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SUMMARY. In this paper, the nonlinear vibrations fahctionally graded (FGM) cylindrical
shells under different constituent volume fracti@msl configurations are analyzed. The Sanders-
Koiter theory is applied to model nonlinear dynagnié the system in the case of finite amplitude
of vibration. The shell deformation is describeddmms of longitudinal, circumferential and radial
displacement fields. Simply supported boundary @@t are considered. Displacement fields
are expanded by means of a double mixed seriesl lmas€hebyshev orthogonal polynomials for
the longitudinal variable and harmonic functions ttee circumferential variable. Both driven and
companion modes are considered, allowing for theelting-wave response of the FGM shell. The
functionally graded material considered is madestafnless steel and nickel; the properties are
graded in the thickness direction, according tea volume fraction power-law distribution. In the
nonlinear model, the shells are subjected to a@reat radial excitation. Nonlinear vibrations due
to large amplitude excitation are considered. Sigeciodes are selected in the modal expansions;
a dynamical nonlinear system is obtained. Lagrawetions are used to reduce nonlinear partial
differential equations to a set of ordinary diffetial equations, from the potential and kinetic
energies, and the virtual work of the external éstdDifferent geometries are analyzed; amplitude-
frequency curves are obtained. Convergence testsaaried out considering a different number of
asymmetric and axisymmetric modes. The effect & thaterial distribution on the natural
frequencies and nonlinear responses of the sisedlsdlyzed.

1 INTRODUCTION

Functionally graded materials (FGMs) are composigderials obtained by combining two or
more different constituents, which are distribubedhe thickness direction in accordance with a
volume fraction law. The idea of FGMs was introdilige 1984 by a group of Japanese material
scientists. They studied different physical aspecthe vibration characteristics of FGM shells.

Loy et al. [1] analyzed the vibrations of the cyliital shells made of a functionally graded
material, considering simply supported boundary ditioms. They found that the natural
frequencies are affected by the constituent volinaetions and configurations of the constituent
materials. Leissa [2] studied the linear and n@dimvibrations of cylindrical shells. He considered
the fundamental equations of thin shell theoryhvgarticular attention to the circular cylindrical
shells. Amabili [3] analyzed the nonlinear theorésloubly curved shells for advanced materials,
as FGMs. The elastic strain energy and kineticgynéor heated, functionally graded shells were
defined. Pellicano [4] presented a method for anaty nonlinear vibrations of cylindrical shells
having different boundary conditions. Sanders-Koitenlinear theory was applied; displacement
fields were expanded in terms of harmonic functiand Chebyshev polynomials.

In this paper, the effect of the constituent volunaetions and configurations on the nonlinear
vibrations of functionally graded (FGM) cylindricghells is analyzed. The Sanders-Koiter theory
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is applied to model nonlinear dynamics of the gysie the case of finite amplitude of vibration.
Shell deformation is described in terms of longitadl circumferential and radial displacement
fields; the theory considers geometric nonlineasitdue to the large amplitude of vibration.
Simply supported boundary conditions are considefé@ displacement fields are expanded by
means of a double mixed series based on harmondtidms for the circumferential variable and
Chebyshev polynomials for the longitudinal variabBoth driven and companion modes are
considered, allowing for the travelling-wave resgoof the shell.

Numerical analyses are carried out in order toattarize the nonlinear response of the shell;
a convergence analysis is carried out to deterthi@eorrect number of the modes to be used. The
analysis is focused on determining the nonlinearatter of response as the material properties
vary; in particular, the effect of the constituamtiume fractions and the configurations of the
constituent materials on the natural frequenciesraomlinear responses of the shells are studied.

2 FUNDAMENTAL EQUATIONS OF FUNCTIONALLY GRADED MATERALS

The material propertie®,,, of FGMs depend on the material properties andnaelfractions
of the constituent materials, and they are exptegsthe form [1]

Prgm(T,2) = Ziy P (T)Vyi(2) 1)
whereP; andVy; are the material property and the volume fractibthe constituent materiaj
z is the radial coordinate along the thicknkgss the shell.
The material propertieB of the constituent materials can be described asetion of the
environmental temperatuf&K) by Touloukian’s cubic curve relation [1]

Pl(T):P()(P_lT_l+1+P1T+P2T2+P3T3) (2)

whereP,, P_,, P;, P, andP; are the coefficients of temperature of the constit materials.
In the case of a FGM thin cylindrical shell, thduroe fraction/; can be be written as [1]

@ = (252) ®

where the power-law exponemis a positive real number, wiff) < p < ).
Young’s modulugt, Poisson’s ratio and mass densify are expressed as [1]

LN 4 BT, vigm(T2) = (v3(T) =i (D) (F22)] 4 vy,

Pram(T.2) = (p2(T) = py (1) (Z22)” + py(T) @)

Ergm(T,2) = (Ex(T) ~ Ey(D) (

3 SANDERS-KOITER NONLINEAR THEORY OF CIRCULAR CYLINDRCAL SHELLS

In Figure 1, a FGM cylindrical shell having radiRslengthL and thicknesé# is represented; a
cylindrical coordinate systerfD; x, 0, z) is considered in order to take advantage fromattial
symmetry of the structure, having the origirof reference system located at the centre of ode en
of the circular cylindrical shell. Three displaceméelds are represented: longitudinglx, 6, t),
circumferentialv(x, 6, t) and radialv(x, 8, t). The variable is the time.



Figure 1: Coordinate system of a functionally gaadiecular cylindrical shell.

3.1Elastic strain energy, kinetic energy and virtual work of the external forces
The Sanders-Koiter theory of circular cylindrichk#is, which is an eight-order shell theory, is

based on the Love’s “first approximation” [2].

The strain component&,, g5,vx9) at an arbitrary point of the circular cylindricstell are
related to the middle surface strai(@o,e&o, ]/xgro) and to the changes in the curvature and
torsion(k,, kg, k,g) of the middle surface of the shell by the followirelationships [2]

Ex = &po Tt zky, Eg = €go T zkg, Yx6 = Vx6,0 T zkyo 5)(

wherez is the distance of the arbitrary point of the Efrem the middle surface, an@, ) are the

longitudinal and angular coordinates of the stselgé Figure 1.
The middle surface strains and changes in curvatougdeorsion are given by [2]

e = 1(6w)2 1(61; 6u)2 owowe o _ v w 1(6w V)Z 1(6u
%0 ™ Loy ' 2 \Lay 8\Ldn RAO Lon Lan’ 09 " Ros ' R ' 2\rRo® R 8 \RAO
ov )2 owg ( ow v) _ Ou ov ow (6w V) owg (6w V) ow dwg
Lan roo \rRag &)’ V%60 T zag Ldn ' Ldn \RAO R Lon \R3® R/J ' Lon RAO’
2w ov 2w 22w 1 ov ou
k,=——-— =——— ko =—-2—— —(3———) 6
x 12972’ 8 ™ R298  R2062’ x0 LROnA6 ' 2R\” Ldn  RA6 (6)

where(n = x/L) is the nondimensional longitudinal coordinate.
In the case of functionally graded materials, tinesses are related to the strains as follows [1]

_ EQ@
X T 1v2(z)

_ E®@ _ EQ@)
(Sx + V(Z)Ee): Og = 1-v2(z) (‘99 + V(Z)Sx), Txo = 2(1+v(z)) Yxo (7)

whereE (z) is the Young’'s modulus andz) is the Poisson'’s ratio (plane stress= 0).
The elastic strain enerdy; of an isotropic circular cylindrical shell is givéoy [3]

1 2 h/2
Us = %LR fo fg nf_}{/z(o-xsx + Op&g + Txel’xe) d’ldedz (8)

where(h, R, L) are the thickness, radius and length of the stesdpectively.



Using equation&s), (7) and(8), the following expression df, can be obtained

1 1 r2m h/2  E(2) 1-v(2)
US = ELR f() f[) f—h/2 1-v2(z) (85,0 + 65,0 + ZV(Z)EX,OEG,O + 2 ]/)?9,0) dndedz +

h
1,2 > E(z) 1 (2)
LR [ 77 %22 (e 0ks + £,0ke + V(2)(£xoko + £0,0kx) + 3 Vxo,0kxo — 2 Vxo,0kxs ) d1dOzdz +

- 1-v2(z)

1 1 02 h/2  E(2) 1 1-v(z)
LR e (GKZ + 2 + k3 + 2v(D)keko + 2 k2 ) dndOz2dz + O(h*)  (9)
where0 (h*) is a higher-order term il according to the Sanders-Koiter theory.

The kinetic energy¥, of a FGM shell (rotary inertia effect is neglegtéxigiven by [3]

h . . .
T, =2LR [, [" f_,ffz p(2) (1% + v% + W?) dndodz (10)
wherep(z) is the mass density of the functionally gradedishe

The virtual workWW done by the external forces is written as [3]

W = LR fol fozn(qxu + qqv + q,w)dndo (12)

where (g, 99, ;) are the distributed forces per unit area actingpigitudinal, circumferential
and radial direction, respectively.

4 LINEAR VIBRATION ANALYSIS

In order to carry out a linear vibration analydisthe present section, the Sanders-Koiter linear
theory is considered, i.e. in equati@®) only the quadratic terms are retained.

The displacement fields are expanded by meansdofuble mixed series: the axial symmetry
of geometry and periodicity of deformation in thecamferential direction lead to use harmonic
functions, while Chebyshev orthogonal polynomials @onsidered in the axial direction.

A modal vibration, i.e. a synchronous motion, isaited in the form [4]

u(®,0,t) =Um0)f(©), v(@®6,t)=Vm6)f®), wh6,t) =W o)) 12)

whereu(n, 0,t),v(n,6,t) andw(n, 8,t) are the displacement fields of the consideredesyst
U(,8),V(n,6) andW(n,d) represent the modal shape, gif{d) represents the time law, which
is supposed to be the same for each displacenadahi $iynchronous motion hypothesis).

The modal shap&U,V, W) is then expanded in a double mixed series, ingafrChebyshev
polynomialsT;, (1) and harmonic function&os né , sin n8), in the following form [4]

U®,60) = Toto Zh=o Unn T cosnb,  V(1,0) = Tl Zh=o VT ()sin ),

W(®,8) = Zo¥ o SN_o Wi T, () cos n8 (13)

whereT,,(n) = T,,(2n — 1), m is the number of the longitudinal half-wavesis the number of
the nodal diameters ar(ﬁm_n, Vs VT/m,n) are the generalized coordinates.



4.1Boundary conditions

In the present work, simply supported circularmgtical shells are considered; the boundary
conditions are imposed by applying constraintshie free coefficients(Umln, Vs ern) of the
expansiong13). Simply supported boundary conditions are giveidby

w =0, v =0, M, =0, N,=0 for n=(0,1) (14)

The previous conditions imply the following equatsd4]

W(,8) = Tt o EN_o Wy n T () cos 8 = 0, V(®1,0) = 3o SNV n T ()sin ng = 0

m=0 n
Wi (1,8) = Zot o SN Why Ty 1) cosn = 0, U, (0, 8) = T o EN_o U Ty (1) cosnd = 0 (15)

The linear algebraic system given by equatiftfs) can be solved analytically in terms of the
coefficients(T, ., Uy n, Vo.nr Vi, Wouo Wiy Wo n, Ws ), for nef0, N1.

4.2 agrange equations

The equation§12) and(14) are inserted in the expressionsTpfandU; (equationg9 — 10));
a system of ordinary differential equations (OD&}hen obtained by using Lagrange equations.
An intermediate step is the reordering of the \@€g in a vector [4]

q = [UO,O‘ U3‘0, U4‘0, ...... ’UMu,O' UO,l' U3’1, U4’1, ...... ’UMull’ VZ,O' V3‘0, ...... ‘VMVIOI VZ,l‘ V3’1,
ey VM];:]-’ W4’0, W5’0, ...... ) WMW,O' W4’1, Ws‘l, ...... ) WMW,l]f(t) 160

The maximum number of variables needed for deswgila generic vibration mode can be
calculated by the following relatiov, = M, + M, + M,, — 5), (M,, = M,, = M,,) as maximum
degree of Chebyshev polynomials, by consideringetheationg14) for the boundary conditions.

The number of degrees of freedom of the systembeaoomputed by the following relation
(Nmax = N, X N), whereN describes the maximum number of nodal diametarsidered.

The Lagrange equations for free vibrations read [4]

d (oL JaL .
;(a—qi) ~3o=0,  forielL Nl (L=Ty=U)  (Npax =Ny X N) (17)

Considering an harmonic motiofi(¢) = e/“*), we obtain the secular equation [4]
(—w*M +K)q=0 (18)

which furnishes frequencies (eigenvalues) and motieibration (eigenvectors).
The modal shape, corresponding to ftremode, is (qgven( _k)Jy the equatiois3), where the
5

coefficients Uy, n, Vi n, Wy, ) @re substituted Wit}"["ié,{,)n, Vs W)

U (m,0) = [UD,0),vOxn,0),wd,e)] (19)

represents thgh eigenfunction vector of the original problem.



5 NONLINEAR VIBRATION ANALYSIS

In the nonlinear vibration analysis, the full exgsi®n of the potential enerd®), containing
terms up to the fourth order (cubic nonlinearitg)considered. The displacement fields), 9, t),
v(n,6,t) andw(n, 8,t) are expanded by using the linear mode shalfese),V(n,6), W(n,8)
obtained in the previous section [4]

6,0 =) VOGO i, v@.0,0= > VO@,0)f,0),
j=1 j=1
Nmax

w(,6,0 = > WO,0) fu(©) (20)
j=1

These expansions respect the simply supported hoyrmbnditions(14); the mode shapes
UD(n,0),vP(n,0),wd(n,0) are known functions expressed in terms of the mmiyials and
harmonic functions, in which both driven and conmpammodes are considered, in the form

My N My
Un,6) = Z z Upn T () [cos n@ + sinnf] + z Upno T (),
m=0n=0 m=0
My N
V(n,6) = Z Z Van T () [sinn6 + cosné],
m=0n=1
My N My
W,0) = Z Z Wy n Ty () [cos nO + sinnd] + Z Wono T () (21)
m=0n=0 m=0

The Lagrange equations for forced vibrations amessed in the following form [4]
d (0L\ L ,
E(a_qi) o e Qi forie[1,Npa]l (L=T;—=U)  (Npax =N, XN) (22)
Expansiong20) are inserted into strain ener@9), kinetic energy(10) and virtual work of

external forceg11), in the case of external excitation; using Lageaeguation§22), a system of
ordinary differential equations is then obtained.

6 NUMERICAL RESULTS

In this section, the nonlinear vibrations of sim@ypported functionally graded circular
cylindrical shells with different constituent volenfractions and configurations are analyzed.

Chebyshev polynomials used in the approximate nadettave degree equal ta = 11. The
functionally graded material is composed by staisisteel and nickel, its properties are graded in
the thickness direction according to a volume foactdistribution, wherep is the considered
power-law exponent. The material properties arented in Table 1 [1].
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Table 1: Properties of stainless steel and nicgairest coefficients of temperature(@t= 300K).

stainless steel nickel
E(Nm~2) v p(kgm~3) E(Nm~2) v plkgm™3)

P, | +2.01 x 10! 0.326 8166 +2.24 x 10! | 0.3100 8900
P_, 0 0 0 0 0 0

Py +3.08x107%* | —2.002 x 1074 0 —2.79 x 1074 0 0

P, | —6.53x 1077 | +3.797 X 10~ 0 —3.99x 107° 0 0

P 0 0 0 0 0 0

P +2.08 x 1011 0.318 8166 +2.05 x 10t | 0.3100 8900

In the nonlinear model, the following modesvingm longitudinal half-waves and nodal
diameters(m,n) are selected: moded,0), (3,0),(1,6) in the longitudinal displacement field;
modes(1,6), (1,12), (3,12) in the circumferential displacement field; modad), (3,0), (1,6) in
the radial displacement field. After selecting smobdes, each expansion present in equdg60n
is reduced to a three-terms modal expansion; tdtieg nonlinear system hasdofs.

6.1Nonlinear response analysis

The circular cylindrical shell is excited by mearisin external modally distributed radial force
qr = fi,6 Sin7 cos 66 cos Qt, having amplitude of excitation equal fp; = 0.0012h%*ow?, and
frequency of excitatiom close to th&1,6) mode frequencyQ = w, ¢. The driven mode i61,6),
and the external forcingj ¢ is normalized with respect to the mass, accet@raind thickness; the
damping ratio isf; ¢ = 0.0005. In Figure 2, the amplitude-frequency responsea &iGM shell
with (h/R = 0.025,L/R = 20,p = 1) is shown. A softening nonlinear behaviour is obedr
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Figure 2: Nonlinear amplitude-frequency curve & shellth/R = 0.025,L/R = 20,p = 1).



6.2Nonlinear response convergence

The convergence analysis is developed by introduainlongitudinal, circumferential and
radial displacement fields a different number oframetric and axisymmetric modes: a 6 dof
model with modes(1,0),(1,6),(1,12), a 9 dof model with mode$1,0), (3,0), (1,6), (1,12),
(3,12), a 12 dof model with modgd,0), (3,0), (1,6), (3,6), (1,12),(3,12), a 15 dof model with
modes(1,0), (3,0), (5,0), (1,6), (3,6),(1,12),(3,12),(1,18), a 18 dof model with modedl,0),
(3,0),(5,0),(7,0),(1,6), (3,6),(1,12),(3,12),(1,18), (3,18) are considered.

In Figure 3, a comparison of nonlinear amplitudsgfrency curves of the FGM cylindrical
shell (h/R = 0.025,L/R = 20,p = 1) is shown: the nonlinear 6 dofs model describesrengy
hardening nonlinear behaviour, the higher-orderlinear expansions converge to a strongly
softening nonlinear behaviour, that is the corobetracter of the shell response.
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Figure 3: Comparison of nonlinear amplitude-frequyecurves(h/R = 0.025,L/R = 20,p = 1).
—, 6 dofs model:-, 9 dofs model:-, 12 dofs model:-, 15 dofs model—, 18 dofs model.

6.3Effect of the companion mode participation

In Figure 4, the amplitude-frequency curve with tteempanion mode participation (i.e. the
actual response of the shell) is presented. ThEnse for the mod€l,6) is very similar to the 9-
dofs model of Figure 2; the companion mode parditiq;m arises around the resonance. Before the
exact resonancf = w, ¢), there is a region where no stable periodic sohstiare present: the
actual response is then described in terms of fpitkhand Neimark-Sacker bifurcations. The
companion mode is not directly excited, and its léongte is different from zero only for a large
amplitude of vibration. The participation of bothvén and companion mode gives a travelling
wave response moving around the shell: the phaiéshween the two coordinatesrig2.
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Figure 4: Response-frequency curve with the congramiode participation. (a) Amplitude
fwa(t) of the driven modé1,6). (b) Amplitudef,, ,(t) of the companion modd,6).

6.4 Effect of the material distribution

The effect of the material distribution o thonlinear response is analyzed by considering two
different FGM shells withth/R = 0.025,L/R = 20): Type | FGM shell, which has nickel on its
inner surface and stainless steel on its outeaserfand Type Il FGM shell, which has stainless
steel on its inner surface and nickel on its osteface.
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In Figure 5(a), the nonlinear behavidir, of Type | FGM shell is shown: as the value of the
exponent increases, the value of the natural frequengy decreases, and the behaviour varies
from strongly softening(p < 1) to weakly softening(p > 5). In Figure 5(b), the nonlinear
behaviourNL, of Type Il FGM shell is shown: as the value of éxponent increases, the value
of the natural frequenay, ¢ increases, and the behaviour varies from weaktgsiog (p < 1) to
strongly softeningp > 5).

7 CONCLUSIONS

In this paper, the nonlinear vibrations of FGM aler cylindrical shells are analyzed; different
configurations and constituent volume fractions@mesidered. Sanders-Koiter theory is applied to
model nonlinear dynamics of the system in the adsknite amplitude of vibration. The shell
deformation is described in terms of longitudir@tcumferential and radial displacement fields.
Simply supported boundary conditions are considddézblacement fields are expanded by means
of a double mixed series based on harmonic funstifom the circumferential variable and
Chebyshev polynomials for the longitudinal variable

Numerical analyses are carried out in order toattarize the nonlinear response of the shells.

A convergence analysis is developed by introdu@inigngitudinal, circumferential and radial
displacement fields a different number of asymmetaind axisymmetric modes; the correct
number of modes to describe the actual nonlinelaa\deur of the cylindrical shells is determined.

Both driven and companion modes arre consideréalyialg for the travelling-wave response
of the cylindrical shell; frequency-response curwith the companion mode participation (i.e. the
actual response of the shell) are obtained.

The influence of the constituent volume fractioms! dhe effect of the configurations of the
constituent materials on the natural frequenciesraomlinear responses of the shells are analyzed.

In Type | FGM shell, as the value of the power-laxponent increases, the value of the
corresponding natural frequency decreases, angafttening character of the nonlinear behaviour
decreases from a strongly softening to a weakliesafg behaviour.

In Type Il FGM shell, as the value of the power-lawponent increases, the value of the
corresponding natural frequency increases, anddftening character of the nonlinear behaviour
increases from a weakly softening to a stronglyesafig behaviour.
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