫ 2π

0

dθ1

2π
eiθ1n1e−iθ1

N
2

(
ei
θ1
2 + e−i

θ1
2

)N
=

∫ 2π

0

dθ1

2π
eiθ1n1

(
1 + e−iθ1

)N
. (4.13)

At this stage it is convenient to effect a change of variable by noting that z1 = eiθ1

parametrises the U(1) Wilson-loop on the circle. This leads to

∮
dz1

2πi
zn1−1

1

(
1 +

1

z1

)N
=

∮
dz1

2πi

(z1 + 1)N

zN+1−n1
1

, (4.14)

where the contour of integration is taken to be the circle |z1| = 1. For n1 6 N there is a

pole at z = 0 and we can arrive at the elementary result

∮
dz1

2πi

(z1 + 1)N

zN+1−n1
=


(
N

n1

)
0 6 n1 6 N

0 Otherwise

. (4.15)

This shows that for F = 1, the main formula (4.12) correctly counts the colour degrees of

freedom for a matter field transforming in the representation with n1 fully anti-symmetrised

indices (this corresponds to the dimension of the single-column Young tableau with n1

rows). This result is in agreement with [17, 18], where scattering amplitudes were calculated

using worldline techniques for matter fields transforming in representations built out of

antisymmetric tensor products of the fundamental representation of SU(N).

A less trivial example is that corresponding to (3.15). It is useful to consider this

calculation in order to see how the modular measure provides the required projection onto

an irreducible representation. To describe such a wavefunction we need F = 2 families of the

additional Grassmann fields and for generality will take occupation numbers n = (n1, n2)

with 0 6 n1 6 n2 6 N . To achieve this requires the Chern-Simons levels to be chosen as

s1 = n1 − N
2 −

1
2 and s2 = n2 − N

2 + 1
2 . Then application of (4.12) provides (K2 = 1)

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
eiθ1(n1− 1

2)eiθ2(n2+ 1
2)
(

1+e−iθ1
)N (

1+e−iθ2
)N (

ei
θ1
2 e−i

θ2
2 − e−i

θ1
2 ei

θ2
2

)
(4.16)

where we have already cancelled the terms e−iθ1
N
2 and e−iθ2

N
2 by factorising their inverses

from the first two terms in rounded brackets. It is again convenient to make use of the

Wilson loop variables z1 = eiθ1 and z2 = eiθ2 to rewrite this expression as an integration

on the complex plane:

∮ ∮
dz1

2πi

dz2

2πi

(
(z1 + 1)N

zN+1−n1
1

(z2 + 1)N

zN+1−n2
2

− (z1 + 1)N

z
N+1−(n1−1)
1

(z2 + 1)N

z
N+1−(n2+1)
2

)
. (4.17)
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Using (4.15) this is easily determined to be(
N
n1

)(
N
n2

)
−
(

N
n1 − 1

)(
N

n2 + 1

)
=

N !

(N − n2)!

(N + 1)!

(N − (n1 − 1))!

n2 + 1− n1

n1!(n2 + 1)!

=

(
N
n2

)(
N+1
n1

)
n2 + 1− n1

n2 + 1
. (4.18)

It is straightforward to confirm that this is the dimension of the representation with Young

tableau
n2 n1

.. (4.19)

having n2 rows in the first column and n1 rows in the second.4 In particular, setting n2 = 2

and n1 = 1 projects onto the representation as in (3.17).

Returning now to the general case it is useful to incorporate the approach taken in

these two examples by making a complete change of variables in (4.12) by introducing

F complex variables zf = eiθf and to present the main formula in terms of these Wilson

loop variables. In general, to project onto the SU(N) representation specified by occupation

numbers n = (n1, n2, . . . nF ) requires Chern-Simons levels sf = nf−N
2 −

F−(2f−1)
2 to impose

the correct constraints on the physical state space. Overall, following some elementary

manipulations the general formula can be written rather concisely in a similar manner to

the examples above as

KF

F∏
f=1

∮
dzf
2πi

∏
h<g

(
1− zh

zg

)
(zf + 1)N

z
N+1−nf
f

, (4.20)

which represents the colour degrees of freedom for the matter field in a first quantised

approach. The complex integrals simply pick out the poles at zf = 0 for each term in

the expansion of the product in rounded brackets. We have checked that this provides

the correct counting of degrees of freedom for arbitrary representations of SU(N) given

by Young tableaux with nf rows in the f th column. The final formula (4.20) is applied

by fixing the vector n and expanding the expression into a sum over products of complex

integrals. For illustration, setting F = 6 and n = (1, 3, 5, 6, 6, 8), assuming N > 8, the

integration evaluates to

dim (4.21)

4This diagram has “factors” N !
(N−n2)!

(N+1)!
(N−(n1−1))!

and “hooks” n1!(n2 − n1)! (n2+1)!
(n2+1−n1)!

which divide to

give its dimension in agreement with (4.18) — see [28].
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which shows that the partial gauging of the U(F ) symmetry group correctly projects onto

the desired sector in the Hilbert space of the colour fields. Returning to (4.1), the remaining

functional integration over the worldline matter and super-gravity fields generates the

partition function for the dynamics and spin degrees of freedom of the particle. In the

simple case we have considered here (without turning on the gauge field) we just reproduce

the well known functional quantisation of a free point particle multiplet. We leave it to

future work to demonstrate that, when the gauge field is coupled to the particle as in (4.1),

the colour degrees of freedom produce the correct Wilson-loop interaction for the chosen

representation of SU(N). In that context, one of the physically significant representations

that could be used is the adjoint of SU(N). This requires the use of F = 2 families and

the choice n = (1, N − 1), whereby (4.18) evaluates to N2 − 1 as required.

5 Bosonic colour fields

In the previous sections the anti-commuting nature of the additional colour fields meant

that their Hilbert space was spanned by states transforming in representations built out

of totally anti-symmetric tensor products. In turns out, as has been shown in [18], that

bosonic colour fields can also provide the correct coupling to the gauge field. In the pro-

ceeding sections we will show that this choice of commuting fields instead supplies a basis

of fully symmetric representations of SU(N) which will form the building blocks of the

complete colour information associated to the matter field. We will be able to arrive at a

similar formula to (4.20) based on this alternative approach to generating the Wilson loop

interaction, which may be useful in instances where it is more natural — or less awkward

— to use bosonic variables. Before we introduce this new approach it should be pointed

out that it is already possible to generate fully symmetric representations using our pre-

vious results. Following the notation above, this can be done by using F = p families

of anti-commuting colour fields and projecting onto the sector of the Hilbert space with

occupation numbers given by n = (1, 1, . . . , 1). The total number of degrees of freedom is

easily calculated using the main formula (4.20) and turns out to be
(
N+p−1

p

)
, coinciding

with the dimension of the representation with p fully symmetric indices.

We prefer, however, to develop here a formalism where the fully symmetric represen-

tations are the fundamental constituents. To this end we define N bosonic fields c̄r and cr
which transform in the (anti-)fundamental representation of SU(N). These fields have the

following Poisson brackets

{c̄r, cs}PB = iδrs ; {c̄r, c̄s}PB = 0 = {cr, cs}PB , (5.1)

that can be seen to follow from the particle action S[c̄, c] =
∫ 1

0 dτ c̄
r ċr, and we use them to

incorporate the colour indices of the gauge group generators since, defining

Sa = c̄r(T a)r
scs , (5.2)

one gets

{Sa, Sb}PB = fabcSc . (5.3)
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We can therefore also use these commuting variables to represent the coupling between

the particle and the gauge field and so take care of the non-commuting nature of the

gauge group generators in a fully classical worldline action. This approach has been used

successfully in worldline applications in the past where the same first order action was

used to enforce the path ordering inside functional integrals [18]. As before, this action is

appended to the phase-space action (2.1) along with the associated change to the conjugate

momentum: πµ is replaced by π̃µ = pµ − Aaµc̄r(T a)rscs, which modifies the super-charge

and Hamiltonian to

Q̃ = ψ · π̃; H̃ = π̃2 +
i

2
ψµF aµνψ

ν c̄r(T a)r
scs (5.4)

with F aµν the components of the full (non-Abelian) field strength tensor with respect to the

gauge group generators. To briefly examine the Hilbert space associated to the additional

fields we promote c̄ and c to creation and annihilation operators ĉ† and ĉ and consider their

action on bosonic coherent states

〈ū| = 〈0̄| eūr ĉr ; 〈ū| ĉ†r = ūr 〈ū| ; 〈ū| ĉr = ∂ūr 〈ū| , (5.5)

where the ūr are the complex (commuting) eigenvalues of the ĉ†r. The commutation

relations are solved in this basis by taking ĉ†r ∼ ūr and ĉr ∼ ∂ūr . The Fock space is built

by acting with creation operators on the vacuum and (in contrast to when the additional

fields are Grassmann valued) is infinite dimensional. Indeed, wavefunctions Φ(x, ū) now

have a non-terminating expansion

Φ(x, ū) = φ(x) + φr1(x)ūr1 + φr1r2 ū
r1 ūr2(x) + . . .+ φr1r2...rp ū

r1 ūr2. . . ūrp + . . . (5.6)

where the components transform in representations constructed out of p fully symmetric

tensor products. The wavefunction thus transforms as a reducible sum. We resolve this

as before, constructing a projector by gauging the U(1) symmetry present in the worldline

theory, cr → e−iϑcr, c̄
r → c̄reiϑ. This leads to a new action

S [ω, p, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄r ċr − eH̃ − iχQ̃− a(L− s)

]
, (5.7)

where a(τ) is the gauge field which behaves under the U(1) symmetry as δa = ϑ̇ and L =

c̄rcr is the number operator for the colour fields which generates their U(1) transformations.

The Chern-Simons term, SCS =
∫
dτ a(τ)s, is familiar by now and involves the constant,

s = n + N
2 . The equation of motion for a(τ) imposes the constraint L = s which acts on

the wavefunctions as(
L̂− N

2

)
|Φ〉 = n |Φ〉 →

(
ūr

∂

∂ūr
− n

)
Φ(x, ū) = 0, (5.8)

where this time we resolve the operator ordering ambiguity via symmetrisation so that

L̂ = 1
2 (ūr∂ūr + ∂ūr ū

r). With Φ given by (5.6), this constraint picks out the component

that transforms with exactly n fully symmetrised indices, φr1r2...rn . This brief analysis can

be compared to the discussion in section 2, where many similarities can be found.
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6 The generalised worldline theory

To describe representations other than those corresponding to fully symmetric tensor prod-

ucts requires us to generalise these ideas to include multiple families of the additional com-

muting fields. Following section 3 an additional index is appended to the colour fields to

produce F copies of these colour degrees of freedom, c̄rf and cfr. The Poisson brackets are

generalised to

{c̄rf , cgs}PB = iδrsδfg; {c̄rf , c̄sg}PB = 0 = {cfr, cgs}PB (6.1)

and a sum over these families of fields is included in each of the functions in the action (for

example, π̃µ → pµ−Aaµc̄rf (T a)r
scfs). This again enlarges the U(1) symmetry group to the

U(F ) that rotates between the new fields. The U(F ) rotations are given by cfr → Λfgcgr
and c̄rf → c̄rgΛ

†
gf where Λ := e−iλ and λ is a constant Lie-algebra valued generator. We

again introduce the generalised occupation numbers which are the conserved currents of

this global symmetry, now built out of the bosonic colour fields as Lfg = c̄rfcfg. At the

classical level, these currents obey the U(F ) algebra{
Lff ′ , Lgg′

}
PB

= −iδf ′gLfg′ + iδfg′Lgf ′ , (6.2)

so they generate infinitesimal U(F ) transformations through Poisson brackets with G =

λfgLfg:

δλcfr = {cfr, G}
PB

= −iλfgcgr; δλc̄
r
f =

{
c̄rf , G

}
PB

= ic̄rgλgf . (6.3)

The Hilbert space is now substantially enlarged, consisting of components that trans-

form in tensor products of the representation associated to each family and to achieve

irreducibility it will be necessary to partially gauge this new symmetry. The richer Fock

space can be expressed as a non-terminating sum over components of the form

Φ(x, ū) =
∑

{n1,n2,...nF }

φr1...rn1 ,s1...sn2 ,...,t1...tnF (x)ūt1F . . . ū
tnF
F . . . ū

s1
2 . . . ū

sn2
2 . . . ū

r1
1 . . . ū

rn1
1 , (6.4)

where the indices are arranged into blocks of length nf which are fully symmetric. The

form of the wavefunctions in (6.4) is nicely explained diagrammatically by using Young

tableaux notation:

Φ(x, ū) ∼
∑

{n1,n2,...nF }

··︸ ︷︷ ︸
nF

⊗ . . .⊗ ··︸ ︷︷ ︸
n2

⊗ ··︸ ︷︷ ︸
n1

, (6.5)

so that in general the wavefunction does not transform in an irreducible representation.

In order to have irreducibility, following the success of earlier sections, we gauge only a

part of this U(F ) symmetry by introducing gauge fields afg for 1 6 g 6 f 6 F correspond-

ing to a subset of the Lfg. We showed above that this subset satisfies a first class subalgebra

and that it led to the desired projection onto a specified irreducible representation. To this
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end we modify the action to

S′ [ω, p, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċrf − eH̃ − iχQ̃

−
F∑
f=1

af (Lf − sf )−
∑
g<f

afgLfg

]
, (6.6)

which will form the basis for the remainder of this article. In equation (6.6) we have

split the U(F ) gauge fields into two types. As before, the diagonal generators Lf ≡ Lff
are gauged by af ≡ aff from which the off-diagonal elements have been separated and

gauged by afg. To the former we have also introduced an independent Chern-Simons term

associated to each family whose level is related to the desired occupation number of that

sector of the Hilbert space. Invariance under local U(F ) transformations fixes the variation

of the gauge fields to be

δλafg(τ) = λ̇fg(τ) + i
∑
g6k6f

(afk(τ)λkg(τ)− λfk(τ)akg(τ)) (6.7)

as is already familiar.

We very briefly review how this achieves irreducibility, as the argument is essentially

the same as in the case that the colour fields are anti-commuting. It suffices to consider the

equations of motion implied by the gauge fields. These impose constraints on the physical

state space (
L̂f −

N

2

)
|Φ〉 = nf |Φ〉 −→

(
ūrf

∂

∂ūrf
− nf

)
Φ(x, ū) = 0, (6.8)

where this time we have resolved an operator ordering ambiguity by symmetrising. This

picks out from (6.4) the wavefunction component with nf symmetric indices associated

to each family, φr1...rn1 ,s1...sn2 ,...,t1...tnF (x). The remaining off-diagonal constraints then se-

lect only one irreducible representation from the tensor product denoted in (6.5). These

constraints act on the Fock space as

L̂fg |Φ〉 = 0 −→ ūrf
∂

∂ūrg
Φ(x, ū) = 0. (6.9)

To illustrate the effect of this requirement we consider the same illustrative example as

before, namely when F = 2 and n2 = 2, n1 = 1. In this case the constraints implied by

L1 and L2 pick out the wavefunction component φr1r2,s1(x) so that the surviving part of

Φ(x, ū) can be written as a reducible sum

Φ(x, ū) = φr1r2,s1(x)ūr12 ū
r2
2 ū

s1
1

=

[
φ(r1r2,s1)(x) +

1

3
(2φr1r2,s1(x)− φs1r1,r2(x)− φs1r2,r1(x))

]
ūr12 ū

r2
2 ū

s1
1 (6.10)

which reflects the tensor product decomposition ⊗ = ⊕ (we have made use of

the symmetries of the wavefunction to carry out some relabelling of indices to arrive at
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this). The surviving components must lie in the kernel of the Lfg, which act to remove a

ūrg, to introduce a ūrf and to symmetrise between indices. Indeed, acting with L̂21 on the

creation operators above yields

L̂21 ū
r1
2 ū

r2
2 ū

s1
1 = ūt2

∂

∂ūt1
ūr12 ū

r2
2 ū

s1
1 = ūs12 ū

r1
2 ū

r2
2 (6.11)

whose result is symmetric under interchange of the r1, r2 and s1. Now the component in

rounded brackets transforms under the representation with Young tableau which implies

an antisymmetrisation between the r1, s1 and r2, s2 indices. For this reason, the only term

that survives the action of L̂21 is φ(r1r2,s1) which the constraint therefore forces to vanish

and the only surviving component is that which transforms in the representation with n2

columns in the first row and n1 columns in the second.

The general case is similar to this example. The Lf constraints pick out the wavefunc-

tion component with nf fully symmetrised indices associated to each family, which further

breaks down into components which transform in the tensor product decomposition illus-

trated in the summand of (6.5). The Lfg constraints further restrict attention to a single

component which lies in their kernel. Given the form of the Lfg this can only be achieved

with a maximum amount of anti-symmetrisation between the indices of different families.

Then the Young tableau denoting the representation of the surviving component is

Φ(x, ū) ∼

nf
..

..
n1

..

...

. . .

...

..


F rows (6.12)

which contains nf columns in the f th row with nF > nF−1 > . . . > n2 > n1. Due to the

anti-symmetrisation between the rows of each column implied by the shape of (6.12), only

this component lies in the kernel of all of the Lfg. In this way, the partial gauging of the

U(F ) symmetry provides a projection onto a single irreducible representation of SU(N).

This complements our earlier work where the tableau was made up by instead specifying the

number of rows in each of F columns and provides another approach which projects onto an

arbitrarily chosen representation without being limited to those with single-row tableaux.

In the following section we will carry out the path integral quantisation of this theory

for a particle whose path is closed. As discussed above this is relevant for calculations in

the worldline approach to quantum field theory where it is related to the partition function

of the quantum field theory describing a matter field interacting with a gauge field. We

will calculate the degrees of freedom associated to the colour space of the matter field and

compare the result to the dimension of the representation in (6.12).

7 Path integral quantisation

The situation is the same as in section 4: we consider a point particle that traverses a

closed path by identifying its coordinates, ωµ, at either end of the domain which therefore
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becomes S1 as before. We proceed by integrating the momenta pµ out so as to arrive

(rotating to Euclidean signature) at a configuration space action

S [ω, ψ, e, χ, c̄, c, a] =

∫ 1

0
dτ

[
e−1ω̇2/2 +

1

2
ψ · ψ̇ − χ

e
ω̇ · ψ + c̄rf ċfr − ic̄rfAa(T a)rscfs

+

F∑
f=1

iaf
(
c̄rfcfr−sf

)
+
∑
g<f

iafg c̄
r
fcgr

]
, (7.1)

where sf are the Chern-Simons level and we recall the previously defined worldline function

A = ω̇·A− e
2ψ

µFµνψ
ν which parameterises the phase of the Wilson loop, W = Pei

∫ 1
0 A(τ)dτ .

The object in question is the functional integral over configurations∫
DeDχDωDψD c̄DcDa

Vol(Gauge)
exp (−S [ω, ψ, e, χ, c̄, c, a]). (7.2)

The introduction of the additional bosonic fields now replaces the path ordering prescrip-

tion. We take periodic boundary conditions on ω, e and a, but now also on on c̄, c. The

remaining fields, ψ and χ, have anti-periodic boundary conditions as usual. We follow the

analysis employed in section 4 by restricting attention to the colour degrees of freedom,

considering the reduced path integral

1

Vol(Gauge)

∫ ∏
f,r

D c̄rfDcfr
∏
h<g

Dagh
∏
f

Daf

× exp

− ∫ 1

0
dτ

 F∑
f=1

(
c̄rfDfcfr − isfaf

)
+
∑
h<g

iafg c̄
r
fcgr

, (7.3)

where the diagonal gauge fields are absorbed into defining a covariant derivative Df ≡(
d
dτ + iaf

)
and we have dropped the coupling to the external gauge field. We will show

that this functional integral evaluates to the correct number of degrees of freedom associated

to the colour space for any choice of s = (s1, s2, . . . , sF ). In the worldline formalism we

would also have to include the functional integrals involving the embedding coordinates,

ω, the spin degree of freedom, ψ and the worldline supergravity multiplet e and χ, which

would allow us to calculate scattering amplitudes and other physical observables. For the

present article we will continue to deal only with the colour degrees of freedom, leaving to

future work the inclusion of the interaction with the gauge field.

The action of the colour fields in (7.3) is of course still invariant under the auxiliary

symmetry group discussed above. As before, we gauge fix this symmetry by fixing the

fields afg to be the constant matrix

âfg =


θ1 0 · 0

0 θ2 · 0

· · · ·
0 0 · θF

 . (7.4)

where the parameters are interpreted as angles in [0, 2π] and are the moduli to be inte-

grated over. Indeed, integrating over these variables will provide the projection onto an
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irreducible representation of SU(N). We have already found the Faddeev-Popov determi-

nant associated to this gauge fixing which led to the measure on the the moduli, (4.11),

which takes the form

µ ({θk}) =
∏
h<g

2i sin

(
θg − θh

2

)
(7.5)

and is the correct factor ensuring gauge invariance of functional integrals on our chosen

gauge slice. This measure is also the factor that is required to ensure a projection onto a

single irreducible representation of the symmetry group.

7.1 Evaluation of the path integral

The gauge fixed path integral takes the form

KF

F∏
f=1

∫ 2π

0

dθf
2π

∫
D(c̄, c)µ ({θk}) exp

− ∫ 1

0
dτ

F∑
f=1

(
c̄rfDfcfr − iθfsf

) (7.6)

where the covariant derivative takes the simple form Df =
(
d
dτ + iθf

)
and KF is the

normalisation constant which also appeared for fermionic colour fields. The integration

over c̄ and c leads to a functional determinant which is defined as the product of its non-

zero eigenvalues:

F∏
f=1

[
Det
PB

(
d

dτ
+ iθf

)]−N
=

F∏
f=1

(
2i sin

(
θf
2

))−N
, (7.7)

where we have made use of the results of appendix B. This gives a formula for the number

of degrees of freedom associated to the colour space, which is the main result of this section,

KF

F∏
f=1

∫ 2π

0

dθf
2π

eiθf sfµ ({θk})
(

2i sin

(
θf
2

))−N
. (7.8)

We will now give some example calculations making use of this formula to demonstrate

that it provides the expected results.

The simplest example to consider is for F = 1, whereby the formula is familiar from

previous work and determines the dimension of fully symmetric representations. Taking

s1 = n1 + N
2 and using µ(θ1) = 1, K1 = 1, (7.8) becomes∫ 2π

0

dθ1

2π
eiθ1n1eiθ1

N
2

(
ei
θ1
2 − e−i

θ1
2

)−N
=

∫ 2π

0

dθ1

2π
eiθ1n1

(
1− e−iθ1

)N
. (7.9)

It so far has proven convenient to make a change of variable to write our expressions in

terms of the U(1) Wilson-loop on the circle, z1 = eiθ1 . Doing so we find∮
dz1

2πiz1

zn1
1

(1− 1
z1

)N
=

∮
dz1

2πi

zN−1+n1
1

(z1 − 1)N
. (7.10)

The contour of integration is the circle |z1| = 1, deformed to enclose the pole on the real

axis at z1 = 1. This follows from the regularisation procedure outlined in appendix B,
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which requires a shift θ1 → θ1 − iε, sending z1 → z1e
ε for a small positive parameter ε.

The integral is easily calculated to be∮
dz1

2πi

zN+n1
1

(z1 − 1)N
=

(
N+n1−1

n1

)
, (7.11)

which agrees with the dimension of the SU(N) representation with n1 fully symmetrised

indices. This is in agreement with the results of [18], where scattering amplitudes were

calculated in the worldline formalism involving matter fields which transformed in fully

symmetric representations of SU(N).

We also return to (6.10) where the calculation is more interesting. This requires

the use of F = 2 families of fields and we take the general case of occupation numbers

n = (n1, n2) where n1 6 n2. Similarly to section 4, this is enforced by Chern-Simons terms

s1 = n1 + N
2 −

1
2 and s2 = n2 + N

2 + 1
2 , in which case (7.8) gives (recall that K2 = 1)∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
eiθ1(n1− 1

2)eiθ2(n2+ 1
2) ×

×
(

1− e−iθ1
)−N (

1− e−iθ2
)−N (

ei
θ1
2 e−i

θ2
2 − e−i

θ1
2 ei

θ2
2

)
. (7.12)

In this expression we have extracted factors of e−iθ1
N
2 and e−iθ2

N
2 from the first two terms

in rounded brackets to cancel them off against their counterparts for simplification. We

will again make use of the Wilson-loop variables by defining z1 = eiθ1 and z2 = eiθ2 which

allows us to re-express this formula as a multiple integral on the complex plane:∮ ∮
dz1

2πi

dz2

2πi

(
zN−1+n1

1

(z1 − 1)N
zN−1+n2

2

(z2 − 1)N
− z

N−1+(n1−1)
1

(z1 − 1)N
z
N−1+(n2+1)
2

(z2 − 1)N

)
. (7.13)

Making use of (7.11) this evaluates to(
N+n1−1

n1

)(
N+n2−1

n2

)
−
(
N+n1−2
n1−1

)(
N+n2

n2+1

)
=

(N + n2 − 1)!

n2!(N − 1)!

(N + n1 − 2)!

(N − 2)!n1!

n2 + 1− n1

n2 + 1

=

(
N+n2−1

n2

)(
N+n1−2

n1

)
n2 + 1− n1

n2 + 1
. (7.14)

It is simple to verify that this corresponds to the dimension of the representation of SU(N)

with Young tableau
n2
n1

·· (7.15)

having n2 columns in the first row and n1 columns in the second.5 Specifying n2 = 2 and

n1 = 1 projects on the representation as in (6.10).

As before it is possible to write our main formula more compactly by representing all of

the U(F ) moduli by Wilson-loop variables, defining zf = eiθf for f ∈ [1, . . . F ]. Assuming

5Following [28] this tableaux has “factors” (N+n2−1)!
(N−1)!

(N+n1−2)!
(N−2)!

and “hooks” n1!(n2+1)!
(n2+1−n1)!

whose quotient

gives the dimension in (7.14).
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occupation numbers n = (n1, n2, . . . , nF ) we take Chern-Simons levels sf = nf + N+1
2 − f .

Then following similar lines to before the number of degrees of freedom carried by the

matter field in the worldline approach can be cast into the form

F∏
f=1

∮
dzf
2πi

∏
h<g

(
1− zh

zg

)
z
N−1+nf
f

(1− zf )N
, (7.16)

where each integration contour encloses the pole at z = 1. We have verified that this

produces the correct number of degrees of freedom for any representation of SU(N) whose

Young tableau has nf columns in the f th row. The formula (7.16) is used by fixing the

numbers in n and expanding the product into a sum of multiple complex integrals. For ex-

ample, with F = 6 and n = (1, 2, 2, 4, 6, 7) (assuming that N > 6), the integration provides

dim . (7.17)

This shows that the modular measure µ({θk}) correctly projects onto the wavefunction

component transforming in the desired irreducible representation of the gauge group. This

measure follows from the partial gauging of the U(F ) symmetry that existed in the worldline

theory. In the worldline approach it would be necessary to also complete the remaining

integrals over the matter and supergravity fields in (7.1). This procedure is well known

and gives the dynamical and spin degrees of freedom of the particle. In future work we

intend to also include the coupling to the gauge field in order to show that the additional

colour fields produce the expected interaction — this would be the Wilson-loop coupling

for the chosen representation of SU(N).

As we have already mentioned one of the most physically significant representations

that one could project onto is the adjoint of SU(N). It remains possible to achieve this

in the current setting: we would need F = N − 1 families of fields and should take the

vector n = (2, 1, . . . 1). We have verified that formula (7.16) then evaluates to N2 − 1

as desired. Finally, before introducing the bosonic colour fields we commented that fully

symmetric representations can be constructed out of a theory based on fully anti-symmetric

representations. The converse is also true; choosing 0 6 F = p 6 N and n = (1, 1, . . . 1),

our main formula gives the correct number of degrees of freedom of an SU(N) tensor with

p fully antisymmetric indices,
(
N
p

)
, and vanishes if F > N .

8 Conclusion

We have presented the construction of two related worldline theories which describe a spin

1/2 matter field transforming in an arbitrary representations of SU(N). We have shown

how coupling the matter field to families of either commuting or anti-commuting auxiliary

fields replaces the awkward path ordering prescription and allows the description of richer

matter content, including tensors with mixed symmetry. We examined the Hilbert space

of the auxiliary worldline fields which carry the colour information of the matter field and
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described how to isolate wavefunction components transforming in a desired irreducible

representation. In the case that the auxiliary fields are anti-commuting, they provide a

Fock space whose states transform in tensor products of F anti-symmetric representations

of SU(N), whereas their commuting counterparts span a Hilbert space with states that

are tensor products of F symmetric representations. The projection on an irreducible

representation was achieved by partially gauging a U(F ) symmetry which rotates between

the F families of additional fields, and the introduction of Chern-Simons terms to constrain

the occupation numbers of the particle wavefunction. Our main result arose from path

integral quantisation of the worldline theory which provided a compact formula for the

colour degrees of freedom of the matter field.

In future work we will include the coupling to the gauge field in order to complete

a worldline description of arbitrary matter multiplets coupled to an external non-Abelian

field. This will be done by reinstating the Wilson-loop coupling between the colour fields

and the gauge fields and computing the resulting path integral: this will provide a complete

framework for the computation of gluon amplitudes in the presence of any form of matter

(note that chiral fermions can also be described in a first quantised setting by following the

ideas presented in [15, 16]). The utility of this approach is clear from the existing efficiency

of the worldline formalism, which ought to be preserved by the introduction of the colour

fields. In general, the worldline formalism leads to Bern-Kosower rules that simplify the

calculation of scattering amplitudes. In the non-Abelian case, these rules state that in order

to achieve the full gauge invariance of the on-shell gluon amplitudes, one must append the

one-particle irreducible expressions, that naturally come from the worldline representation,

with “tree replacement rules” that allow the inclusion of gluon self-interactions. We wish

to use our formalism to generalise Bern-Kosower rules for gluon scattering in the presence

of an arbitrary matter field.

Although we have limited our attention to closed worldlines for the sake of simplicity,

these methods are also well-suited for application to tree-level amplitudes, where the par-

ticle endpoints are fixed [11, 12]. This has application to dressed propagators in quantum

field theory and the analysis of bound states [14]. Finally, the old link between the world-

line approach and string theory has recently been re-examined in [29, 30], where a contact

interaction was introduced on the worldsheets of tensionless spinning strings. Identifying

the endpoints of the strings with particle worldlines reproduced the Wilson-loop interaction

for spinor QED. Generalising this theory to non-Abelian symmetry groups would require

the incorporation of the colour degrees of freedom onto the string worldsheet and would

lead to an alternative description of particle interactions in terms of interacting coloured

strings. Furthermore, it would be worthwhile examining the relative merits of using the

bosonic colour carrying fields compared to the Grassmann auxiliary fields as it would be

useful to know which approach tends to offer the most simplicity and versatility for the

purpose of calculations in the worldline approach.

Much work has also been carried out using worldline techniques for fields that are cou-

pled to the gravitational field. The techniques we have presented here can be incorporated

into that context with minor modifications and may provide a powerful approach to the

calculation of amplitudes involving gluons and/or gravitons.
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A U(F ) gauge fixing

Here we present the fixing of the non-Abelian U(F ) symmetry discussed in the main text.

The generator of the symmetry, λ, is in the Lie algebra of U(F ) and produces the following

finite transformation on the gauge field:

a→ U−1aU − iU−1U̇ ; U(τ) = eiλ(τ). (A.1)

It is tempting to try to use such a transforming to fix the gauge field to vanish identically.

Simple algebra shows this is equivalent to solving d
dτU(τ) = −ia(τ)U(τ) which can be done

by making use of the Path ordering prescription

U(τ) = Pe−i
∫ τ
0 a(τ ′)dτ ′ . (A.2)

Since the domain is S1 we require the transformation to be periodic, so this solution is not

admissible. Instead, we can define a constant group valued matrix e−iΘ = Pe−i
∫ 1
0 a(τ)dτ

and construct a gauge transformation which takes afg(τ) onto the constant Θ in the Lie

algebra of the symmetry group:

Ũ(τ) = U(τ)eiΘ ⇒ akj(τ)→ Θkj . (A.3)

With the partial gauging we use in this paper, the Θ will be upper-triangular. However,

when we return to the functional integral over the colour fields, the resulting functional

determinant is easily shown to be independent of the off diagonal terms. These then

factor out of the path integral, leading to an overall constant which is cancelled upon

normalisation. So it suffices to keep only the diagonal elements of the Cartan subalgebra

which leaves âkj in (4.4). These remaining moduli can be identified as angles by considering

large U(1)F ⊂ U(F ) transformations and requiring periodicity.

The final ingredient is the integration measure on the moduli, which we derive using

the Faddeev-Popov formalism. To avoid overcounting one factorises the integration over

orbits of the gauge group out of the functional integration. This is achieved by integrating

only over the moduli θk, compensating for this gauge fixing by introducing the ghosts

in (4.6) That is, ∫
Da→

∫
DU

∫
Da

∫
D(γ̄, γ) e−Sg [γ̄,γ,{θ}]δ

(
aU − â

)
(A.4)
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where â is the gauge fixed form of a and aU represents the gauged transformed value of a.

In the main text we used the results of appendix B to integrate over the ghost degrees of

freedom which, cancelling the functional integration over U with the volume of the gauge

group, provided gauge fixed integrals of the form∫
DaΩ[a]→

F∏
k=1

∫
dθk
2π

µ({θk}) Ω[â({θk})] (A.5)

where Ω is any functional of the gauge fields and µ denotes the Faddeev-Popov measure

maintaining gauge invariance.

B Functional determinants

In this appendix we calculate the various functional determinants which arose in the main

text. The main difference between the situations that are encountered is in the boundary

conditions imposed on the fields in the functional integration. We define the functional

determinant

Det

(
d

dτ
+ iθ

)
(B.1)

as the product of non-zero eigenvalues of the operator in brackets. On the space of periodic

functions, the eigenvalue equation(
d

dτ
+ iθ

)
f(τ) = µf(τ) (B.2)

is solved by eigenfunctions f(τ) = e−iθτeiµτ , requiring µ = θ + 2nπ for n ∈ Z. We arrange

the product over these eigenvalues by pairing up the positive and negative integers (taken

as part of our regularisation of the infinite product) as

θ

∞∏
n=1

(
1− θ2

(2nπ)2

) ∞∏
n=1

(2nπ)2 . (B.3)

The latter product can be ζ-function regularised and evaluates to a constant, independent

of θ (see [11]). The first product is well-known from the expansion of the sin function so

we arrive at

Det
PB

(
d

dτ
+ θ

)
= 2i sin

(
θ

2

)
. (B.4)

For anti-periodic boundary conditions the eigenvalues are modified to µ = θ + (2n + 1)π,

so their product becomes

θ

∞∏
n=0

(
1− θ2

((2n+ 1)π)2

) ∞∏
n=0

((2n+ 1)π)2 . (B.5)

The final product gives an overall constant and the first is related to the infinite product

expansion of the cos function, so we find

Det
APB

(
d

dτ
+ θ

)
= 2 cos

(
θ

2

)
. (B.6)

These results are used extensively in the main text.
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We also wish to return to the calculation of the determinant on the space of periodic

functions as the regularisation is important for the discussion presented in the main text.

For this reason we re-derive the result using techniques derived from canonical quantisation.

The determinant arising out of the following integration can be expressed as a trace over

states in the Hilbert space:(
Det
PB

(
d

dτ
+ θ

))−1

=

∮
PB

D(c̄, c) e−
∫ 1
0 dτ c̄(

d
dτ

+θ)c

= tr e−i
θ
2(ĉ†ĉ+ĉĉ†). (B.7)

The trace is most easily evaluated in the occupation number basis, where the states are

eigenvalues of n̂ = ĉ†ĉ. This leads to(
Det
PB

(
d

dτ
+ θ

))−1

=

∞∑
n=0

〈n| e−i
θ
2(n̂+ 1

2) |n〉

=

∞∑
n=0

e−i
θ
2(n+ 1

2). (B.8)

We are obliged to regularise the geometric series by taking θ → θ − iε and arrive at(
Det
PB

(
d

dτ
+ θ

))−1

=
e−i

θ
2

1− e−iθ
=

(
2i sin

(
θ

2

))−1

. (B.9)

The necessary regularisation of θ affects the Wilson-loop variable z = eiθ → z = zeε, which

is important in determining the contour in the complex plane along which this parameter

is integrated. This changes the original circle of radius |z| = 1 to a circle that is slightly

larger, therefore encompassing any poles that lie at unit length from the origin. On the

other hand, when the variables c̄ and c are Grassmann valued then the trace becomes

Det
APB

(
d

dτ
+ θ

)
=
∑
n=0,1

e−iθ(n−
1
2) = 2 cos

(
θ

2

)
(B.10)

which does not require such regularisation.
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