
EFFECT OF THE BOUNDARY CONDITIONS ON THE 

VIBRATIONS OF FUNCTIONALLY GRADED SHELLS 
 

 

Angelo Oreste Andrisano 

Department of Mechanical and Civil Engineering, 

University of Modena and Reggio Emilia, Italy 

E-mail: angelooreste.andrisano@unimore.it 

 

Francesco Pellicano 

Department of Mechanical and Civil Engineering, 

University of Modena and Reggio Emilia, Italy 

E-mail: francesco.pellicano@unimore.it 

 

Matteo Strozzi 

Department of Mechanical and Civil Engineering, 

University of Modena and Reggio Emilia, Italy 

E-mail: matteo.strozzi@unimore.it 

 

 

Abstract. In this paper, the effect of the boundary conditions on the nonlinear vibrations of 

functionally graded (FGM) cylindrical shells is analyzed. The Sanders-Koiter theory is 

applied to model the nonlinear dynamics of the system in the case of finite amplitude of 

vibration. The shell deformation is described in terms of longitudinal, circumferential and 

radial displacement fields. Simply supported, clamped and free boundary conditions are 

considered. The displacement fields are expanded by means of a double mixed series based 

on Chebyshev polynomials for the longitudinal variable and harmonic functions for the 

circumferential variable. Numerical analyses are carried out in order to characterize the 

nonlinear response when the cylindrical shell is subjected to a harmonic external load; a 

convergence analysis is carried out by considering a different number of axisymmetric and 

asymmetric modes. The analysis is focused on determining the nonlinear character of the 

response as the boundary conditions of the shell vary. 
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1. INTRODUCTION 

Functionally graded materials (FGMs) are composite materials obtained by combining and 

mixing two or more different constituent materials, which are distributed along the 

thickness in accordance with a volume fraction law. Most of the FGMs are employed in the 

high-temperature environments because of their heat shielding capacity. 

       The idea of FGMs was first introduced in 1984/87 by a group of Japanese material 

scientists [1]. They studied many different physical aspects such as temperature and thermal 

stress distributions, static and dynamic responses. 

       Loy et al. [2] analyzed the vibrations of the circular cylindrical shells made of FGM, 

considering simply supported boundary conditions. They found that the natural frequencies 

are affected by the constituent volume fractions and configurations of the materials. 
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       Pradhan et al. [3] studied the vibration characteristics of FGM cylindrical shells made 

of stainless steel and zirconia, under different boundary conditions. They found that the 

natural frequencies depend on the material distributions and boundary conditions. 

       Leissa [4] analyzed the linear dynamics of shells having different topologies, materials 

and boundary conditions, considering the most important shell theories, such as Donnell, 

Flugge and Sanders-Koiter. 

       Yamaki [5] studied buckling and post-buckling of the shells in the linear and nonlinear 

field, reporting the solution methods, numerical and experimental results. 

       A modern treatise on the shells dynamics and stability can be found in Ref. [6], where 

also FGMs are considered. 

       Pellicano et al. [7] considered the nonlinear vibrations of homogeneous isotropic shells, 

leading to similar conclusions of the present work.  

       The method of solution used in the present work was presented in Ref. [8]. 

       In Refs. [9-10] the effect of the boundary conditions on the vibrations of circular 

cylindrical shells is considered. 

       In this paper, the effect of the boundary conditions on the nonlinear vibrations of FGM 

cylindrical shells is analyzed. 

       The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in 

the case of finite amplitude of vibration.  

       The shell deformation is described in terms of longitudinal, circumferential and radial 

displacement fields. 

       The theory considers geometric nonlinearities due to large amplitude of vibration. 

       Simply supported, clamped and free boundary conditions are considered. 

       The FGM is made of a uniform distribution of stainless steel and nickel, and the 

material properties are graded in the thickness direction, according to a volume fraction 

power-law distribution. 

       The solution method consists of two steps: 

1) linear analysis and eigenfunctions evaluation; 

2) nonlinear analysis, using an eigenfunction based expansion. 

       In the linear analysis, the displacement fields are expanded by means of a double series 

based on harmonic functions for the circumferential variable and Chebyshev polynomials 

for the longitudinal variable. 

       A Ritz based method allows to obtain the approximate natural frequencies and mode 

shapes (eigenvalues and eigenvectors). 

       In the nonlinear analysis, the three displacement fields are re-expanded by using the 

approximate eigenfunctions. 

       An energy approach based on the Lagrange equations is then considered, in order to 

reduce the nonlinear partial differential equations to a set of nonlinear ordinary differential 

equations. 

       Numerical analyses are carried out in order to characterize the nonlinear response when 

the shell is subjected to a harmonic external load.  

       A convergence analysis is carried out on a simply supported cylindrical shell to obtain 

the correct number of axisymmetric and asymmetric modes able to describe the actual 

nonlinear behaviour of the shell. Comparisons of nonlinear amplitude-frequency curves of 

the cylindrical shell with different nonlinear expansions are carried out. 

       The influence of the boundary conditions on the natural frequencies of the shell is 

analyzed. A comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

under various boundary conditions is carried out. 



2. EQUATIONS OF FUNCTIONALLY GRADED MATERIALS 

A generic material property      of an FGM depends on the material properties and the 

volume fractions of the constituent materials, and it is expressed in the form [2] 
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where   ̃ and     are the material property and volume fraction of the constituent material  , 

respectively. 

       The material property   ̃ of a constituent material can be described as a function of the 

environmental temperature  ( ) by Touloukian’s relation [2] (the index   is dropped for 

the sake of simplicity) 
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where   ,    ,   ,    and    are the coefficients of temperature of the constituent material. 

       In the case of an FGM thin cylindrical shell with a uniform thickness   and a reference 

surface at its middle surface, the volume fraction    of a constituent material can be written 

as [2] 
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where the power-law exponent   is a positive real number, (     ), and   describes 

the radial distance measured from the middle surface of the shell, (          ), see 

Fig. 1. 

       For an FGM thin cylindrical shell made of two different constituent materials   and  , 

the volume fractions     and     can be written in the following form [3] 
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where the sum of the volume fractions of the constituent materials is equal to unity. 

       Young’s modulus  , Poisson’s ratio   and mass density   are expressed as [3] 
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3. SANDERS-KOITER THEORY OF CIRCULAR CYLINDRICAL SHELLS 

In Figure 1, an FGM circular cylindrical shell having radius  , length   and thickness   is 

represented; a cylindrical coordinate system (       ) is considered in order to take 

advantage from the axial symmetry of the structure, the origin   of the reference system is 

located at the centre of one end of the shell. Three displacement fields are represented in 

Fig. 1: longitudinal  (     ), circumferential  (     ) and radial  (     ). 

Elastic Strain Energy, Kinetic Energy, Virtual Work, Damping Forces 

The Sanders-Koiter nonlinear theory of circular cylindrical shells, which is an eight-order 

shell theory, is based on the Love’s “first approximation” [4]. The strain components 

(         ) at an arbitrary point of the shell are related to the middle surface strains 

(               ) and to the changes in the curvature and torsion (         ) of the middle 

surface of the shell by the following relationships [5] 

                                                                               ( ) 

where   is the distance of the arbitrary point of the cylindrical shell from the middle surface 

and (   ) are the longitudinal and angular coordinates of the shell, see Fig. 1. 

 

 

Figure 1. Geometry of the functionally graded cylindrical shell.  

(a) Complete shell; (b) cross-section of the shell surface. 
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       The middle surface strains and changes in curvature and torsion are given by [5] 
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where (     ) is the nondimensional longitudinal coordinate. 

       In the case of FGMs, the stresses are related to the strains as follows [6] 
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where  ( ) is the Young’s modulus and  ( ) is the Poisson’s ratio (    , plane stress). 

       The elastic strain energy    of a cylindrical shell is given by [6] 
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       The kinetic energy    of a cylindrical shell (rotary inertia effect is neglected) is given 

by [6] 
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where  ( ) is the mass density of the shell. 

       The virtual work   done by the external forces is written as [6] 

    ∫ ∫ (           )                          
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with (        ) as distributed forces in longitudinal, circumferential and radial direction. 

       The nonconservative damping forces are assumed to be of viscous type and are taken 

into account by using Rayleigh’s dissipation function (viscous damping coefficient  ) [6] 
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4. VIBRATION ANALYSIS 

In order to carry out the dynamic analysis of the shell a two-steps procedure is considered 

[8]: i) the Rayleigh-Ritz method is applied to the linearized formulation of the problem, in 

order to obtain an approximation of the eigenfunctions; ii) the displacement fields are re-

expanded using the approximate eigenfunctions, the Lagrange equations are considered in 

conjunction with the fully nonlinear expression of the potential energy, in order to obtain a 

set of nonlinear ordinary differential equations in modal coordinates. 

Linear Vibration Analysis: Discretization Approach 

In order to carry out a linear vibration analysis only the quadratic terms are retained in Eqn. 

(  ). A modal vibration, i.e. a synchronous motion, is obtained in the form [8] 

 (     )   (   ) ( )       (     )   (   ) ( )       (     )   (   ) ( )     (  ) 

where  (     )  (     )  (     ) are the displacement fields,  (   ),  (   )  (   ) 
represent the modal shape,  ( ) describes the time law, which is supposed to be the same 

for each displacement field (synchronous motion hypothesis). 

The components of the modal shape are expanded by means of a double mixed series: 

the periodicity of deformation in the circumferential direction suggests the use of harmonic 

functions (           ), while Chebyshev orthogonal polynomials are considered in the 

longitudinal direction   
 ( ) [8] 
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where   
 ( )    (    ),   is the number of longitudinal half-waves,   is the number 

of nodal diameters and ( ̃     ̃     ̃   ) are the generalized coordinates. 

Simply Supported – Simply Supported Boundary Conditions 

Simply supported – simply supported (S – S) boundary conditions are given by [4] 

                                                                                            (  ) 

       The previous conditions imply the following equations [8] 
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       The linear algebraic system given by Eqns. (  ) can be solved analytically in terms of 

the coefficients ( ̃     ̃     ̃     ̃     ̃     ̃     ̃     ̃   ), for   [   ]. 

Clamped – Clamped Boundary Conditions 

Clamped – clamped boundary conditions are given by [4] 

                                                                                                        (  ) 

       The previous conditions imply the following equations [8] 
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       The linear algebraic system given by Eqns. (  ) can be solved analytically in terms of 

the coefficients ( ̃     ̃     ̃     ̃     ̃     ̃     ̃     ̃   ), for   [   ]. 

Free – Free Boundary Conditions 

Free – free (F – F) boundary conditions are given by [4]  
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where forces and moments are given by [4] 
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       In this case, all the boundary conditions are “natural”, i.e., they involve essentially 

“forces”. In such a case, it is well known that the Ritz procedure can be applied even if the 

natural boundary conditions are not respected; therefore, here no boundary conditions are 

imposed for the free-free case. 

Linear Vibration Analysis: Rayleigh-Ritz Procedure 

The maximum number of variables needed for describing a generic vibration mode can be 

calculated by the following relation (               ), with (      

  ) as maximum degree of the Chebyshev polynomials and   as number of equations for 

the boundary conditions considered. 

       For a multi-mode analysis including different nodal diameters, the number of degrees 

of freedom of the system is computed by the relation (        (   )), where   

describes the maximum number of nodal diameters considered. 

       Equations (  ) are inserted in the expressions of    and    (Eqns. (     )). 

       Consider now the Rayleigh quotient  ( ̃)  
    

  
, where      is the maximum of the 

potential energy,    
    

  
,      is the maximum of the kinetic energy,   is the circular 

frequency of the harmonic motion,  ̃  [   ̃     ̃     ̃      ]
 
 is a vector containing all 

the unknowns. 

       After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue 

problem [8] 

(      ) ̃                                                                (  ) 

which furnishes natural frequencies and modes of vibration (eigenvalues and eigenvectors) 

of the system. 

       The modal shape is given by the Eqns. (  ), where coefficients ( ̃     ̃     ̃   ) are 

substituted with ( ̃   
( )
  ̃   

( )
  ̃   

( )
), which are the components of the j-th eigenvector  ̃  of 

the Eqn. (  ). 

       The vector function  ( )(   )  [ ( )(   )  ( )(   )  ( )(   )]
 
represents an 

approximation of the j-th mode of the original problem; the eigenfunctions obtained are 

normalized by imposing    [   [ ( )(   )]    [ ( )(   )]    [ ( )(   )]]   , 

see Ref. [8] for explanation. 

Nonlinear Vibration Analysis: Lagrange Equations 

In the nonlinear vibration analysis, the full expression of the elastic strain energy (  ), 
containing terms up to the fourth order (cubic nonlinearity), is considered. 



       The displacement fields  (     )  (     )  (     ) are then expanded by using the 

linear mode shapes  (   )  (   )  (   ) obtained in the previous section [8] 
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       These expansions respect exactly the boundary conditions except for the free case; the 

synchronicity is relaxed as for each mode and each component (     ) different time laws 

are allowed. 

       Mode shapes  ( )(   )  ( )(   )  ( )(   ) are known functions expressed in terms 

of polynomials and harmonic functions. 

       The Lagrange equations for forced vibrations are expressed in the following form [8] 
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where the modal coordinates are now ordered in a vector  ( )  [                 ],      

depends on the number of modes considered in the expansions (  ). 
       The generalized forces    are obtained by differentiation of the Rayleigh’s dissipation 

function   (  ) and the virtual work done by external forces   (  ), in the form [8] 
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       Expansions (  ) are inserted into strain energy (  ), kinetic energy (  ), virtual work 

of the external forces (  ) and damping forces (  ). 
       Using Lagrange Eqns. (  ), a set of nonlinear ordinary differential equations (ODE) is 

then obtained. 

5. NUMERICAL RESULTS 

In this section, the nonlinear vibrations of functionally graded circular cylindrical shells 

with different modal shape expansions, geometries and boundary conditions are analyzed. 

       Analyses are carried out on an FGM made of stainless steel and nickel. 

       FGM properties are graded in the thickness direction according to a volume fraction 

distribution, where   is the power-law exponent. 

       The material properties against coefficients of temperature at        are reported in 

Tab. 1 [2].
 



Table 1. Properties of stainless steel and nickel against coefficients of temperature. 
 

                        
            

                                                                 

                            

                                                              
                                                              
                                       
                                                                

 

Nonlinear Response Convergence Analysis 

The convergence analysis is carried out on a simply supported cylindrical shell excited with 

an harmonic force; the excitation frequency is close to the mode (   ). 
       The convergence is checked by adding suitable modes to the resonant one: 

asymmetric modes (       )               due to the presence both of quadratic 

and cubic nonlinearities; 

axisymmetric modes (   )           due to the quadratic nonlinearities. 

       The convergence analysis is then developed by introducing a different number of 

asymmetric and axisymmetric modes in the expansions of the displacement fields      , 

see Tab. 2. 

       The FGM cylindrical shell is excited by means of an external modally distributed radial 

force                      ; the amplitude of excitation is             
      

  and 

the frequency of excitation   is close to the mode (   ),       . 

       The external forcing      is normalized with respect to mass, acceleration and thickness; 

the damping ratio is equal to            . 

       The nonlinear amplitudes                of expansions (  ) refer to the displacement 

fields       of the mode (   ), respectively. 

       In Figure 2, a comparison of nonlinear amplitude-frequency curves of the cylindrical 

shell (                    ) with different nonlinear expansions is shown; the 

shell is very thin and long. 

       The nonlinear 6 dof model describes a wrong softening nonlinear behaviour, while the 

higher-order nonlinear expansions converge to a hardening nonlinear behaviour. 

       Higher- order models (dof from 9 to 18) behave quite similarly, this means that in this 

case the accuracy is acceptable for the 9 dof model. 

 
 

Table 2. Asymmetric and axisymmetric modes inserted in the different nonlinear models. 
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Figure 2. Comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(h R        L R     p   ). “∎”, 6 dof model; “  ”, 9 dof model; 

“⋯”, 12 dof model; “ ∙  ”, 15 dof model; “ ”, 18 dof model. 

     

 

 

 

Figure 3. Comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(h R        L R     p   ). “∎”, 6 dof model; “  ”, 9 dof model;  

“⋯”, 12 dof model; “ ∙  ”, 15 dof model; “ ”, 18 dof model. 
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       In Figure 3, a comparison of nonlinear amplitude-frequency curves of the cylindrical 

shell (                    ) with different nonlinear expansions is shown; the 

shell is moderately thick and long. 

       The nonlinear 6 dof model describes a wrong slightly hardening nonlinear behaviour, 

the higher-order nonlinear expansions converge to a softening nonlinear behaviour. 

       Also in this case, the models having 9-18 dof behave quite similarly. 

       In Figure 4, a comparison of nonlinear amplitude-frequency curves of the cylindrical 

shell (                    ) with different nonlinear expansions is shown: the 

nonlinear 6 dof model describes a wrong softening nonlinear behaviour, the higher-order 

nonlinear expansions converge to a hardening nonlinear behaviour. 

       The shell is slightly thicker than that of Fig. 3, but now the behaviour is hardening. 

       From these convergence analyses, one can say that the 9 dof model gives satisfactory 

results with the minimal computational effort; therefore, in the following, the 9 dof model 

will be used. 

       Considering a generic resonant mode (   ), the expansion is: 

 modes (   ) (   ) (   ) in the longitudinal displacement field   

 modes (   ) (    ) (     ) in the circumferential displacement field   

 modes (   ) (   ) (   ) in the radial displacement field   

       After selecting such modes, each expansion present in the Eqns. (  ) is reduced to a 

three-terms modal expansion; the resulting nonlinear system has   dof. 

       It is to note that the present convergence analysis confirms the results available in the 

literature: in the nonlinear field, axisymmetric modes play a role of primary importance. 

 

 

 

Figure 4. Comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(h R        L R     p   ). “∎”, 6 dof model; “  ”, 9 dof model;  

“⋯”, 12 dof model; “ ∙  ”, 15 dof model; “ ”, 18 dof model. 
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Effect of the Boundary Conditions on the Nonlinear Response 

In the present section, the effect of the boundary conditions on the natural frequencies and 

nonlinear responses of the shells is analyzed. Simply supported – simply supported (S – S), 

clamped – clamped (C – C), clamped – simply supported (C – S), clamped – free (C – F), 

simply supported – free (S – F) and free – free (F – F) boundary conditions are considered. 

       In Figure 5, the natural frequencies of the FGM shell (                    ) 
under various boundary conditions are shown. 

       For all the six boundary conditions, the frequencies initially decrease and then increase 

as the circumferential wavenumber   increases (number of longitudinal half-waves    ). 

       For all the boundary conditions, the minimum frequency occurs in between     and 

    (note that the minimum is also influenced by the ratios   ⁄  and   ⁄ ); the natural 

frequencies converge for    , i.e., the effect of the boundary conditions on the natural 

frequencies is prominent for low circumferential wavenumbers   [   ] and disappears for 

higher circumferential wavenumbers, when the corresponding six natural frequency curves 

merge into a single curve. 

       In particular, for   [   ], the value of the natural frequency for the F – F shell is the 

highest one, followed by the C – F, C – C, S – F, C – S and S – S values, in that order. 

 

 

 

Figure 5. Variation of natural frequencies of the shell (                    ). 
“∎∎”, Free – Free; “ ”, Clamped – Free; “ ∙  ”, Clamped – Clamped; 

“⋯”, Simply – Free; “  ”, Clamped – Simply; “∎”, Simply – Simply. 
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Figure 6. Comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(h R        L R     p   ). “∎”, Simply – Simply; “ ∙  ”, Clamped – Clamped; 

“∎∎”, Free – Free; “  ”, Clamped – Simply; “ ”, Clamped – Free; “⋯”, Simply – Free. 

 
       In Figure 6, a comparison of nonlinear amplitude-frequency curves of the cylindrical 

shell (                    ) for the driven mode (   ) is shown; six different 

boundary conditions are analyzed: the S – S and C – S behave similarly, the S – F, C – C 

and C – F behave similarly, the F – F gives the strongest nonlinearity. 

6. CONCLUSIONS 

In this paper, the nonlinear vibrations of FGM circular cylindrical shells are analyzed; the 

Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case 

of finite amplitude of vibration. 

       The functionally graded material is made of a uniform distribution of stainless steel and 

nickel, and the material properties are graded in the thickness direction, according to a 

volume fraction power-law distribution. 

       Numerical analyses are carried out in order to characterize the nonlinear response when 

the shell is subjected to a harmonic external load. 

       A convergence analysis is carried out by introducing in longitudinal, circumferential 

and radial displacement fields a different number of asymmetric and axisymmetric modes; 

the fundamental role of the axisymmetric modes is confirmed, and the role of the higher-

order asymmetric modes is clarified in order to obtain the actual character of nonlinearity. 

       The effect of the boundary conditions on the natural frequencies and nonlinear 

responses of the shells is analyzed. The effect of the boundary conditions on the natural 

frequencies is prominent for the low circumferential wave numbers, and disappears for high 

circumferential wave numbers. The boundary conditions strongly influence the nonlinear 

character of the shell response. 
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