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Smoking has been recognized as one agent that may decrease the effectiveness of the gustatory system to detect 

salt (Na+) in foodstuffs. As a consequence, smokers tend to ingest saltier foods than nonsmokers. An increase in 

sodium intake has been associated with hypertension: thus, smoking may concur to the development of 

hypertension by impairing salt perception. Understanding the mechanisms underlying the action of smoking on 

salty taste represents the premise to design proper intervention aiming at restoring normal sensitivity to sodium 

in smokers. I addressed this issue by studying the effect of nicotine, one of the main components of tobacco 

smoke, on the sodium detection mechanism in rat taste cells. Electrophysiological analysis of these cells revealed 

that long-term exposure to nicotine reduced the ion current mediated by the Epithelial Sodium Channel (ENaC), 

one of the sodium receptors occurring in taste cells. As to the molecular mechanism responsible for such a 

current decrease, data were consistent with a reduction in the number of functional ENaCs in the membrane of 

taste cells. Therefore, nicotine reduces the capability of taste cells to respond to sodium ions. This might explain, 

at least in part, why smokers tend to use salt more abundantly when flavoring their food: they are just boosting 

the sensory information to be relayed to the brain. 
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Salt taste perception and smoking 

Taste reception is a fundamental sensory activity for 

proper selection of food and beverages [1]. Among the several 

chemicals recognized by the taste system, sodium ions (Na+) 

are of particular relevance. Na+ represents the main cation of 

extracellular fluid and is a key factor in essential 

physiological processes undergoing in our body, from the 

generation and conduction of nerve impulses to the 

regulation of cell tonicity. Taste helps us to detect this 

mineral in foodstuffs: Na+ elicits a specific sensation called 

salty taste that guides the ingestion of this cation (sodium 

intake) [2, 3]. 

Man evolved in low-sodium habitat and is well adapted to 

handle low salt availability. In modern life, however, salt 

(NaCl) is easily accessible and this has led to consumption 

beyond the physiological needs. Na+ affects the extracellular 

fluid volume and therefore blood pressure: indeed, increase 

dietary sodium intake has been characterized as an important 

contributor to hypertension [4-6]. Hypertension is a major risk 

factor for many cardiovascular diseases including stroke, 

coronary heart disease, cardiac failure, and endstage renal 

disease. Recommendations to prevent the development of 

hypertension include a reduced sodium intake and avoiding 
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those factors, such as smoking, that may interfere with salt 

perception by taste system.  

Smoking affects salt taste perception by raising the 

threshold for recognition and by reducing the perceived 

intensity at supra-threshold concentrations [7-12]. This means 

that smokers would consume more salt because they cannot 

taste it as well as nonsmokers, all things being equal. Indeed, 

smokers tend to ingest saltier foods than nonsmokers [13-17], 

and this expose them to the risk of developing hypertension. 

The actual amount of sodium ions ingested by smokers can 

be higher than 4 g (200 mmol) a day [17], that is, twice as 

much as the amount of sodium in a medium sodium diet 

(~100 mmol) [18]. An increase in sodium intake from ~1.5 g 

to ~3 g a day has been shown to induce an increase in the 

systolic blood pressure of ~8 mmHg [18, 19]. Thus, smoking 

may concur to aggravate hypertension by acting on salt 

perception, that is, by reducing the effectiveness of the taste 

system to detect salt. 

Nicotine action on sodium receptors in rat taste cells 

The mechanisms underlying the action of smoking on salt 

taste perception are currently unknown. I have addressed this 

issue in my recent work [20] by testing the following 

hypothesis: nicotine acts at the level of taste cells by 

disrupting the sensory mechanism involved in sodium 

detection. I put forward this working hypothesis on the basis 

of the following considerations. 

Nicotine, one of the main components of tobacco smoke, 

is a pharmacologically active alkaloid that affects several 

tissues [21], including the peripheral sensory organs of taste, 

the taste buds [22-26]. Taste buds are made of taste cells, which 

detect chemicals dissolved in the saliva (including Na+), 

transform them into electric impulses, and then relay sensory 

information to the brain [3, 27]. I therefore reasoned that 

impairment (worsening) of salt taste perception induced by 

smoking could be explained, at least in part, in terms of 

nicotine affecting the mechanism involved in the detection of 

Na+ in taste cells. 

Increases in the sodium concentration in the oral cavity are 

thought to be transduced through a direct entry of Na+ into 

taste cells via open channels located in their apical membrane 

bathed by saliva [27, 28]. Among these, the Epithelial Na 

Channel (ENaC) represents one of the best characterized 

“sodium receptor” occurring in mammalian taste cells [29-31]. 

Thus, I hypothesized that nicotine could disrupt the 

functioning of this channel.  

Active ENaCs can be monitored in single cell by 

analyzing the so-called response to amiloride with the 

electrophysiological technique of patch-clamp recording [32]. 

Amiloride is a diuretic drug that blocks ENaC in the 

sub-micromolar concentration range [27]. If a cell express 

functional ENaCs, application of amiloride to that cell causes 

a reduction in the ion current flowing through the membrane 

by shutting down these channels: this current reduction is 

referred to as the response to amiloride. I therefore tested 

whether nicotine affected the response to amiloride in taste 

cells of the rat, an animal model widely used in taste 

research. 

To reproduce long term exposure to nicotine as found in 

smokers, drug was administered to rats via drinking water 
[25], allowing a continuous exposure [33] that resembles the 

one observed in habitual smokers [34, 35]. The oral 

administration route is also similar to the “chewing tobacco” 

or the “nicotine gum” route of exposure in humans [10, 36, 37].  

The results of my research indicated that nicotine 

treatment exerted a clear-cut effect on taste cells by causing a 

significant decrease in the response to amiloride. This 

reduction could be explained in terms of different 

mechanisms. A reduced sensitivity to amiloride (expressed 

by the inhibition constant, Ki) would result in a reduced 

amplitude of the response to a given amiloride concentration. 

Similarly, a change in the ion selectivity (PNa/PK) of ENaCs 

in favor of potassium ions would cause a reduction in the 

response amplitude at any membrane potential. However, I 

found that both Ki and PNa/PK did not change after nicotine 

treatment. 

It is well established that sensitivity of ENaC to amiloride 

inhibition depends on the subunit composition of the channel 

(which consists of three different subunits: , , and  [38]). 

For example, variations in the expression level of the  or  

subunit would have a profound impact on Ki [39]. Thus, my 

electrophysiological results indicated that chronic exposure 

to nicotine likely did not affect the subunit composition of 

ENaCs in taste cells. 

Covalent modifications of the channel protein (such as 

phosphorylation by protein kinase A or ADP ribosylation) 

may induce changes in ENaC ion selectivity [40, 41]. My 

results suggested that long-term exposure to nicotine unlikely 

induced covalent modification affecting PNa/PK ratio. 

Assuming that the single-channel conductance of ENaC did 

not vary under nicotine treatment (as indicated by unchanged 

values for Ki and PNa/PK) [39, 40], then data could be interpreted 

on the basis of a reduction in the “activity” of the channels. 

Channel activity is defined as the number of functional 

channels (NENaC) times the channel open probability (PO) [42]. 

Of course, a decrease in channel activity could be due to a 
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reduction in NENaC and/or to a decrease in PO. Nonetheless, a 

reduced activity of functional ENaCs would produce a smaller 

electrical signal when taste cells are stimulated by increasing 

the external sodium concentration. Therefore, a reduced 

activity of ENaCs would be reflected in taste cells being less 

sensitive to sodium variations in the saliva. 

How nicotine affects the activity of ENaCs remains to be 

elucidated. However, some clues for the possible mechanism 

have been provided by other electrophysiological 

observations. I found that that membrane capacitance (Cm) 

was about 25% larger in nicotine-treated cells than in control 

ones. This effect was specific, because Cm did not change in 

taste cells lacking ENaCs. Cm is directly related to the actual 

extension of the membrane lipid bilayer, and therefore Cm 

changes could reflect heavy membrane remodeling. Variation 

in the rate of endocytosis and exocytosis may have a dramatic 

effect on cell membrane extension. ENaC is subjected to a 

continuous turnover in other cell types. Typically, the total 

cellular pool of ENaC turns over rapidly, with a half-life of 

about 40-120 min in cultured cells [43]. The density of 

functional ENaCs on the cell membrane is therefore the result 

of the equilibrium between channel exocytosis and 

endocytosis [43]. Nicotine induces endocytosis of ENaCs in 

human nasal epithelium cells in culture with concomitant 

reduction in membrane capacitance [44]. Thus my findings 

suggest that nicotine could interfere with regular ENaC 

membrane trafficking in taste cells, although at the moment it 

is difficult to reconcile an increase in ENaC endocytosis 

(which would explain the reduction in the response to 

amiloride) with an increase in membrane surface area of taste 

cells (increased Cm). 

Restoring sodium taste sensitivity in smokers? 

Findings on rat taste cells indicate that chronic 

administration of nicotine inhibits the activity of ENaC, 

which represents the “sodium receptor” [30]. Therefore, 

nicotine impairs the first molecular step in sodium detection. 

The biological consequence of this effect would be a reduced 

inflow of sodium ions into taste cells when sodium 

concentration increases in the saliva (as it occurs during 

chewing of salty food). Thus, taste cells would produce 

smaller biological signals in response to salt stimulation and 

this would be translated in reduced sensory input to nerve 

fibers. In short, the reduced capability of taste cells to detect 

sodium ions would impair the sensory analysis performed by 

taste system on salty food. 

It is conceivable that a similar mechanism could explain, 

at least in part, the reduced taste sensitivity to sodium ions 

(salty taste) in smokers. Both amiloride-sensitive 

(ENaC-mediated) and amiloride-insenstive components have 

been described for sodium taste in humans [45-53], although a 

great variability exists among individuals [52]. ENaC ,  and 

 subunits occur in human fungiform papillae [54, 55]. On the 

basis of these evidences, it is tempting to speculate that the 

effect of nicotine on ENaC observed in rat taste cells could 

also take place in those individuals expressing the 

amiloride-sensitive sodium pathway. As a consequence, 

smokers would tend to add more salt in foods to compensate 

for a sodium detection mechanism partially disrupted by 

nicotine. 

In conditions of reduced number of functional ENaCs, a 

simple intervention to restore (increase) sodium sensitivity of 

taste cells exposed to nicotine would be to enhance the 

activity of residual ENaCs. Several substances are known to 

act as positive modulators for these channels. For example, 

the amino acids arginine and lysine enhance currents through 

human ENaC expressed in Xenopus oocytes and enhance salt 

taste perception in human subjects [55]. Therefore, adding a 

positive modulator of ENaCs to table salt could be a possible 

remedy to correct the sensory deficit in salt perception 

caused by nicotine. 
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