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In 1997, the human corneal epithelium was reconstructed in vitro and transplanted 
on patients. Later, it became a routine treatment, before regulations considered 
advanced therapy medicinal products and drugs on the same lines. Manufacturing, 
before and after good manufacturing practice setting, was established in different 
facilities and the clinical application in several hospitals. Advanced therapy medicinal 
products, including stem cells, are unique products with different challenges than 
other drugs: some uncertainties, in addition to benefit, cannot be avoided. This 
review will focus on all recent developments in the stem cell-based corneal therapy.
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Advanced therapy medicinal products 
(ATMPs), including cell/gene therapy and 
tissue engineering, have been regulated in 
recent years by pharmaceutical rules applying 
to this new area of medicine. This has intro-
duced additional bottlenecks in the already 
difficult passage from bench to bedside. 
Pharmaceutical rules were originally tailored 
for manufacturing and control of chemical 
molecules and not of living tissues: as a mat-
ter of fact, the latter contain cells continu-
ously changing and endowed with prolifera-
tive and differentiation potential, enabling 
them to secrete many different molecules, 
depending on their status. In addition, these 
products have a very short shelf life, limiting 
the time for controls before release, com-
pared with chemical compounds. There-
fore, most examples of cell therapy or tissue 
engineering have been shown only in in vitro 
models or in animals; few have entered the 
phase of clinical trials on humans. Alto-
gether, the requested knowledge and adjust-
ments increase the hurdles to the spread of 

advanced therapies, reducing the number of 
clinical applications, subsequently leading to 
low confidence among entrepreneurs invest-
ing in the sector and thus slowing down their 
diffusion. In the meantime, scientific papers 
– in addition to huge research investments 
in this area of medicine – increase expec-
tations with regards to clinical trials and 
routine clinical treatments. In Europe and 
the USA, few ATMPs have been approved; 
though they are still in their infancy, it is use-
ful to understand their procedures and share 
experiences, in order to facilitate the develop-
ment of this area of personalized medicine. 
The first example of a therapeutic use of cells 
extracted from human tissue was the use of 
selected hematopoietic cells in hematologic 
diseases and in oncology  [1]. However, this 
tissue is considered a typical transplant and 
not an ATMP, since transplanted cells are not 
extensively manipulated. Legally speaking, 
selecting and transplanting cells is considered 
a ‘minimal manipulation’ to the same extent 
as an organ transplant, since the same risks 
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do not apply to cell pathway stimulation and extensive 
proliferation ex vivo. Stimulation is usually obtained 
through natural or artificial cell–drug contact, with 
related toxicity, potentially inducing uncontrolled cell 
behavior. One of the first examples of extensive in vitro 
manipulation of cells destined for transplantation in 
tissue reconstruction was successfully obtained with 
epidermal cells for the treatment of severely burnt 
patients [2,3].

Corneal cell therapy
After these first trials, in 1997 the human limbo-corneal 
epithelium was reconstructed in vitro and transplanted 
into two patients [4]. It was obtained by culturing cells 
extracted from a small biopsy of the ocular surface; 
the two patients were suffering from a limbal stem cell 
deficiency with a resultant defect in corneal repair and 
opacification of the anterior surface of the eye. The 
clinical outcome was good and results were proven to 
be stable up to the 2 years of documented follow-up 
period, suggesting that the selected biopsy area con-
tained the cells needed for a long-term regeneration. 
This was one of the first examples of application of 
regenerative medicine in the field of ophthalmology, 
and it was successfully reproduced, with some modifi-
cations, by Ivan Schwab in the USA [5], Ray Tsai in Tai-
wan [6], and later by Geeta Vemuganti in India [7]. The 
treatment became a routine patient treatment in Italy 
in 2004 (reimbursed by the National Health System), 
was accepted in India in 2008, but never spread out of 
these specific countries. In the USA, the treatment was 
stopped due to regulatory requirements.

After the first proof of principle, lengthy studies 
were needed to investigate the mechanisms controlling 
stable regeneration and enabling high reproducibility 
in the manufacturing process.

Location/identification of stem cells
Since adult stem cells maintain a population of highly 
differentiated but short-lived cells such as epithelia, 
data suggest that human corneal stem cells can be 
found in the limbus.

The first step of investigation was mapping the stem 
cells of the two epithelia covering the ocular surface: 
the cornea and the conjunctiva (Figure 1). Since the 
two epithelia in vivo behave differently, it had to be 
assessed whether a single stem cell could produce both 
epithelia, under the control of a local microenviron-
ment, or whether two stem cells committed to different 
cell fates could be located in the areas to be defined [8].

Studies in humans have shown the presence of two 
distinct adult stem cells, capable of corneal and con-
junctival tissue regeneration, respectively; in particu-
lar, stem cells from the conjunctiva were shown to be 

bipotent (able to generate epithelium and goblet cells) 
and ubiquitous in the tissue, whereas corneal stem cells 
were proven to be segregated in the limbus  [9], giving 
rise to progenitors covering the corneal surface. Dif-
ferent results on other mammals were reported by 
Majo  et  al., confirming, however, the human find-
ings  [10]. It should be noticed that strong evidence of 
localization of corneal epithelial stem cells in the lim-
bus and of central pedal migration of clonal cells has 
been previously shown in live cell tracing experiment 
in mice [11].

In humans, both cells can be cultured in vitro, in 
similar culture conditions, maintaining their funda-
mental properties such as self-renewal, clonogenic-
ity, long-term proliferative potential and specific dif-
ferentiation properties. Corneal culture therapy has 
been reproduced by many different groups all over the 
world. Modifications in the culture process have been 
made by different research groups, and were related to 
supports for cell growth, presence/absence of feeder 
layer or serum [7,12–14] and use of tissue explant.

Potency marker
A specific challenge to this therapy is monitoring the 
maintenance of the therapeutic effect, and therefore 
the presence of stem cells in the cultures; the selec-
tion of culture conditions should expand these stem 
cells and guarantee their maintenance in a sufficient 
number, so as to produce a good clinical outcome in a 
long-term run. In the late 1990s, the only way to iden-
tify these cells was to look for the presence of holo-
clones, the only clonal type endowed with self-renewal, 
clonogenicity and long-term proliferative potential in 
epithelia [15,16]. The holoclone can be isolated by clonal 
analysis, resulting in less than 5% of aborted colonies 
in isolated daughter colonies. Stem cell identification 
can be completed approximately 1 month after cell iso-
lation, allowing only a retrospective evaluation of their 
presence  [17]. Attempts at holoclone identification by 
measuring the colony mass failed, showing no differ-
ence between the size of colonies generated by progeni-
tors (meroclone) or by a stem cell (holoclone), whereas 
the capability of sustaining proliferation over time was 
very different  [18]. When, at the same time in 1999, 
McKeon and Roop [19,20] tried to understand the role of 
the p63 transcription factor in a knockout mouse, they 
found a complete absence of all stratified epithelia, 
in addition to cranial abnormalities. The observation 
of areas of terminally differentiated epithelial cells, 
despite the absence of whole epithelia, could mean 
that the lack of p63 did not block epithelia morpho-
genesis but impeded their self-renewal, allowing only 
terminal differentiation. On this basis, p63 expression 
was investigated in subpopulations of proliferating 
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cells: stem cells (identified by holoclones), progenitors 
(meroclones) and clones with limited residual prolif-
erative potential [21]. Results highlighted a strong p63 
expression in stem cell nuclei, presence in some nuclei 
of progenitor clones (meroclones) at a lower extent and 
absence in clones with limited residual proliferative 
potential, suggesting a correlation between the nuclear 
expression of p63 and long-term proliferative potential 
in ocular epithelial cells and epidermis. On the other 
hand, markers for proliferation such as PCNA, (a DNA 
polymerase D-associated protein synthesized in G1 
and S phases of the cell cycle) [22], or Ki67, expressed 
during all active phases of the cell cycle (G1, S, G2 and 
mitosis) [23], were expressed by most cells forming the 
basal layer of the human limbus, at similar extent. The 
p63 gene produces full-length (TAp63) and N termi-
nally truncated (ΔNp63) transcripts initiated by differ-
ent promoters. The C-terminal is alternatively spliced 
to encode ten different isoforms, designated α, β, γ, 
δ, ε  [24,25], to produce at least ten different p63 tran-
scriptional variants. Some p63 isoforms were shown 
to be required for morphogenesis and proliferation of 
stratified epithelia in particular, ΔNp63-α sustains the 
proliferative potential of basal epithelial cells  [26,27], 
whereas ΔNp63-β and ΔNp63-γ correlate with corneal 
regeneration and differentiation [21,28]. Further studies 
highlighted that p63 expression, in particular ΔN-α 
isoform in the resting limbus, is associated with the 
expression of at least two additional proteins: C/EBP-δ 

and BMI-1. The expression of C/EBP-δ is present in 
the subset of mitotically quiescent cells positive both 
for ΔNp63-α and BMI-1, a polycomb family transcrip-
tional repressor. The induction of C/EBP-δ-induced 
slow cycling, maintenance of a long-term proliferative 
potential and persistence of p63 expression at high 
level (the findings are summarized in Figure 2) [29].

In human limbal stem cells, proliferative potential 
relies on the expression of ΔNp63, whereas self-renewal 
also requires C/EBPδ. Similarly, BMI-1 is also neces-
sary for the self-renewal of neural stem cells but does 
not control the proliferative capacity of the committed 
progeny [30]. The Wnt signaling pathway has recently 
been implicated in the regulation and hemostasis of 
limbal stem cells [31]. Activation of the canonical Wnt 
pathway apparently improve the proliferation of lim-
bal epithelial cells in culture [32]; and the Wnt receptor 
frizzled 7 was necessary for the maintenance of limbal 
stem cells [33].

Additional markers have recently been proposed, 
such as ABCG2 and ABCB5  [34–36]. They raised the 
general interest since surface markers are suitable for 
living cells sorting. Data proposed by the same authors 
or other groups showed neither absence of corneal epi-
thelium or repair defects in knockout mice for both 
markers, raising doubts on their role in stem cells and 
tissue maintenance  [36,37]. An advantage of this cul-
tured tissue is that purification of a subpopulation of 
less differentiated cells is not suggested, since transit-

Figure 1. Corneal and conjunctival areas selected for biopsy retrieval. Superior and inferior fornix (yellow line), 
superior, inferior, nasal and temporal bulbar conjunctiva (black asterisk), superior, inferior, temporal and nasal 
limbus (light blue line), paracentral cornea (blue line), central cornea (white asterisk). All defined areas were 
cultured in vitro and analyzed for stem cell content.
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amplifying cells orchestrate stem cell activity and tissue 
regeneration [38], and the short-term therapeutic effect 
is mediated by progenitors/differentiated cells, pro-
viding a barrier, whereas in the long-term a sufficient 
number of stem cells is needed to restore the epithe-
lium. Most importantly, the culture system provides a 
high homogeneity of cell types, hence mainly epithelial 
cells, at several differentiation stages, composing the 
final product. This hypothesis was confirmed by the 
correlation with clinical success, later on in retrospec-
tive studies [ Rama p, lambiase A, Pocobeli A et al. (2016)  M anu-

script in  P reparation ].

Carrier selection
In recent years, the environment of keratinocyte stem 
cells has been amply reviewed, but not in relation to 
the supports for tissue regeneration [39]. The prolifera-
tive compartment of epithelia, including stem cells, 
is located in the basal layer, which is in contact with 
the matrix and the supports used for regeneration 
and surgery. Stimuli from materials translate chemi-
cal interaction and mechanotransduction systems into 
biochemical signals, controlling multiple aspects of 
cell behavior, including adhesion, migration, growth, 
differentiation and cell fate [40,41].

Many supports for human tissue regeneration have 
been proposed, by different authors, hardly ever show-
ing stem cell maintenance in comparative analysis with 

consolidated techniques. The most common support 
for cell growth was the amniotic membrane, used in 
clinical applications for a long time, and frequently 
associated with explant cultures  [42]. The technique 
does not include enzymatic processing of biopsies, and 
the tissue explant is placed on support until cell migra-
tion and proliferation slowly cover the surface once. In 
the cultured corneal epithelium composing the product 
Holoclar®, the proposed matrix was fibrin, a support 
resembling the wound-healing environment. This car-
rier was introduced in 1999 [15,16], showing that epithe-
lial cells grown on fibrin matrix have the same growth 
capacity and stem cell content as those cultured on 
plastics, but the enzymatic detachment and shrinking 
of the epithelium can be avoided and the basal cells 
protected during transport and handling. Despite the 
big variation in stiffness between plastic and fibrin, 
no differences were found in the number of stem cells 
between the two supports  [43]. This culture system 
originates from a cell suspension obtained from biopsy, 
and allows multiple treatments, as opposed to amni-
otic membrane: cells dispersed on the surface do not 
need much migration to form the epithelial layer. The 
specific advantage of fibrin support is its rapid in vivo 
degradation, allowing a ready engraftment of the epi-
thelium on the corneal wound bed, rapidly restoring 
transparency in the absence of deep stromal damage. In 
the case of human materials, biocompatibility should 

Figure 2. Transcription factors and their related corneal cell functions. 
Adapted from [29].

Activated stem cells and early TA

Proliferation
+

migration

Slow-cycle, self-renew,
proliferative potential Wound healing

+
terminal differentiation

∆Np63αC/EBP ∆, BMI1, ∆Np63α ∆Np63α ∆Np63β, and γ

Limbus Central cornea

Transient amplifying cellsResting stem cell

Clonal evolution, cell proliferation and cell migration in wound healing



www.futuremedicine.com 411future science group

From discovery to approval of an ATMP-containing stem cells, in the EU    Review

be granted, but their use raises the problem of disease 
transmission control within humans, in case of the 
absence of appropriate certification of the materials.

Medical plausibility
In the human cornea, stem cells are segregated on the 
border with the conjunctiva, in the only vascularized 
area, called the limbus. On the other hand, the trans-
parent and avascular area of the cornea is maintained 
by a continuous centripetal migration of progenitors 
from the limbus. Pathologies characterized by loss of 
limbal stem cells or their dysfunction produce a condi-
tion called limbal stem cell deficiency (LSCD), result-
ing in migration of adjacent conjunctiva and blood ves-
sel overgrowth on the cornea (‘conjunctival pannus’), 
with involvement of the visual axis in severe cases 
and subsequent loss of visual function. Under these 
pathologic conditions, patients suffer from pain, pho-
tophobia, burning, recurrent erosions, with the risk of 
both infections and/or melting of the corneal stroma. 
Pathologic conditions producing anatomical or func-
tional loss of stem cells can be of genetic, degenerative, 
infective or traumatic origin [44]. Each pathology gen-
erates a different corneal environment modifications 
and cell-signaling alterations, involving more than one 
cell-type and damaging multiple anatomical structures 
due to altered cell signaling. In the course of this dete-
rioration, the ocular surface is chronically inflamed 
and the resulting microenvironment abnormalities 
might prevent the engraftment of cultured stem cells. 
In damages due to viral infections, such as herpes 
virus, elimination of viruses is not possible, and the 
following risk of reactivation after treatment is feasi-
ble. On the other hand, trauma or eradicated bacterial 
infections are not progressive and leave stable damage 
on anatomical structures, surrounding cells could still 
be able to respond to physiological stimuli. Conjuncti-
val migration over the corneal area can be hindered by 
limbal restoration through transplantation of cultured 
autologous limbal grafts obtained from the healthy 
eye  [4,45,46]. The fibrovascular conjunctival pannus, 
grown on the corneal surface, is removed to enable the 
treatment of LSCD by transplanting the cultured lim-
bal corneal epithelium obtained from stem cells of the 
same patient (Figure 3).

The ability to culture stem cells, with its enormous 
proliferative potential, permits under appropriate con-
ditions, to originate cultures even from a very small 
biopsy sample. Indeed, a small amount of stem cells 
can give rise to a huge amount of daughter colonies, 
sufficient for whole cornea coverage. The eye is kept 
closed for several days after the transplant, so as to 
enable the engraftment of the cultured epithelium, 
reducing risks related to accidental friction forces or 

discomfort due to incomplete engraftment. The drugs 
used before and after surgery, such as anesthestics, 
corticosteroids to reduce inflammatory reactions, anti-
biotics or analgesics, can produce cell damage; their 
toxicity is amplified when the latter are administered 
before the full integration of cultured cells on the 
wound bed. None of them appear to be free of toxic-
ity to some extent, hence a screening of drugs on cell 
cultures and appropriate dosage/mode of administra-
tion is thought to maximize the success of engraft-
ment  [44,47]. Autologous cultures of limbal stem cells 
have been confirmed successful in chemical/thermal 
burn-dependent corneal destruction in total LSCD. In 
this clinical setting, the mechanism of action of the 
cultures is the long-term replacement of missing lim-
bal stem cells, as shown by several authors [47–49]. The 
engrafted stem cells should be restricted to the limbal 
area and preserve their self-renewal capacity, as for-
mally proven by their potential to regenerate a normal 
corneal epithelium again after the keratoplasty. The 
latter is usually performed 12–24 months after limbal 
cell grafting, in order to eliminate the stromal scarring 
and to restore full visual acuity.

Evaluation of alternative techniques
Lamellar and/or penetrating keratoplasty will not be 
successful, in the presence of severe/total corneal epi-
thelial stem cell deficiency, because donor graft corneal 
re-epithelialization will not take place. This will result 
in consequent epithelial absence and a final recurrence 
of conjunctivalization, associated with a risk of rejec-
tion and graft failure. Thus, unilateral LSCD has been 
treated for years by grafting approximately 30–40% of 
the healthy limbus from the other eye  [45,50,51]. Some 
concerns have been expressed about this approach, 
regarding donor eye risks [52], in that patients should be 
compliant to accept a large damage of the only remain-
ing eye, and surgeons feel this responsibility. Finally, 
further harvesting of additional limbal areas following 
possible failure is not possible.

A surgical technique, simple limbal epithelial trans-
plantation (SLET), resembling a previous burnt-patient 
treatment, was recently proposed for limbal transplanta-
tion [53]. A 2 × 2 mm biopsy of donor limbal tissue from 
the healthy eye is split into several small pieces, contain-
ing epithelium, keratocytes and other cell types. After 
surgical preparation of the cornea, these tiny limbal 
transplants are dispersed evenly over an amniotic mem-
brane placed on a recipient ocular surface. A competition 
between engraftment, migration of limbal cells from the 
biopsy fractions and resident conjunctiva overgrowth 
on the corneal surface occurs, leading to uncertainty 
about the final results, with a dependence on the patient 
microenvironment too. It is well known that direct 



412 Regen. Med. (2016) 11(4) future science group

Review    Pellegrini, Lambiase, Macaluso et al.

transplantation of limbal tissue can repopulate the LSCs, 
however, the major concern is how much stem cells can 
promptly migrate to fully cover the whole corneal sur-
face. Any delay in covering the wounded surface results 
in inflammation, infection and recurrence of partial con-
junctivalization. In order to really evaluate the success 
rate, standardized criteria to categorize patient selection 
and severity of LSCD are needed, and a comprehensive 
report of adverse events too. SLET might well be effec-
tive in milder LSCD, but for severe disease, cultivation of 
LSCs to regenerate a large LSCD is still necessary.

Patient selection
LSCD includes very different diseases that all result in 
a damaged limbus, and it presents differently based on 
the severity of the condition  [54,55]. In partial or secto-
rial LSCD, stippled late fluorescein staining in a vortex 
pattern can be seen in the affected region of the cornea. 
In moderate-to-severe cases, recurrent epithelial defects 
and superficial vascularization of the cornea occur. 
Vision is severely compromised. If there is also pres-
ence of tear deficiency, keratinization may occur. Total 

LSCD is characterized by a total absence of limbal stem 
cell populations associated with conjunctivalization 
of the entire corneal surface. Neovascularization was 
frequently seen but is not the only symptom of LSCD.

Although LSCD can be diagnosed clinically based on 
the presentation described above, it is rather challenging 
in many mild-to-moderate disease stages because many 
signs present in LSCD are not specific and are also seen 
in many other common eye diseases. Laboratory tests 
are important to confirm the diagnosis of LSCD and 
measure the outcome of treatment. Impression cytol-
ogy showing the presence of goblet cells or the absence 
of corneal markers has been the gold-standard diagnos-
tic test for LSCD [56]. However, impression cytology is 
limited to analysis of superficial layers.

In recent years, cytokeratin (K) 7, 13 and 19, mucin 
(MUC) 1, and MUC5AC have been suggested as 
a conjunctival epithelial marker  [57–61]. K19, K13 
and MUC5AC might be more specific and reverse 
transciptase-PCR might be more sensitive than immu-
nohistochemistry in detecting these molecules. How-
ever, the specificity and sensitivity of these new mark-

Figure 3. Clinical application of cultured limbal stem cells. The fibrovascular conjunctival pannus, grown on the 
corneal surface (panel 1), is removed (panel 2) to enable the transplant of the cultured limbal corneal epithelium 
(panel 3). Stem cell re-localization follows the cornea restoration (panel 4).
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ers still needs to be confirmed by comparison in larger 
studies on LSCD patients.

Another recent development in the diagnosis of 
LSCD is the use of in vivo laser scanning confocal 
microscopy to delineate the microstructural changes in 
patients’ eyes with different degrees of LSCD. In a nor-
mal cornea, epithelial cells are seen as well demarcated 
with a hyper-reflective border. The deep basal epithelial 
cells are smaller in size, with not big difference between 
the cytoplasm and nuclei area, while the cell border is 
still very well defined. In addition, palisades of Vogt 
may be detected as hyper-reflective, double-contour 
linear structures in confocal microscopy of the scleral 
limbus [62,63]. By contrast, the basal cell density of cor-
neal epithelium becomes progressively reduced and the 
cell size becomes larger in the more advanced states of 
LSCD. The normally clear cell–cell border becomes 
indistinguishable. There is also a significant decrease in 
sub-basal nerve density [63,64]. The loss of innervation 
suggests that LSCD pathophysiology can also have a 
neurotrophic component. Therefore, a combination of 
morphological changes in the corneal epithelium, and 
a significant reduction in both basal epithelial cell den-
sity and sub-basal nerve density might aid in the diag-
nosis and classification of LSCD. These criteria, how-
ever, should become standardized measures to evaluate 
the clinical success of LSC transplantation.

Accurate diagnosis and staging of the disease sever-
ity is a prerequisite in the management of LSCD. In 
mild LSCD, surgical intervention might not be nec-
essary, whereas in the severe state or total corneal 
involvement, transplantation of LSC is necessary to 
reconstruct the entire corneal surface. Accurate evalu-
ation of LSC function in vivo will be critical to monitor 
the disease progression and measure the success of LSC 
transplantation.

The proper selection and preparation of the receiv-
ing bed is of paramount importance for a positive clini-
cal outcome of limbal cultures, since the microenvi-
ronment where the cell cultures or tissues should be 
engrafted can be not permissive of cell integration due 
to pathologic alterations.

Abnormality of the corneal stroma, endothelium, 
nerves, eyelids, conjunctiva and the lacrimal and 
immune systems could also be included in the patho-
genesis of LSCD. Scrupulous step-by-step reconstruc-
tion of these structures was performed, to prepare the 
best receiving bed for the cultured cells. Once the eye-
lids and conjunctiva were treated, tear film and inflam-
mation were analyzed. Tear film and inflammation 
were carefully evaluated, after treatment of eyelids and 
conjunctiva; however, it is still not clear how much is a 
minimum admissible tear film and a maximum inflam-
mation permitting the successful long-term survival of 

the grafted stem cells. In previous clinical trials [43,47], 
patients showing Schirmer test below 5  mm/5  min, 
arbitrarily selected, were excluded. However the qual-
ity of tears appears to be even more important than 
the quantity. At present, there is still no agreement on 
its assessment. Patients showing severe active inflam-
mation were not included in the clinical protocol for 
limbal transplantation. We are still far from having 
a standardized clinical assessment and inflammation 
grading, with the exception of redness scoring.

On this basis, exclusion criteria also exempted 
patients with unknown etiology/pathogenesis, or 
active viral infections.

Patients with severe or total, unilateral or partial 
burn related bilateral limbal stem cell deficiency were 
therefore included in the study. The prevalence of those 
patients is well below 1:10,000, therefore it is defined 
as a rare disease.

Further applications can be considered, with the 
same medical plausibility; however, any additional 
inclusion criteria should be carefully evaluated in a sig-
nificant number of patients in a specific clinical trial, 
to avoid the variability faced in anecdotal cases.

Clinical protocol & retrospective trials
The first manufacturing of corneal tissue and the 
related clinical trials were done before regulatory 
changes catagorized this stem cell therapy as an 
advanced therapy in the same group as chemical drugs.

In the course of development, the manufacturing 
process was subsequently based in different facilities and 
the clinical application was conducted in many different 
ophthalmology departments over the Italian territory. In 
order to maintain a very limited/null variability, all parts 
of the procedure were described in standard operating 
procedures, so as to enable the biological and clinical 
work to be reproduced at the different sites. Each cell 
parameter was registered, as well as the clinical data, 
with photos and follow-up analysis, defined in the clini-
cal protocol, making the analysis of data possible. When 
drug regulation was put into force for these therapies, 
good clinical practice retrospective studies were possible, 
allowing a ‘masked’ re-evaluation of treated patients and 
related biological data by external evaluators. Adverse 
event analysis through re-evaluation of all the follow-
up data of each patient, up to 10 years post-transplant, 
allowed risk–benefit investigation on 130 patients [ Holo-

stem Terapie Avanzate, Data on File ;  Rama P, Lambiase A, Pocobeli 

A et al.  (2016)  M anuscript in  P reparation] . Later, the collec-
tion of additional data early after good manufacturing 
practice (GMP) setting allowed a comparative analysis 
of procedure before and after regulatory changes.

This work represents one of the largest official datas-
ets on the topic available in the world. In particular, the 
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homogeneity of patient selection, grading and the eval-
uation of long-term safety reassure us about the spread 
of this technology. Comparison of data published on 
different culture systems shows a difference in the 
long-term stability of the cultured corneal epithelium.

In process controls
During the industrialization process of an ATMP, as 
well as in routinary clinical application, one major 
problem is the reproducibility of the technology for 
scaling up.

In general, maintenance of identity, purity and 
potency should be guaranteed. In the case of Holoclar, 
the corneal marker expression defined the identity, the 
stem cell marker percentage represented the potency, 
and quantification of process-related impurities (i.e., 
feeder cells or conjunctival cells) or contaminants (i.e., 
infectious pathogens) defined the purity of this ATMP. 
A set of parameters for these quantifications would 
permit a comparison of the quality of different culture 
methods around the world.

The biopsy was obtained from culturing the lim-
bus, at the boundary between the cornea and conjunc-
tiva; therefore the percentage of corneal keratins was 
controlled, to confirm proper biopsy retrieval and cell 
identity. Indeed, epithelia from different body areas 
express keratin pairs that are specific for each location 
[65,66]. The corneal epithelium expresses the K3/K12 
pair, in contrast to the conjunctival epithelium.

The in vivo long-term maintenance of the cultured 
tissue is dependent on the number of cultured stem 
cells; therefore their number should be carefully 
controlled to meet efficacy criteria.

Actually, it is important – and required by ATMP 
regulation – to define the applicability and the qual-
ity of cultured epithelial grafts, which are relevant to 
any clinical use of cultured cell types. Many biologi-
cal parameters conceivably contributory to the clini-
cal success of cultured corneal epithelium have been 
investigated. Quality attributes of cell culture and 
raw material properties were examined and, most of 
them, marked biological functions relevant to the 
product, but only some of them were later shown 
capable to measure biological activity, connected to 
efficacy/safety in the patient.

More generally, multiple in-process controls and 
in-process monitoring were necessary to evaluate cell 
cultures and to reveal/avoid eventual deviation from 
normal cell behavior; all their results should be on the 
same line.

Risk-based approach
A major concern over the use of stem cell therapies is 
the perceived risk of tumorigenicity.

Limbal-corneal cells contain adult stem cells, having 
defined differentiation capacity and more limited self-
renewal capacity than embryonic and induced pluripo-
tent stem cells; therefore these adult stem cells have a 
very low risk of uncontrolled proliferation. In the case 
of one treatment of spinal cord injury with olfactory 
mucosal cells, however, a mucosal-like mass was found 
at the transplant location  [67] during follow-up analy-
sis. This kind of finding highlights the importance of 
an extensive follow-up program to monitor and reduce 
patient risks. To date, tumorigenesis has not been 
reported in limbal stem cell therapy.

More than 3000 trials associated with stem cells are 
currently collected in the WHO International Clinical 
Trials Registry Platform. Most of them are adult stem 
cell-based therapies, likely attributable to the longer 
established use of these cells.

Extensive cultivation and expansion can make cells 
susceptible to chromosomal aberrations and karyotype 
abnormalities, therefore limbal cultured epithelia were 
transplanted at an early passage and controlled for 
chromosomal phenotype. Concerning the immuno-
genic potential, it is generally accepted that no rejec-
tion can occur due to autologous cells, even following 
in vitro culture; data on cultured limbal cells confirmed 
the absence of rejection, with an increased success rate 
after repeated transplants. This latter observation also 
reassures us about any potential effect due to residual 
traces of some culture components (such as a feeder 
layer), given that removal by extensive dilution of any 
culture components was achieved.

The issue of xenogenic components relates to 
attempts at preventing putative xenogenic contami-
nants. Human autologous serum has been suggested 
as a potential surrogate for fetal or calf serum; how-
ever, variability of hormones and growth-factor con-
tent due to individual genetic background could be 
detrimental to the reliability of the in-process con-
trols, hampering the definition of well-defined qual-
ity criteria for the culture. Pools of sera minimize such 
variability, although risks of contamination by viral, 
nonviral infective agents and prions also apply to 
human-derived reagents [68].

With current technologies, serum has an impact 
on epithelial stem cell preservation, as well as a proper 
feeder layer of lethally irradiated fibroblasts [69]. Lethally 
irradiated murine 3T3 fibroblasts have been applied for 
decades to culture limbal and epithelial keratinocytes 
[3,15,16] and no adverse reactions have been described [69,70] 
in large case series. Considering the potential transmis-
sion of pathogens, the same implications described for 
fetal calf serum versus donor serum pertain to mouse 
cells versus allogeneic human fibroblasts. EU rules on 
master/working cell banks allow us to properly control 
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risks by use of GMP-certified, clinical grade reagents/cell 
lines, which have been tested for specific bacteria, yeasts, 
fungi and viruses, or irradiated. This approach appears 
safer than proposed alternatives and has the advantage of 
reducing variability between batches of cultured ocular 
tissues.

An additional issue is biodistribution, since it relates 
to the risk associated with proliferation and the long-
term survival of transplanted material in ectopic sites. 
In general, direct transplant to the targeted organ area 
reduces this risk; in the case of the cornea, the majority 
of limbal corneal cells engraft in an avascular area, over 
Bowman’s membrane, reducing the possibility of distri-
bution through the bloodstream; moreover, nontrans-
formed epithelial cells, when losing adhesion, trigger the 
differentiation program, inducing loss of proliferative 
capacity. The absence of migration in underlying tissues 
was revealed by an analysis of follow-up data showing, 
in all cases, a well-defined transplanted corneal area and 
an intact basal membrane years after transplant; a loss 
of proliferation, due to absence of adhesion, was also 
shown in vitro by standard soft agar assay.

ATMPs are unique products, more demanding than 
other drug classes. To accommodate their challenges 
and facilitate appropriate scientific development, flex-
ibility in the requirements is necessary to prove the 
safety and efficacy of this rapidly evolving drug class.

To provide some versatility, the EU has introduced 
a risk-based approach. This approach introduces the 
possibility of abstaining from strict guideline-based 
studies based on risk analyses. In the USA, new 
guidelines from the US FDA categorize stem cells as 
a drug and make them subject to the same regulatory 
requirements to obtain investigational new drug status 
before they can be offered to patients. The risk-based 
approach would be a balanced approach that would 
shorten regulatory process.

The existence of risk, together with potential benefit, 
remain difficult to eliminate; therefore we have sought 
a counterbalance between the minimization of poten-
tial risks and ensuring therapies are not unnecessarily 
kept away from patients. This therapy advanced into 
the clinic, but its safety was continuously evaluated.

The need for public–private partnerships
Developers of novel ATMPs come from small medium 
enterprises (SMEs), hospitals, academia and even char-
ities. In spite of the scientific challenges, many products 
reach early clinical studies, but very few of them proceed 
to pivotal studies and marketing authorization, due to 
limited resources and high workload. It is difficult for 
scientists to accept the new standards and requirements 
for ATMPs that look very like the tissue preparations 
used in hospitals; therefore scientific advice is a very 

important tool in supporting development, since it is a 
forum in which to agree on methodological approaches 
for quality and nonclinical and clinical development.

Clinical trial requirements are frequently under the 
evaluation of national authorities, which may increase 
the workload for multicenter confirmatory trials requir-
ing simultaneous submission of applications to more 
national authorities. Also different interpretations 
of the hospital exemption (article 28 of Regulation 
1394/2007) raises concerns about ‘class B’ products 
and has led to conflicts with the ATMP industry.

Furthermore, challenges in getting funding for large 
pivotal clinical trials, and cost of these products, are 
higher compared with traditional medicinal products, 
due to the small batch sizes. The reimbursement nego-
tiations for first ATMPs have also turned out difficult, 
leading to slow market access and limited use of the 
new products within the EU. On this basis, Holo-
clar certification and industrialization was based on a 
public–private partnership.

The public–private partnership, through specific 
agreements, can share the skills and assets of the pub-
lic (i.e., research institute or academia) and the private 
(i.e.,  company) in delivering the product/service to 
patients. In addition to the sharing of resources, part-
nerships allow sharing the risks and rewards of the 
service, reducing the cost of the activity.

More people are involved in the partnership – not 
just the public and private partners: it involves employ-
ees, physicians and patients receiving products/services, 
the press and several stakeholders with varied opinions, 
and potentially misinterpretations about the value of 
the partnership to the public as a whole. It is important 
to interact openly with all interest groups to minimize 
potential resistance to maintaining the partnership and 
to meet the interest of all. Distinguished critical figures 
from public academia and private companies play an 
essential role in minimizing misunderstandings about 
that value to the public.

It was important to have a dedicated, specific team 
for the project, within academia and a private com-
pany, which were involved from its conceptualization, 
negotiation and the final control of the fulfillment of 
the partnership. The team supported proposals based 
on best value, not on lowest prices.

A statutory foundation was needed for the implemen-
tation of the partnership. A definition of mission was first 
delineated in the statute, as well as looking at transpar-
ency. The proposal was a positive catalyst for initiating 
new approaches to public issues. The contract between 
the public and private sectors included a detailed speci-
fication of the responsibilities, benefits and risks of both 
the public and private partners. Such an agreement can 
improve the likelihood of positive outcome from the part-
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Executive summary

Corneal cell therapy
•	 The first application of cultured corneal cells on patients was successfully undertaken in 1997.
•	 The technology was reproduced with some variants in many countries.
Location/identification of stem cells
•	 Clonal analysis of ocular epithelia has identified three types of clonogenic basal cells: holoclones, meroclones and paraclones.
•	 The holoclone-forming cells are stem cells, and are able to regenerate all ocular epithelia in the long term.
•	 Human corneal holoclones reside in the limbus.
•	 The human cornea and conjunctiva derive from different stem cells; the holoclones from conjunctiva are bipotent and generate 

conjunctival epithelium and goblet cells.
•	 Cells from both the cornea and conjunctiva can be cultured in vitro, producing the entire epithelium and maintaining their 

fundamental properties.
Potency marker
•	 The potency marker is an assay providing a correlation of cell quality to clinical outcome.
•	 The clinical outcome of corneal cell therapy is related to the presence of enough stem cells responsible for long-term cornea 

regeneration.
•	 Long-term corneal regeneration is provided by holoclones.
•	 Holoclones express a high level of nuclear p63 transcription factor, in particular the α isoform; C/EBP-δ and BMI-1 are also 

expressed in slow cycling cells.
•	 Isoforms p63 β and γ appear to be related to proliferation and differentiation.
•	 The Wnt signaling pathway is implicated in the regulation and hemostasis of limbal stem cells.
•	 Knockout mice for other described markers, such as ABCG2 or ABCB5, did not show any corneal impairment.
Carrier selection
•	 Many carriers were proposed for corneal regeneration.
•	 Maintenance of a sufficient number of stem cells on the proposed carriers should be evaluated.
•	 Fibrin matrix maintains holoclones.
Medical plausibility
•	 Loss of stem cells produces limbal stem cell deficiency (LSCD), allowing corneal invasion by conjunctiva and vessels.
•	 Limbus integrity should be restored to avoid conjunctival invasion.
•	 Fibrovascular conjunctival pannus should be removed to enable engraftment of cultured corneal epithelium.
•	 Cultured corneal epithelium can engraft and maintain a stable corneal surface over time.
•	 The toxicity of drugs on cultured epithelium after grafting should be evaluated.
Evaluation of alternative techniques
•	 In Kenyon’s technique 30–40% of limbus is removed from the healthy eye for transplantation on LSCD. In case of failure, the 

technique cannot be repeated. This technique works only in unilateral LSCD and was proven in long-term follow-up.
•	 The simple limbal epithelial transplantation technique includes the transplant of many small biopsies on the ocular surface, 

waiting for the cell outgrowth to cover the corneal surface. This technique does not yet have very long-term follow-up data.
Patient selection
•	 LSCD is an heterogeneous group of diseases, some of them producing irreversible alteration of corneal environment signaling.
•	 Accurate diagnosis should be obtained to define the type of LSCD and to grade severity.
•	 In addition to clinical evaluation, diagnosis of LSCD can be obtained by impression cytology and nonquantitative laser scanning 

confocal microscopy.
•	 Proper selection of LSCD is of paramount importance for the positive clinical outcome.
Clinical protocol & retrospective trials
•	 The therapy was developed before good manufacturing practice rules on advanced therapy medicinal products (ATMPs).
•	 Good clinical practice retrospective clinical trials allowed collection of data on almost 200 patients.
•	 Clinical trials confirmed the safety and efficacy of the procedure, up to 15 years follow-up.
In-process controls
•	 Identity, purity and potency should be defined for ATMPs.
•	 Relevant quality attributes of cells and raw materials were investigated to identify the appropriate markers.
•	 Those markers/assays with their specification limits became in-process controls of manufacturing.
•	 In-process monitoring however, is also important for evaluating process robustness.
Risk-based approach
•	 Risks of tumorigenicity, immunogenic potential and xenotoxicity were evaluated in vitro and related to long-term follow-up 

analysis on patients.
•	 Accurate controls on raw materials and use of low passage cultures assured the safety of the procedure.
•	 Risk-based analysis, introduced by the EU, proposed analysis of balance between minimizing potential risks and ensuring benefits 

to patients.
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nership. Obviously, while the private partner provided 
significant funding, there should be various identifiable 
future revenues to retire the investment and produce an 
adequate rate of return, including satellite activities over 
the term of the alliance. On the other hand, the specific 
interests of public stakeholders should be met as well, 
even though they are often more complex because the 
public consists of many subgroups of stakeholders.

Finally, the best value in the partnership is critical in 
maintaining the long-term relationship that is instru-
mental to success. Partner experience in the specific 
area of activity is considered an important value and, 
equally, the financial capacity of the private partner 
should be considered in the selection process.

Conclusion
The field of stem cell therapies, representing one of the 
most advanced examples of personalized medicine, is 
moving ever closer to unrestricted application on patients.

However, despite the undoubted potential of these 
therapies, the balance between risk and advantage 
remains difficult to predict.

The use of the eye in a first application of these stem 
cells is ideal: the graft size is small, limbal epithelial cells 
are easily differentiated due to high purity, and the grafts 
can be visualized noninvasively. Regression of neovas-
cularization is developed when these cells engraft, all 
contributing to a lower risk-profile and easier assessment 
than other cell types in less accessible organs.

As in any new field, in case of an absence of preced-
ing application in humans and gaps in the basic sci-
ence, investigators and regulators should continue to 
seek a balance between minimizing potential risk and 
ensuring therapies are not unnecessarily kept away from 
patients. In the case of Holoclar, attempts were made to 
identify the critical issues, estimating the advances in 
scientific data and how they were translated to clinical 
therapeutic application and later to industrialization 
strategy. The tools and procedures now available to 
researchers during preclinical, clinical and GMP devel-
opment of a stem cell product, their benefits and con-
straints, were investigated, as well as how these tools 
can be used in the advance of these therapies.

Finally, placing safety at the forefront of science 
and undertaking robust measures, coupled with con-
tinuous and open discussions between regulators and 
academic/industrial investigators, is likely to be the 
most fruitful path to identifying the safest possible road 

to new products and an increase in common knowl-
edge. Safe and efficacious ATMPs will be more eas-
ily exploited by entrepreneurs, and can prove the best 
cost–benefit balance at the stage of regulatory market 
approval and reimbursement negotiation.

Future perspective
ATMPs are a heterogeneous group of therapies; therefore 
no single approach can be used to make them compliant 
with new regulations and available to patients.

To transfer experience of people working in this 
field is essential, as well as tailoring regulatory rules 
to this type of product. New technologies are required 
to complete the process of assuring safety and efficacy 
in an acceptable time frame and at reasonable cost. All 
these approaches together will boost the distribution 
of these new products, which are the best example of 
personalized medicine.
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Executive summary (cont.)

The need for public–private partnerships
•	 The amount of knowledge, funding and legal requirements needed for ATMPs is impressive.
•	 The opportunity to have multidisciplinary knowledge and to share risk and benefits is met in public–private partnerships.
•	 A definitional list of rules and documents, defining reciprocal dues, is instrumental to a successful partnership.
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