
Energy localization in carbon nanotubes 

 
Matteo Strozzi

a
, Valeri V. Smirnov

b
, Leonid I. Manevitch

b
, Francesco Pellicano

a,*
, Denis S. Shepelev

b
 

 
aDepartment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy 

bN.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences RAS, ulica Kosygina 4, 119991 Moscow, Russia 

 

Abstract 

In this paper, the energy localization phenomena in low-frequency nonlinear oscillations of single-

walled carbon nanotubes (SWNTs) are analysed. The SWNTs dynamics is studied in the framework 

of the Sanders-Koiter shell theory. Simply supported and free boundary conditions are considered. 

The effect of the aspect ratio on the analytical and numerical values of the localization threshold is 

investigated in the nonlinear formulation. 

 

1. Introduction 

Carbon nanotubes (CNTs) are used as ultrahigh frequency nano-mechanical resonators in a large 

number of nano-electro-mechanical devices such as sensors, oscillators, charge detectors and field 

emission devices. The reduction of the size and the increment of the stiffness of a resonator increase 

its resonant frequencies and reduce its energy consumption, improving therefore its sensitivity. 

The stationary or nonstationary dynamics of CNTs can be treated in terms of linear or nonlinear 

normal modes; in the presence of non-stationary resonance, one assists to energy transfer phenomena 

and formation of wave packets, having a time evolution strongly related to the spectral properties. In 

the nonlinear systems, the wave dispersive spreading can be compensated by the nonlinearity. As a 

result, a soliton mechanism of energy transfer in the quasi-one-dimensional nonlinear lattices arises. 

In the present paper, the energy exchange and transition to energy capture in some part of the CNT is 

analysed and explained within the Limiting Phase Trajectory theory [1]. Two different approaches 

are used: 1) a numerical model based on the Sanders-Koiter shell theory, solved semi-analytically 

through a double mixed series expansion for the displacement fields; 2) an analytical model based on 

a reduced form of the shell theory assuming small circumferential and tangential shear deformations. 

 

Theory 

The numerical approach is based on the Sanders-Koiter shell theory, the strain and kinetic energies 

are written as [2]: 
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The displacement fields are expanded as follows: 
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where the approximate eigenfunctions are obtained through the Rayleigh-Ritz procedure explained 

in Ref. [2]. The resulting dynamical system is obtained by means of the Lagrange equations which 

are solved numerically. 

It is to note that the present model does not include additional terms in partial differential equations 

(e.g., non-local moment, Eringen’s relation) which allow to consider the “size effects”. The reason is 

that, for the present analysis, focused on low-frequency and long SWNTs, these effects are marginal. 

Comparisons with Molecular Dynamics simulations confirm that our assumptions are acceptable [3]. 

An alternative approach is based on a reduced form of the Sanders-Koiter linear elastic shell theory 

developed in [2] and extended to the nonlinear field. Since low-frequency vibrations of SWNTs are 

considered in this work, then the elastic strain energy is predominantly due to bending, torsion and 

longitudinal tensions, and therefore we can neglect the 

circumferential and tangential shear strains of the middle 

surface. Due to these assumptions, the longitudinal and 

circumferential displacements can be expressed via the 

radial one. Details are omitted for the sake of brevity. 

 

Numerical Results 

In Figure 1, the total energy distribution over the CNT 

surface is represented (simply supported edges). When 

the total energy of vibration is sufficiently high, then the 

combination of the two modes (1,2) and (2,2) results in a 

strong localization of the total energy distribution. This 

is a nonlinear phenomenon as the localization disappears 

when the vibration energy is low enough (or the system 

is linearized). 

Figure 1. Energy localization: simply supported 

Figure 2. Energy localization: free-free 



The same phenomenon appears in the case of a free-free SWNT (modes (0,2) and (1,2)), Figure 2. 

Also in this case the localization takes place when the vibration energy is sufficiently high. 

Figure 3 clarifies that an energy threshold exists for the onset of localization. Different energy levels 

are needed for simply supported or free-free SWNTs, the behaviour is similar when the aspect ratio 

is varied, i.e., an asymptotic energy level is found for long SWNTs. 

 

a) 

 

b) 

 
Figure 3. Localization threshold: a) simply support; b) free-free boundary conditions 

 

Conclusions 

In this paper, the low-frequency oscillations and energy localization of SWNTs are analysed within 

the framework of the Sanders-Koiter shell theory. The circumferential flexure modes are considered. 

Simply supported and free boundary conditions are studied. Two different approaches are compared, 

based on numerical and analytical models. For the free boundary conditions, the energy localization 

threshold value at the horizontal asymptote is lower than the corresponding value for the simply 

supported boundary conditions, since in this particular case the uniform vibrational mode with zero 

longitudinal half-waves loses its stability at a relatively low energy level. 
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