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ABSTRACT 
In this paper, the effect of the geometry on the nonlinear 

vibrations of functionally graded (FGM) cylindrical shells is 

analyzed. The Sanders-Koiter theory is applied to model the 

nonlinear dynamics of the system in the case of finite amplitude 

of vibration. The shell deformation is described in terms of 

longitudinal, circumferential and radial displacement fields. 

Simply supported boundary conditions are considered. The 

displacement fields are expanded by means of a double mixed 

series based on harmonic functions for the circumferential 

variable and Chebyshev polynomials for the longitudinal 

variable. In the linear analysis, after spatial discretization, mass 

and stiff matrices are computed, natural frequencies and mode 

shapes of the shell are obtained. In the nonlinear analysis, the 

three displacement fields are re-expanded by using approximate 

eigenfunctions obtained by the linear analysis; specific modes 

are selected. The Lagrange equations reduce nonlinear partial 

differential equations to a set of ordinary differential equations. 

Numerical analyses are carried out in order to characterize the 

nonlinear response of the shell. A convergence analysis is 

carried out to determine the correct number of the modes to be 

used. The analysis is focused on determining the nonlinear 

character of the response as the geometry of the shell varies. 

 

 

INTRODUCTION 
FGMs are composite materials obtained by combining 

different constituent materials, which are distributed along the 

thickness in accordance with a volume fraction law. The idea of 

FGMs was first introduced in 1984/87 by a group of Japanese 

material scientists [1]. Loy et al. [2] analyzed the vibrations of 

FGM cylindrical shells considering simply supported boundary 

conditions. Leissa [3] studied the linear dynamics of shells with 

different topologies and materials. Yamaki [4] studied buckling 

and post-buckling of the shells in linear and nonlinear fields, 

reporting solution methods, numerical and experimental results. 

A modern treatise on the shells dynamics and stability can be 

found in Ref. [5], where also FGMs are analyzed. Pellicano et 

al. [6] considered the effect of the geometry on the nonlinear 

vibrations of homogeneous isotropic shells, leading to similar 

conclusions of the present work. The method of solution used 

in the present work was developed in Ref. [7]. In this paper, the 

effect of the geometry on the nonlinear vibrations of FGM 

cylindrical shells is analyzed; the Sanders-Koiter theory is 

applied to model the nonlinear dynamics of the system in the 

case of finite amplitude of vibration. The shell deformation is 

described in terms of longitudinal, circumferential and radial 

displacement fields. Simply supported boundary conditions are 

considered. The FGM is made of stainless steel and nickel, the 

material properties are graded along the thickness according to 

a volume fraction law. The solution method consists of two 

steps: 1) linear analysis and eigenfunctions evaluation; 2) 

nonlinear analysis, using an eigenfunction-based expansion. In 

the linear analysis, the displacement fields are expanded by 

means of a double mixed series based on harmonic functions 

for the circumferential variable and Chebyshev polynomials for 

the longitudinal variable. A Ritz based method allows to obtain 

approximate natural frequencies and mode shapes. In the 

nonlinear analysis, the three displacement fields are re-

expanded by using the approximate eigenfunctions; an energy 

approach based on Lagrange equations is considered to reduce 

the nonlinear partial differential equations to a set of nonlinear 

ordinary differential equations. Numerical analyses are carried 

out in order to characterize the nonlinear response when the 

shell is subjected to an harmonic external load; a convergence 

analysis is carried out in order to obtain the correct number of 

the axisymmetric and asymmetric modes. The effect of the 

geometry on the nonlinear vibrations of the shells is analyzed, 

and a comparison of nonlinear amplitude-frequency curves of 

the FGM shells with different geometries is carried out. 
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FUNCTIONALLY GRADED MATERIALS 

A generic material property 𝑃𝑓𝑔𝑚 of a FGM depends on the 

material properties and the volume fractions of the constituent 

materials, it is expressed in the form [2] 

𝑃𝑓𝑔𝑚(𝑇, 𝑧) =∑�̃� 

 

   

(𝑇)𝑉𝑓 (𝑧)                                      (1) 

where �̃�  and 𝑉𝑓  are the material property and the volume 

fraction of the constituent material 𝑖. The material property �̃�  
of a constituent material can be described as a function of the 

environmental temperature 𝑇(K) by Touloukian’s relation [2] 

(the index 𝑖 is dropped for the sake of simplicity) 

�̃�(𝑇) = 𝑃 (𝑃  𝑇
  + 1 + 𝑃 𝑇 + 𝑃 𝑇

 + 𝑃 𝑇
 )                      (2) 

where 𝑃 , 𝑃  , 𝑃 , 𝑃  and 𝑃  are the coefficients of temperature 

of the constituent material. In the case of a FGM thin circular 

cylindrical shell with a uniform thickness ℎ and a reference 

surface at its middle surface, the volume fraction 𝑉𝑓 of a 

constituent material can be written as [2] 

𝑉𝑓(𝑧) = (
𝑧 + ℎ/2

ℎ
)
 

                                                  (3) 

where the power-law exponent 𝑝 is a positive real number, 

(0 ≤ 𝑝 ≤ ∞), and 𝑧 describes the radial distance measured 

from the middle surface of the shell, (−ℎ/2 ≤ 𝑧 ≤ ℎ/2), see 

Fig. 1. For a FGM thin cylindrical shell made of two different 

constituent materials, the volume fractions 𝑉𝑓  and 𝑉𝑓  can be 

written in the following form [2] 

𝑉𝑓 (𝑧) = 1 − (
𝑧 + ℎ/2

ℎ
)
 

               𝑉𝑓 (𝑧) = (
𝑧 + ℎ/2

ℎ
)
 

            (4) 

Young’s modulus 𝐸, Poisson’s ratio 𝜈 and mass density 𝜌 are 

expressed as [2] 

𝐸𝑓𝑔𝑚(𝑇, 𝑧) = (𝐸 (𝑇) − 𝐸 (𝑇))(
𝑧 + ℎ 2⁄  

ℎ
)

 

+ 𝐸 (𝑇)             (5) 

𝜈𝑓𝑔𝑚(𝑇, 𝑧) = (𝜈 (𝑇) − 𝜈 (𝑇)) (
𝑧 + ℎ 2⁄  

ℎ
)

 

+ 𝜈 (𝑇)              (6) 

𝜌𝑓𝑔𝑚(𝑇, 𝑧) = (𝜌 (𝑇) − 𝜌 (𝑇))(
𝑧 + ℎ 2⁄  

ℎ
)

 

+ 𝜌 (𝑇)            (7) 

SANDERS-KOITER NONLINEAR THEORY OF SHELLS 
In Figure 1, a FGM circular cylindrical shell having radius 

𝑅, length 𝐿 and thickness ℎ is shown; a cylindrical coordinate 

system (𝑂; 𝑥, 𝜃, 𝑧) is considered in order to take advantage 

from the axial symmetry of the structure, the origin 𝑂 of the 

reference system is located at the center of one end of the shell.  

Three displacement fields are represented in Fig. 1: longitudinal 

𝑢(𝑥, 𝜃, 𝑡), circumferential 𝑣(𝑥, 𝜃, 𝑡) and radial 𝑤(𝑥, 𝜃, 𝑡). 

 

 

 

 

 
Figure 1. GEOMETRY OF THE FGM CYLINDRICAL SHELL. 

(a) COMPLETE SHELL; (b) CROSS-SECTION OF THE SHELL SURFACE. 

        

 

The Sanders-Koiter nonlinear theory of shells is an eight-order 

theory based on the Love’s “first approximation” [3]. The strain 

components (𝜀𝑥, 𝜀𝜃 , 𝛾𝑥𝜃) at an arbitrary point of the shell are 

related to the middle surface strains (𝜀𝑥, , 𝜀𝜃, , 𝛾𝑥𝜃, ) and to the 

changes in the curvature and torsion (𝑘𝑥, 𝑘𝜃 , 𝑘𝑥𝜃) of the middle 

surface of the shell by the following relationships [4] 

𝜀𝑥 = 𝜀𝑥, + 𝑧𝑘𝑥     𝜀𝜃 = 𝜀𝜃, + 𝑧𝑘𝜃     𝛾𝑥𝜃 = 𝛾𝑥𝜃, + 𝑧𝑘𝑥𝜃                (8) 

where 𝑧 is the distance of the arbitrary point of the cylindrical 

shell from the middle surface and (𝑥, 𝜃) are the longitudinal 

and angular coordinates of the shell, see Fig. 1. The middle 

surface strains and changes in curvature and torsion are given 

by [4] 

𝜀𝑥, =
𝜕𝑢

𝐿𝜕𝜂
+
1

2
(
𝜕𝑤

𝐿𝜕𝜂
)
 

+
1

8
(
𝜕𝑣

𝐿𝜕𝜂
−

𝜕𝑢

𝑅𝜕𝜃
)
 

 

𝜀𝜃, =
𝜕𝑣

𝑅𝜕𝜃
+
𝑤

𝑅
+
1

2
(
𝜕𝑤

𝑅𝜕𝜃
−
𝑣

𝑅
)
 

+
1

8
(
𝜕𝑢

𝑅𝜕𝜃
−
𝜕𝑣

𝐿𝜕𝜂
)
 

 

𝛾𝑥𝜃, =
𝜕𝑢

𝑅𝜕𝜃
+
𝜕𝑣

𝐿𝜕𝜂
+
𝜕𝑤

𝐿𝜕𝜂
(
𝜕𝑤

𝑅𝜕𝜃
−
𝑣

𝑅
) 

 𝑘𝑥 = −
𝜕 𝑤

𝐿 𝜕𝜂 
    𝑘𝜃 =

𝜕𝑣

𝑅 𝜕𝜃
−

𝜕 𝑤

𝑅 𝜕𝜃 
 

   𝑘𝑥𝜃 = −2
𝜕 𝑤

𝐿𝑅𝜕𝜂𝜕𝜃
+

1

2𝑅
(3

𝜕𝑣

𝐿𝜕𝜂
−

𝜕𝑢

𝑅𝜕𝜃
)                          (9) 

where (𝜂 = 𝑥/𝐿) represents the nondimensional longitudinal 

coordinate. 
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In the case of FGMs, the stresses are related to the strains as 

follows [5] 

𝜎𝑥 =
𝐸(𝑧)

1 − 𝜈 (𝑧)
(𝜀𝑥 + 𝜈(𝑧)𝜀𝜃)              𝜎𝜃 =

𝐸(𝑧)

1 − 𝜈 (𝑧)
(𝜀𝜃 + 𝜈(𝑧)𝜀𝑥)  

 𝜏𝑥𝜃 =
𝐸(𝑧)

2(1 + 𝜈(𝑧))
𝛾𝑥𝜃                                            (10) 

where 𝐸(𝑧) is the Young’s modulus and 𝜈(𝑧) is the Poisson’s 

ratio (𝜎𝑧 = 0, plane stress hypotheses). 

The elastic strain energy 𝑈 of a cylindrical shell is given by [5] 

𝑈 =
1

2
𝐿𝑅∫ ∫ ∫ (𝜎𝑥𝜀𝑥 + 𝜎𝜃𝜀𝜃 + 𝜏𝑥𝜃𝛾𝑥𝜃)

 / 

  / 

  

 

 

 

𝑑𝜂𝑑𝜃𝑑𝑧                   (11) 

The kinetic energy 𝑇 of a cylindrical shell (rotary inertia effect 

is neglected) is given by [5] 

𝑇 =
1

2
𝐿𝑅∫ ∫ ∫ 𝜌(𝑧)

 / 

  / 

(�̇� + �̇� + �̇� )
  

 

 

 

𝑑𝜂𝑑𝜃𝑑𝑧                         (12) 

where 𝜌(𝑧) is the mass density of the shell. 

The virtual work 𝑊 done by the external forces is written as [5] 

𝑊 = 𝐿𝑅∫ ∫ (𝑞𝑥𝑢 + 𝑞𝜃𝑣 + 𝑞𝑧𝑤)𝑑𝜂𝑑𝜃                      
  

 

 

 

             (13) 

where (𝑞𝑥 , 𝑞𝜃 , 𝑞𝑧) are the distributed forces per unit area acting 

in longitudinal, circumferential and radial direction. 

The nonconservative damping forces are assumed to be of 

viscous type and are taken into account by using Rayleigh’s 

dissipation function (viscous damping coefficient 𝑐) [5] 

𝐹 =
1

2
𝑐𝐿𝑅∫ ∫ (�̇� + �̇� + �̇� )

 

 

  

 

𝑑𝜂𝑑𝜃                                     (14) 

VIBRATION ANALYSIS 
In order to carry out the dynamic analysis of the shell, a 

two-steps procedure is considered [7]: i) the Rayleigh-Ritz 

method is applied to the linearized formulation of the problem, 

in order to obtain an approximation of the eigenfunctions; ii) 

the displacement fields are re-expanded using the approximate 

eigenfunctions, the Lagrange equations are considered in 

conjunction with the fully nonlinear expression of the potential 

energy, in order to obtain a set of nonlinear ordinary differential 

equations in modal coordinates. 

Linear Vibration Analysis 

In order to carry out a linear vibration analysis, only the 

quadratic terms are retained in Eqn. (11). A modal vibration, 

i.e., a synchronous motion, can be written in the form [7] 

𝑢(𝜂, 𝜃, 𝑡) = 𝑈(𝜂, 𝜃)𝑓(𝑡)      𝑣(𝜂, 𝜃, 𝑡) = 𝑉(𝜂, 𝜃)𝑓(𝑡) 

𝑤(𝜂, 𝜃, 𝑡) = 𝑊(𝜂, 𝜃)𝑓(𝑡)                                       (15) 

where 𝑢(𝜂, 𝜃, 𝑡), 𝑣(𝜂, 𝜃, 𝑡), 𝑤(𝜂, 𝜃, 𝑡) describe the displacement 

fields, 𝑈(𝜂, 𝜃), 𝑉(𝜂, 𝜃),𝑊(𝜂, 𝜃) represent the modal shape and 

𝑓(𝑡) describes the time law, which is supposed to be the same 

for each displacement field (synchronous motion hypothesis). 

The components of the modal shape are expanded by means of 

a double mixed series: the periodicity of deformation in the 

circumferential direction suggests the use of harmonic 

functions (cos 𝑛𝜃 , sin 𝑛𝜃), Chebyshev orthogonal polynomials 

are considered in the longitudinal direction 𝑇𝑚
∗ (𝜂) [7] 

𝑈(𝜂, 𝜃) = ∑∑�̃�𝑚, 𝑇𝑚
∗ (𝜂) cos𝑛𝜃

 

   

  

𝑚  

 

𝑉(𝜂, 𝜃) = ∑∑�̃�𝑚, 𝑇𝑚
∗ (𝜂)𝑠𝑖𝑛 𝑛𝜃

 

   

  

𝑚  

   

𝑊(𝜂, 𝜃) = ∑∑�̃�𝑚, 𝑇𝑚
∗ (𝜂) cos𝑛𝜃

 

   

  

𝑚  

                           (16) 

where 𝑇𝑚
∗ (𝜂) = 𝑇𝑚(2𝜂 − 1), 𝑚 is the number of longitudinal 

half-waves, 𝑛 is the number of nodal diameters and 

(𝑈𝑚, , �̃�𝑚, , �̃�𝑚, ) are the generalized coordinates. 

Boundary Conditions 

Simply supported boundary conditions are given by [3] 

𝑤 = 0        𝑣 = 0        𝑀𝑥 = 0        𝑁𝑥 = 0         for    𝜂 = 0,1          (17) 

where forces and moments are given by [3] 

𝑁𝑥 =
𝐸ℎ

1 − 𝜈 
(𝜀𝑥, + 𝜈𝜀𝜃, )           𝑀𝑥 =

𝐸ℎ 

12(1 − 𝜈 )
(𝑘𝑥 + 𝜈𝑘𝜃)         (18) 

The previous conditions imply the following equations [7] 

∑ �̃�𝑚, 

  

𝑚  

𝑇𝑚
∗ (𝜂) = 0        𝜃𝜖[0,2𝜋]          𝑛𝜖[0, 𝑁]            for     𝜂 = 0,1        (19) 

∑ �̃�𝑚, 

  

𝑚  

𝑇𝑚
∗ (𝜂) = 0          𝜃𝜖[0,2𝜋]          𝑛𝜖[0, 𝑁]            for     𝜂 = 0,1       (20) 

∑ �̃�𝑚, 

  

𝑚  

𝑇𝑚,  
∗ (𝜂) = 0      𝜃𝜖[0,2𝜋]           𝑛𝜖[0,𝑁]            for     𝜂 = 0,1      (21) 

∑ �̃�𝑚, 

  

𝑚  

𝑇𝑚, 
∗ (𝜂) = 0        𝜃𝜖[0,2𝜋]          𝑛𝜖[0,𝑁]             for     𝜂 = 0,1     (22) 

The linear algebraic system given by Eqns. (19 − 22) can be 

solved analytically in terms of the coefficients (𝑈 , , 𝑈 , , �̃� , , 

�̃� , , �̃� , , �̃� , , �̃� , , �̃� , ), for 𝑛𝜖[0, 𝑁]; such coefficients are 

linearly dependent from the others. 
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Rayleigh-Ritz Procedure 

The maximum number of variables needed for describing a 

generic vibration mode is obtained by the following relation 

(𝑁 = 𝑀𝑢 +𝑀𝑣 +𝑀𝑤 − 5), where 𝑀𝑢 = 𝑀𝑣 = 𝑀𝑤 represent 

the maximum degree of the Chebyshev polynomials. 

For a multi-mode analysis including different nodal diameters 

𝑛, the number of degrees of freedom of the system is computed 

by the relation (𝑁𝑚𝑎𝑥 = 𝑁 × (𝑁 + 1)), where 𝑁 describes the 

maximum number of nodal diameters. The equations (15) are 

inserted into the expressions of 𝑈 and 𝑇 (Eqns. (11 − 12)), in 

order to develop the Rayleigh quotient 𝑅(�̃�) =
𝑈   

𝑇∗
, where 

𝑈𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑈) is the maximum of the elastic strain energy 

during a modal vibration, 𝑇∗ =
𝑇   

𝜔 
, 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑇) is the 

maximum of the kinetic energy, 𝜔 is the circular frequency of 

the harmonic motion and �̃� = [… , �̃�𝑚, , �̃�𝑚, , �̃�𝑚, , … ]
𝑇
 is a 

vector containing all the unknowns. After imposing the 

stationarity to the Rayleigh quotient, one obtains the eigenvalue 

problem [7] 

(−𝜔 𝐌+𝐊)�̃� = 𝟎                                                             (23) 

which furnishes natural frequencies and modes of vibration 

(eigenvalues and eigenvectors). The modal shape is given by 

the Eqns. (16), where the coefficients (𝑈𝑚, , �̃�𝑚, , �̃�𝑚, ) are 

substituted with (𝑈𝑚, 
(𝑗)
, �̃�𝑚, 

(𝑗)
, �̃�𝑚, 

(𝑗)
), which are the components 

of the j-th eigenvector �̃�j of equation (23). The vector function 

𝑼(𝑗)(𝜂, 𝜃) = [𝑈(𝑗)(𝜂, 𝜃), 𝑉(𝑗)(𝜂, 𝜃),𝑊(𝑗)(𝜂, 𝜃)]
𝑇
represents an 

approximation of the j-th mode of the original problem; the 

eigenfunctions are then eventually normalized by imposing 

𝑚𝑎𝑥 [𝑚𝑎𝑥[𝑈(𝑗)(𝜂, 𝜃)],𝑚𝑎𝑥[𝑉(𝑗)(𝜂, 𝜃)],𝑚𝑎𝑥[𝑊(𝑗)(𝜂, 𝜃)]] =

1, see Ref. [7] for explanation. 

Nonlinear Vibration Analysis 

In the nonlinear vibration analysis, the full expression of 

the elastic strain energy (11), containing terms up to the fourth 

order (cubic nonlinearity), is considered. The displacement 

fields 𝑢(𝜂, 𝜃, 𝑡), 𝑣(𝜂, 𝜃, 𝑡), 𝑤(𝜂, 𝜃, 𝑡) are expanded by using the 

linear mode shapes 𝑈(𝜂, 𝜃), 𝑉(𝜂, 𝜃),𝑊(𝜂, 𝜃) obtained in the 

previous section [7] 

𝑢(𝜂, 𝜃, 𝑡) =∑𝑈(𝑗)(𝜂, 𝜃)𝑓𝑢,𝑗(𝑡)

  

𝑗  

 

𝑣(𝜂, 𝜃, 𝑡) =∑𝑉(𝑗)(𝜂, 𝜃)𝑓𝑣,𝑗(𝑡)

  

𝑗  

 

𝑤(𝜂, 𝜃, 𝑡) =∑𝑊(𝑗)(𝜂, 𝜃)𝑓𝑤,𝑗(𝑡)

  

𝑗  

                                 (24) 

These expansions respect exactly the boundary conditions; the 

synchronicity is relaxed as for each mode and each component 

(𝑢, 𝑣, 𝑤) different time laws are allowed. The mode shapes 

𝑈(𝑗)(𝜂, 𝜃), 𝑉(𝑗)(𝜂, 𝜃),𝑊(𝑗)(𝜂, 𝜃) are known functions, they are 

expressed in terms of polynomials and harmonic functions. The 

Lagrange equations are expressed in the following form [7] 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇� 
) −

𝜕𝐿

𝜕𝑞 
= 𝑄         for 𝑖𝜖[1, 𝑁𝑚𝑎𝑥]         (𝐿 = 𝑇 − 𝑈 )         (25) 

where the modal coordinates are now ordered in a vector 

𝐪(𝑡) = […𝑓𝑢,𝑗 , 𝑓𝑣,𝑗 , 𝑓𝑤,𝑗 , … ], and 𝑁𝑚𝑎𝑥  depends on the number 

of modes considered in the expansions (24). The generalized 

forces 𝑄  are obtained by the differentiation of the Rayleigh’s 

dissipation function 𝐹 (14) and the virtual work of the external 

forces 𝑊 (13), in the form [7] 

𝑄 = −
𝜕𝐹

𝜕�̇� 
+
𝜕𝑊

𝜕𝑞 
                                                                 (26) 

Expansions (24) are inserted into strain energy (11), kinetic 

energy (12), virtual work of the external forces (13) and 

damping forces (14); using Lagrange Eqns. (25), a set of 

nonlinear ordinary differential equations (ODE) is obtained. 

NUMERICAL RESULTS 

In this section, the nonlinear vibrations of FGM shells with 

different modal shape expansions and geometries are analyzed. 

Analyses are carried out on a FGM made of stainless steel and 

nickel, its properties are graded along the thickness according 

to a volume fraction distribution, where 𝑝 is the power-law 

exponent. The material properties are reported in Tab. 1-2 [2]. 
 

 

 

 
 

Table 1. PROPERTIES OF STAINLESS STEEL 

VS. COEFFICIENTS OF TEMPERATURE. 

 

      stainless steel 

 E ν ρ 

P  2.01 × 10   Nm   0.326 8166 kgm   

P   0 K 0 K 0 K 

P  3.08 × 10   K   −2.002 × 10   K   0 K   

P  −6.53 × 10   K   3.797 × 10   K   0 K   

P  0 K   0 K   0 K   

P(300K) 2.08 × 10   Nm   0.318 8166 kgm   

 

 

 

 

Table 2. PROPERTIES OF NICKEL 

VS. COEFFICIENTS OF TEMPERATURE. 

 

      nickel 

 E ν ρ 

P  2.24 × 10   Nm   0.310 8900 kgm   

P   0 K 0 K 0 K 

P  −2.79 × 10   K   0 K   0 K   

P  −3.99 × 10   K   0 K   0 K   

P  0 K   0 K   0 K   

P(300K) 2.05 × 10   Nm   0.310 8900 kgm   
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Nonlinear Response Convergence Analysis 

The convergence analysis is carried out on a simply 

supported shell excited with an harmonic force; the excitation 

frequency is close to mode (𝑚, 𝑛). The convergence is checked 

by adding suitable modes to the resonant one, i.e., asymmetric 

modes (𝑘 × 𝑚, 𝑗 × 𝑛)  𝑘 = 1,3  𝑗 = 1,2,3 due to the presence of 

the quadratic and the cubic nonlinearities; axisymmetric modes 

(𝑘, 0)  𝑘 = 1,3,5,7 due to the quadratic nonlinearities.  

The convergence analysis is then developed by introducing a 

different number of asymmetric and axisymmetric modes in the 

expansions of the displacement fields 𝑢, 𝑣, 𝑤, see Tab. 3. 

 
 

Table 3. MODAL EXPANSION FOR THE NONLINEAR ANALYSIS. 

 

(𝑚, 𝑛)  (1,6) (1,12) (1,18) (3,6) (3,12) (3,18) (1,0) (3,0) (5,0) (7,0) 

6 𝑑𝑜𝑓 𝑢, 𝑣,𝑤 𝑣 − − − − 𝑢, 𝑤 − − − 

9 𝑑𝑜𝑓 𝑢, 𝑣,𝑤 𝑣 − − 𝑣 − 𝑢, 𝑤 𝑢, 𝑤 − − 

12 𝑑𝑜𝑓 𝑢, 𝑣,𝑤 𝑣 − 𝑢, 𝑣, 𝑤 𝑣 − 𝑢, 𝑤 𝑢, 𝑤 − − 

15 𝑑𝑜𝑓 𝑢, 𝑣,𝑤 𝑣 𝑣 𝑢, 𝑣, 𝑤 𝑣 − 𝑢, 𝑤 𝑢, 𝑤 𝑢, 𝑤 − 

18 𝑑𝑜𝑓 𝑢, 𝑣,𝑤 𝑣 𝑣 𝑢, 𝑣, 𝑤 𝑣 𝑣 𝑢, 𝑤 𝑢, 𝑤 𝑢, 𝑤 𝑢,𝑤 

 

 

The FGM cylindrical shell is excited by means of an external 

modally distributed radial force 𝑞𝑧 = 𝑓 ,6 sin 𝜂 cos 6𝜃 cosΩ𝑡; 

the amplitude of excitation is 𝑓 ,6 = 0.0012ℎ 𝜚𝜔 ,6
  and the 

frequency of excitation 𝛺 is close to the mode (1,6), Ω ≅ 𝜔 ,6. 

The external forcing 𝑓 ,6 is normalized with respect to mass, 

acceleration and thickness; the damping ratio is equal to 

𝜉 ,6 = 0.0005. The nonlinear amplitudes 𝑓𝑢, , 𝑓𝑣, , 𝑓𝑤,  of the 

expansions (24) refer to the displacement fields 𝑢, 𝑣, 𝑤 of the 

mode (1,6), respectively. 

In Figure 2, a comparison of nonlinear amplitude-frequency 

curves of the cylindrical shell (ℎ/𝑅 = 0.002, 𝐿/𝑅 = 20, 𝑝 = 1) 
with different nonlinear expansions is shown; the shell is very 

thin and long. The nonlinear 6 dof model describes a wrong 

softening nonlinear behaviour, while the higher-order nonlinear 

expansions converge to a hardening nonlinear behaviour. 
 

 

Figure 2. COMPARISON OF NONLINEAR AMPLITUDE-FREQUENCY CURVES 

OF THE FGM CYLINDRICAL SHELL (h/R = 0.002, L/R = 20, p = 1). 
“∎”, 6 DOF MODEL; “−−”, 9 DOF MODEL; “⋯”, 12 DOF MODEL; 

“− ∙ −”, 15 DOF MODEL; “−”, 18 DOF MODEL. 

Figure 3. COMPARISON OF NONLINEAR AMPLITUDE-FREQUENCY CURVES 

OF THE FGM CYLINDRICAL SHELL (h/R = 0.025, L/R = 20, p = 1). 
“∎”, 6 DOF MODEL; “−−”, 9 DOF MODEL; “⋯”, 12 DOF MODEL; 

“− ∙ −”, 15 DOF MODEL; “−”, 18 DOF MODEL. 

 

In Figure 3, a comparison of nonlinear amplitude-frequency 

curves of the cylindrical shell (ℎ/𝑅 = 0.025, 𝐿/𝑅 = 20, 𝑝 = 1) 
with different nonlinear expansions is shown; the shell is quite 

thick and long. The nonlinear 6 dof model describes a wrong 

hardening nonlinear behaviour, and the higher-order nonlinear 

expansions converge to a softening nonlinear behaviour. 

In Figure 4, a comparison of nonlinear amplitude-frequency 

curves of the cylindrical shell (ℎ/𝑅 = 0.050, 𝐿/𝑅 = 20, 𝑝 = 1) 
with different nonlinear expansions is shown; the shell is thick 

and long. The nonlinear 6 dof model describes a wrong 

softening nonlinear behaviour, while the higher-order nonlinear 

expansions converge to a hardening nonlinear behaviour. 

The fundamental role of the axisymmetric and higher-order 

asymmetric modes is clarified in order to obtain the actual 

character of the shell nonlinearity. 

From the convergence analysis, it can be observed that the 9 

dof model gives satisfactory results with the minimal 

computational effort; therefore, in the following analyses the 9 

dof model will be used. 

 

 

 
Figure 4. COMPARISON OF NONLINEAR AMPLITUDE-FREQUENCY CURVES 

OF THE FGM CYLINDRICAL SHELL (h/R = 0.050, L/R = 20, p = 1). 
“∎”, 6 DOF MODEL; “−−”, 9 DOF MODEL; “⋯”, 12 DOF MODEL; 

“− ∙ −”, 15 DOF MODEL; “−”, 18 DOF MODEL. 
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In particular, the following 9 dof model will be considered for 

studying a generic resonant mode (𝑚, 𝑛): 
 

 modes (𝑚, 𝑛), (1,0), (3,0) for the field 𝑢 

 modes (𝑚, 𝑛), (𝑚, 2𝑛), (3𝑚, 2𝑛) for the field 𝑣 

 modes (𝑚, 𝑛), (1,0), (3,0) for the field 𝑤 

 

After selecting such modes, each expansion present in the Eqns. 

(24) is reduced to a three-terms modal expansion; the resulting 

nonlinear system has 9 dof. 

The expression of the resulting discretized nonlinear equations 

of motion and the method used to compute the nonlinear 

response amplitude curves are described in Ref. [7]. 

Effect of the Geometry 

In this part, the role of the geometric parameters ℎ, 𝐿, 𝑅 and in 

particular their ratios ℎ/𝑅 and 𝐿/𝑅 on the nonlinear response of 

the FGM cylindrical shells is clarified. 

In Figure 5, a comparison of nonlinear amplitude-frequency 

curves of simply supported FGM circular shells with different 

geometries is shown: this figure represents the maximum of the 

modal amplitude 𝑓𝑤, (𝑡) of the mode (1,6) (normalized by the 

thickness ℎ of the shell) versus the frequency of the excitation 

Ω (normalized by the frequency 𝜔 ,6 of the driven mode). 

The nonlinear response is: 

 

 hardening for (ℎ/𝑅 = 0.002, 𝐿/𝑅 = 20, 𝑝 = 1), 
red line (−) 

 softening for (ℎ/𝑅 = 0.025, 𝐿/𝑅 = 20, 𝑝 = 1), 
black line (−) 

 hardening for (ℎ/𝑅 = 0.050, 𝐿/𝑅 = 20, 𝑝 = 1), 
blue line (−) 

 

The nonlinear response of the thicker circular cylindrical shell 
(ℎ/𝑅 = 0.050, 𝐿/𝑅 = 20, 𝑝 = 1) is more hardening than the 

thinner one (ℎ/𝑅 = 0.002, 𝐿/𝑅 = 20, 𝑝 = 1), a wide interval 

of thickness gives rise to softening type behaviour. 

 

 
Figure 5. AMPLITUDE-FREQUENCY CURVES, EFFECT OF THICKNESS, 9 DOF 

MODEL, ASYMMETRIC MODE (1,6). “−”, (h/R = 0.002, L/R = 20, p = 1); 
“−”, (h/R = 0.025, L/R = 20, p = 1); “−”, (h/R = 0.050, L/R = 20, p = 1). 

 

 
 

Figure 6. EFFECT OF THE GEOMETRY ON THE NONLINEAR RESPONSE OF 

THE FGM SHELL. CIRCLE BLUE MARKS: HARDENING; SQUARE RED MARKS: 

SOFTENING; DASHED LINES: BOUNDARIES BETWEEN HARDENING AND 

SOFTENING REGIONS (FROM REF. [6], HOMOGENEOUS MATERIALS). 

 

 

In order to determine the influence of the geometry on the 

nonlinear vibration, a parametric analysis is carried out by 

varying the fundamental ratios (ℎ/𝑅) and (𝐿/𝑅). 
In Figure 6, the effect of the geometry on the nonlinearity type 

is analyzed considering few numerical test-cases: square marks 

describe a softening behaviour, while circle marks describe a 

hardening behaviour. In Figure 6, the dashed lines, which are 

referred to homogeneous shells, are reproduced from Ref. [6]: 

such lines represent the boundaries of the hardening/softening 

regions. The present analysis shows that the FGM shells behave 

similarly to homogeneous ones: very short shells (𝐿/𝑅 < 0.5) 
and thick shells (ℎ/𝑅 > 0.045) present a hardening nonlinear 

behaviour; conversely, a softening nonlinearity is found in a 

wide range of shell geometries. However, for sufficiently long 

(𝐿/𝑅 > 5) and thin (ℎ/𝑅 < 0.005) shells, the system can be 

hardening again. This confirms for the FGM shells the results 

available in literature concerning homogeneous isotropic shells. 

CONCLUSIONS 

In this paper, the effect of the geometry on the nonlinear 

vibrations of FGM cylindrical shells is analyzed. 

The Sanders-Koiter theory is applied to model the nonlinear 

dynamics of the system in the case of finite amplitude of 

vibration. 

The functionally graded material is made of stainless steel and 

nickel, the material properties are graded along the thickness 

according to a volume fraction law. 

Numerical analyses are carried out in order to characterize the 

nonlinear response when the shell is subjected to a harmonic 

external load. 

A convergence analysis is carried out by introducing in the 

longitudinal, circumferential and radial displacement fields a 

different number of asymmetric and axisymmetric modes; the 

role of the axisymmetric and higher-order asymmetric modes is 

clarified in order to obtain the actual character of the shell 

nonlinearity. 
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The effect of the geometry on the nonlinear vibrations of the 

FGM shells is analyzed: very short shells and thick shells show 

a hardening nonlinearity, conversely, a softening nonlinearity is 

found in a wide range of the shell geometries. For sufficiently 

long and thin shells, the system behaves in a hardening 

nonlinear way. 

This paper confirms regarding the effect of the geometry on the 

nonlinear vibrations of FGM shells the results available in the 

literature concerning the nonlinear vibrations of homogeneous 

isotropic shells. 
The same comparison between the nonlinear vibrations of 

isotropic and FGM shells have to be extended in future works 

to the effect of the boundary conditions, the distribution of the 

material and the participation of the companion modes. 
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