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Small and large scale segmental motion in
polymers: estimating cooperativity length by
ordinary relaxation experiments
Marco Pieruccini,a* Andrea Alessandrini,a,b Simone Sturniolo,c,d

Maurizio Cortid and Attilio Rigamontid

Abstract

We derive a suitable expression for estimating the size of the cooperatively rearranging regions (CRRs) in supercooled polymer
melts by fitting data worked out by ordinary relaxation experiments carried out in isothermal conditions. As an example, the
average CRR size in poly(n-butyl methacrylate) in proximity to the glass transition temperature is derived from a stress relaxation
experiment performed by means of an atomic force microscopy setup. Good agreement is found with results in the literature
derived from measurements of temperature fluctuations (the so-called Donth method). The temperature dependence of the
CRR size is explored for poly(butadiene); in this case the segmental relaxation function is derived through a novel method for
the analysis of the efficiency with which free induction decay echoes are refocused in 1H NMR experiments. It is found that the
CRR size increases upon cooling. The results derived from the analysis of the NMR data are found to be in satisfactory agreement
with those worked out from broadband dielectric spectroscopy data in the literature.
© 2015 Society of Chemical Industry
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INTRODUCTION
Many properties of polymer based materials are related to seg-
mental relaxations (also referred to as the 𝛼-process). For example,
mechanical performances under different conditions, or the abil-
ity to support ion diffusion, depend on the dynamical features of
these motions. The presence of configurational constraints such as
crosslinks or chain pinnings to crystal surfaces, as well as the deple-
tion of these constraints (e.g. when weakly interacting low molec-
ular weight components are dispersed in the system), may have
an influence in this respect, in particular with regard to the calori-
metric glass transition temperature T g. The cooperative nature of
segmental motions and the characteristic length associated with
them reflect these peculiarities; it may thus be important to esti-
mate this length when customary methods for the analysis of these
materials are used.

The basic idea of cooperative motion was given by Adam and
Gibbs1 some decades ago through the introduction of the concept
of cooperatively rearranging region (CRR). Later, significant and
fruitful advancements have been made by Donth2 with the aim
of elucidating the mechanisms underlying the phenomenon of
the glass transition. One of his most popular results concerns the
estimate of the characteristic cooperativity length close to T g by
the direct probing of temperature fluctuations in the CRRs.3

Donth’s approach has been used to estimate the CRR size
and its temperature dependence, from the combined analysis of
scanning temperature heat spectroscopy and isothermal dielec-
tric spectroscopy.4 It was found that the CRR size increases on
approaching T g from above, consistent with the ideas put forward
by Adam and Gibbs.

The aim of this contribution is to show how the CRR size can
be estimated also by a different analysis of the loss component
of the relaxation patterns, resolved in either time or frequency at
constant temperature. Broadband dielectric spectra or stress data,
for instance, represent cases where the application of this method
is particularly suited, since they are usually recorded in isothermal
conditions.

After a short outline of the theory at the basis of the method,
the analysis of a stress relaxation experiment on poly(n-butyl
methacrylate) (PnBMA) is carried out as an example. We perform
these measurements by means of an AFM setup. In fact, AFM stud-
ies exploiting the force spectroscopy capability of this technique
are becoming very popular in the study of polymeric materials.5,6

Moreover, an increasing amount of work concentrates on the time
or frequency domain of force spectroscopy in order to measure
relaxation properties of samples.7 A great advantage of AFM for
this kind of experiment lies also in its possibility of mapping the
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lateral mechanical heterogeneity of a sample down to nanome-
tre scale resolution. The results obtained by this technique will
be shown to compare very well with independent measurements
on PnBMA analysed following Donth’s approach. Estimates of the
cooperativity length from the isothermal mechanical response of
semicrystalline poly(ethylene terephthalate) (PET) performed with
the present scheme have already been shown8 to be consistent
with the results reported by Hamonic et al.4; this further supports
the proposed approach. Finally, after a novel method for the analy-
sis of 1H NMR data is outlined, the temperature dependence of the
CRR size in poly(butadiene) (PB) is estimated and a comparison is
made with the results worked out from broadband dielectric mea-
surements. Also in this case the agreement is good.

COOPERATIVE MOTION: OUTLINE OF THE
THEORY
Configurational rearrangement in an undercooled polymer melt is
assumed to take place in two consecutive steps. Let us consider ini-
tially a relatively small number of contiguous monomers moving
about within a limited region of the configurational space. Then,
after a suitable energy fluctuation, this group reaches an activated
(mobility) state from which a subsequent larger scale rearrange-
ment, involving a larger number of monomers, may occur. We refer
to this ‘fine structure’ of the cooperative process as small scale and
large scale cooperativities.

The description of the rearrangement statistics of an ensemble
of such small sets of monomers has been the subject of a previous
paper.9 The main issues are that (i) all these small scale rearrang-
ing sets are formed by the same average number z of monomers,
(ii) the energy threshold 𝜁 (per monomer) for a rearrangement
depends on the actual configuration of the z monomers and (iii)
the average rearrangement chemical potential Δ𝜇 of the mobile
component of the whole system (i.e. all of the activated monomers,
irrespective of the energy threshold they jumped above) is station-
ary. Under these conditions it is possible to derive the distribution
p(𝜁 ) for the number of monomers whose energy had to grow larger
than 𝜁 to reach the mobility state at temperature T . It is found that

p (𝜁 ) ≈ e−[w(𝜁)⟨E⟩𝜁+𝜆Δ𝜇(𝜁)]∕kBT (1)

where w(𝜁 ) is the probability that a monomer reaches the mobility
state after gaining an energy E ≥ 𝜁 , ⟨E⟩𝜁 is the average energy of
the states with E ≥ 𝜁 calculated accounting for their multiplicity,
kBT is the thermal energy,

Δ𝜇 (𝜁 ) ≡ −kBT ln w (2)

and 𝜆 is a Lagrange multiplier associated with the condition

Δ𝜇 ≡ ∫
∞

0
d𝜁p (𝜁 ) Δ𝜇 (𝜁 ) = const. (3)

The probability w is expressed in terms of the function

Z𝜁,n ≡ ∫
∞

𝜁

d𝜀𝜀n e−𝜀∕kBT (4)

as

w =
Z𝜁,n
Z0,n

(5)

with n an adjustable exponent that, upon data fitting, is always
found to be a non-decreasing function of z.

After a set of z monomers has reached the activated state, it
delivers back to the heat bath the energy z𝜁 just absorbed. If

w (𝜁 ) < e−sc∕kB (6)

with sc the configurational entropy, then this energy transfer
occurs through the configurational degrees of freedom; otherwise
the energy is forced to find other paths to regress. The above
condition (Eqn (6)) states that the probability that a monomer is in
the activated state is less than the probability of a configurational,
low energy state.

The configurational entropy sc can be expressed in terms of the
specific heat step Δcp at T g and of the Kauzmann temperature T K

as
sc = Δcp ln

(
T
TK

)
(7)

so the total number of rearranging monomers is

N𝛼 = z

(
1 + 𝜅𝜁

Tsc

)
(8)

where

𝜅 =
[
∫

∞

0
d𝜁 p

]−1

∫
∞

𝜁0

d𝜁 p

is the fraction of small scale regions for which Eqn (6) is verified
(𝜁0 being the value of 𝜁 for which the equality holds in that
equation) and

𝜁 =
[
∫

∞

𝜁0

d𝜁 p

]−1

∫
∞

𝜁0

d𝜁 𝜁 p

is the average energy associated with each of its monomers.

EXPERIMENTAL
Materials
PnBMA with average molecular weight 337 000 g mol−1 was pur-
chased from Sigma-Aldrich, St. Louis, MO, USA. Samples of about 1
mm thickness were obtained from a saturated solution in toluene
(150 mg mL−1) after evaporation at a temperature of 313 K under
vacuum for 1 week. According to the literature, the nominal glass
transition temperature T g is ca 298 K.

PB was supplied by Polymer Standards Service, Mainz, and was
composed of poly(1,4-butadiene) with a nominal average molec-
ular weight of ca 100 000 g mol−1, with minimal dispersity. Its
glass transition temperature was around 170 K. The sample was
transparent and extremely viscous at room temperature. It was
always stored at a temperature of ca 276 K; when measure-
ments had to be performed days apart, fresh samples were always
used. At relatively high temperatures, extremely sharp liquid-like
line-shapes were observed, corresponding to the long decay times
of the free induction decay (FID) shown below. All this guarantees
that any crystalline fraction, if present at all, can only appear in
traces.

Methods
AFM force relaxation experiments were performed with a Bio-
scope microscope (Bruker Instruments) coupled to a Nanoscope
IIIA controller. The temperature was controlled with a heat bath
coupled to the sample support and it was continuously monitored
with a digital thermometer equipped with a small K-thermocouple
probe. Relaxation curves were obtained by applying a fast ramp
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to the z-movement of the piezo-element (10 μm s−1) to increase
the force from zero to a set-point value (in the 𝜇N range); the
movement of the piezo-element was then stopped (force raising
time ca 30 ms). The relaxation of the force with time, as mea-
sured by the cantilever deflection, was then acquired by a dig-
ital oscilloscope. The relaxation step was not under a feedback
control of the z-piezo movements. Accordingly, during the relax-
ation creep, even if the voltage applied to the piezo was con-
stant, movements of the piezo in the vertical direction could be
present. This behaviour was verified by performing relaxation tests
on rigid surfaces (compared to the cantilever spring constant) such
as mica or silicon oxide. We verified that the creep movement
of the piezo was very small with respect to the overall sample
deformation (less than 5%). Nevertheless, the creep movements
measured on rigid samples in each experimental condition were
subtracted from the force relaxation curves obtained. The can-
tilever used for relaxation experiments had a spring constant of
40 N m−1 (measured by the thermal method) and the tip apex
(silicon) was modified by focused ion beam in order to obtain
an almost spherical interacting region with a curvature radius
of 2/3 μm. This tip assured stability during the measurements, a
well-defined interacting geometry with the sample and an aver-
aged interaction area large enough to avoid plastic deformation.
All the reported measurements were obtained with the sample
immersed in distilled water to avoid adhesion between the tip and
the sample. The absence of adhesion was verified by AFM force
curves.

The NMR experiments were carried out using a TecMag Apollo
Double Resonance Spectrometer in the working range 5–450 MHz
and a minimum digitization time resolution of 300 ns; a Bruker
BM-10 variable field electromagnet was used. The measurement
chamber was an Oxford CF1200 cryostat operating in the tem-
perature range between 4 and 370 K. Systematic measurements
were performed at three different values of the static magnetic
field, respectively around 0.5 T, 1 T and 1.5 T. The intensity of
the RF pulse used was 30 G (𝜋/2 pulse duration 2 μs). Since the
deadtime of the receiver is almost 5 μs, simple acquisition of the
FID can fail when the decay of the signal is very fast and a sig-
nificant part of it is lost. To avoid this problem, the FID signal
was refocused using the magic sandwich echo (MSE) sequence.10

The sequence used was the ‘non-ideal’ version with a train of 𝜋/2
pulses replacing the long bursts described by Rhim et al.,10 with
the aim of avoiding problems due to instrumental phase switch-
ing times between different pulses. From a mathematical point
of view this sequence is substantially equivalent to the original
one. A phase switching time of 3 μs was used (doubled during
the groups of four pulses along the x axis constituting the core
of the sequence), and the total length of the MSE sequence was
96 μs.

STRESS RELAXATION ANALYSIS
In this section, the analysis of a stress relaxation experiment on a
sample of PnBMA is illustrated. This material was chosen because it
is amorphous and its glass transition is at T g ≈ 298 K, so that a stress
relaxation experiment by AFM can be performed near ambient
temperature. Moreover, Donth’s method has already been used to
estimate the characteristic length of this material at T g, yielding a
reference value of 𝜉 ≈ 1.0/1.3 nm.11

Figure 1 shows the force relaxation curves at three representa-
tive temperatures. The curves have been aligned to the same ini-
tial force value (about 2.3 𝜇N). All of them, as well as the others,

Figure 1. Force relaxation curves of PnBMA at three selected temperatures
and the corresponding fittings (dashed lines) with a stretched exponential
(Eqn (9)). The starting force value for relaxation is around 2.3 nN. The
inset is a VFT plot of the average relaxation time 𝜏 , from which the Vogel
temperature TV can be estimated.

have been fitted with a stretched exponential function (the Kol-
rausch−Williams−Watts relaxation function):

𝜑KWW (t) ∝ e
−
(

t
𝜏KWW

)𝛽
(9)

where 𝛽 is the stretching exponent (related to the width of the
frequency profile of the relaxation) and 𝜏KWW is a characteristic
decay parameter from which the average relaxation time 𝜏 can be
calculated:

𝜏 =
𝜏KWW

𝛽
Γ
(
𝛽−1

)
(10)

The temperature dependence of the latter quantity, reported in
the inset of Fig. 1, has been fitted with a Vogel− Fulker− Tammann
(VFT) function:

𝜏 = 𝜏∞e
A TV

T−TV (11)

where 𝜏∞ has been set to a value of 10−14 s in accordance with a
wealth of relaxation data (see reference 12 and references therein),
A is the fragility strength parameter and T V is the Vogel temper-
ature. In order to estimate the configurational entropy sc, the T V

value for T K in Eqn (7) suffices, so just the Vogel temperature will
be considered throughout.

The fitting procedure yielded T V ≈ 234 K. The step of the specific
heat Δcp at T g was estimated from the calorimetric data of Kahle
et al.11 and its ratio with the gas constant R is Δcp/R≈ 3.33.

The stretching exponent 𝛽 was found to decrease on approach-
ing T g, consistent with an increasing effect of the dynamic hetero-
geneity as cooperativity increased.

In order to estimate the parameters relevant to the evaluation of
the CRR size, the relaxation function must be fitted with the fol-
lowing one, derived in the framework of the statistical mechanical
model outlined above:9

𝜑 (t) = ∫
∞

0
d𝜁 p (𝜁 ) e−t∕𝜏(𝜁) (12)

where
𝜏 (𝜁 ) ≡ 𝜏∗ez Δ𝜇(𝜁)∕kBT (13)
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is the actual relaxation time of the z monomers in a configuration
characterized by a barrier 𝜁 and 𝜏* is a characteristic time scale of
the attempts for crossing this barrier.

The analysis of the relaxation curve at T ≈ 298.6 K, i.e. the closest
one to T g, yields z = 2.8, 𝜁 = 48.7 kJ mol−1 and 𝜅 = 0.5, so that
N𝛼 ≈ 43 according to Eqn (8). Since the density of PnBMA is 𝜌≈ 1.07
g cm−3, we find 3

√
(N𝛼M𝜌NA)≈ 1.3 nm, where M is the molecular

weight of a monomeric unit and NA is the Avogadro number. This
result is in good agreement with the estimates of Donth3, although
it has been derived in a completely different way.

The amplitude of the CRR temperature fluctuation associated
with the rearrangement can be estimated from the relation 𝛿S𝛿T =
kBT [13]: by roughly assuming 𝛿S𝛿T ≈ 𝛿S · 𝛿T we find in this case
𝛿T ≈ 8.5 K. More refined estimates of this quantity can be done,
providing a value 𝛿T ≈ 5.1 K which is much closer to the literature
data (i.e. 𝛿T ≈ 5.5/6.5 K on cooling, 𝛿T ≈ 5.5/7.5 K on heating
in Donth3). The details, however, are not central to the present
contribution and are deferred to a forthcoming paper (Pieruccini
M and Alessandrini A, unpublished).

1H NMR ANALYSIS
Isothermal patterns obtained by mechanical or broadband
dielectric spectroscopy can be conveniently analysed in terms of
Havriliak−Negami (HN) distributions in order to characterize the
segmental relaxation properly. The present section illustrates the
trackway through which this aim can be accomplished also by
means of a suitable analysis of 1H NMR data.

Theoretical background
We consider systems whose evolution, in the presence of a strong
static magnetic field B0, is determined by a Hamiltonian where the
spin pair interaction dominates, i.e.

Hdip = bP2

(−→
I
−→
J − 3IzJz

)
(14)

where
−→
I and

−→
J are two 1∕2-spin operators associated with a pair

of protons a distance d apart and P2 ≡ (3 cos2𝛼 − 1)/2 is the second
Legendre polynomial, with 𝛼 the angle between the ideal segment
joining the two protons and the direction of B0; b is related to the
distance d and to the gyromagnetic ratio 𝛾 by

b = 3𝛾2ℏ

4d3

𝜇0

4𝜋
(15)

The signal collected in a direction perpendicular to B0 after a
𝜋/2 pulse (i.e. the FID, or transverse relaxation function) carries
information on the motion of the ensemble of spin pairs and, in
particular, on the statistical evolution of the angle 𝛼 of each pair,
given the interaction Hamiltonian of Eqn (14). Due to the deadtime
of the receiver, the FID signal has to be refocused for an analysis.
This is achieved with an MSE pulse sequence, after which an FID
with the same shape as the original one refocuses (see for example
reference 14 and references therein). Due to molecular motions,
however, the amplitude of the refocused FID may be lower than
the original;15 this circumstance will be central for the analysis
below.

The transverse relaxation function may be expressed by the
functional integral

G (t) ≡ ℜ∫ 𝛿𝜓 (𝜏) p[𝜓 (𝜏)]e
i∫

t

0
d𝜏 bP2 [𝛼 (𝜏)]

(16)

where p[𝜓 (𝜏)] is the probability associated with an angular tra-
jectory of a spin pair during the time 𝜏 (𝜓 ≡ (𝛼, 𝜑), with 𝜑 the
azimuthal angle in a plane perpendicular to B0). Statistically inde-
pendent motions affecting the orientation dynamics can be intro-
duced by simple superposition, given the linearity in p(𝜓 ). This is
particularly useful when dealing with broad relaxation rate distri-
butions, such as in the 𝛼-process.

In order to treat the effect of motion on the FID in the case of
polymers, reference is usually made to the chain-like structure of
these molecules, and pre-averaging over both fast segmental and
𝛽 motions is done (or assumed) on deriving suitable analytical
expressions for the discussion of experimental data.15 – 17 In the
present case, pre-averaging from just 𝛽 motion is assumed, and
an expression recently derived for the FID will be used for data
analysis.18 This expression is appropriate for a system consisting
of an ensemble of spin pairs undergoing rotational diffusion, dif-
ferent pairs being considered as not mutually interacting. Imple-
menting this model for the data analysis of a polymeric system,
where multiple spin interactions may be important, can lead to
poor estimates of the diffusion coefficient worked out from direct
FID fittings; however, as shown below, this approximation is found
not to appear as relevant on fitting the refocusing efficiency 𝜂, i.e.
the ratio of the FID echo amplitude to that of the original one.

Details on the derivation of the relaxation function can be found
in Sturniolo and Pieruccini;18 for the present purposes it suffices to
report the final result:

Gn ≡ ℜ

{
R−1

n

n∑
k=1

res
[

W, 𝜔k

]
e−i𝜔k t

}
(17)

where Rn ≡
n∑

k=1

res
[

W, 𝜔k

]
, with W ≡W(𝜔, D, b) a function of

the complex angular frequency 𝜔, the rotational diffusion (real)
coefficient D and the coupling constant b. This function can be
represented as a continued fraction; n indicates the order of its
rational approximation. The n residues of this truncated expansion
are calculated in the respective poles𝜔k. From the physical point of
view, approximating to order n means that the evolution process
of the whole system is described through a representative finite
subset of n spin pairs; Gn coincides with the exact solution of
the problem up to a certain limiting time tn; on increasing n, tn

increases. In the present conditions (see below), no more than
seven poles were found to suffice for a satisfactory analysis.

Note that

Gn

(
t1 + t2

)
= ℜ

{
R−1

n

n∑
k=1

res
[

W, 𝜔k

]
e−i𝜔k(t1+t2)

}
(18)

Therefore, while the coefficients res[W , 𝜔k] describe the evolution
of the representative subset starting from an initial condition
(t = 0) where the angular distribution of the spin pair ensemble is
a 𝛿 function, the coefficients res[W , 𝜔k] exp(−i𝜔k t1) describe the
evolution for t ≥ t1 from an ‘initial’ condition (i.e. at t = t1) where
this angular distribution has already broadened to some extent.

MSE allows us to refocus an echo of a dipolar dephased FID
with excellent fidelity even long after its decay (more than 100
μs). If the coupling strength in the system remains constant during
the whole experiment, then the refocusing will be complete and
the ratio 𝜂 between the intensity of refocused FID to that of the
original one is unity (𝜂 = 1). This condition may break down due to
molecular motions, causing the decrease of the echo amplitude.

Polym Int 2015; 64: 1506–1512 © 2015 Society of Chemical Industry wileyonlinelibrary.com/journal/pi
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Figure 2. MSE refocused FIDs in PB at different temperatures in a static
field corresponding to a Larmor frequency of 22 MHz (symbols) and their
respective fittings according to Eqn (17) (solid lines) for n= 20. The dotted
line for the T = 148 K FID is just a guide for the eye.

As a function of the extent of molecular motions, 𝜂 is close to 1
for frequencies that are either very low or very high compared to
the order of magnitude of the dipolar coupling constant, being
drastically reduced when the two frequencies are similar.19

An estimate of the MSE refocusing efficiency may be obtained
following the evolution of the representative subset when a pulse
sequence {𝜏+ | 4𝜏− | 𝜏+} is imposed, such that in the intermediate
interval the Hamiltonian governing the evolution of the system is
multiplied by a factor −1/2, providing an effective time reversal
(with the exclusion of the diffusion process, of course).10 After Eqn
(18) and the related comments, in the case of a single-D diffusion
process we find the following expression for the efficiency:

𝜂s;n = ℜ

{
R−1

n

n∑
k=1

res
[

W, 𝜔k

]
e
−i

(
2𝜔k|𝜏+− 4𝜔∗

k
|||𝜏−

)
𝜏

}
(19)

(the subscript s standing for ‘single-D’) where the poles 𝜔k
||𝜏+ and

𝜔k
||𝜏−are calculated with coupling constants b and− b/2 respec-

tively. This expression will subsequently be used to fit the temper-
ature profile of the MSE refocusing efficiency.

Experimental results
Figure 2 reports the FIDs collected for selected temperatures,
together with their associated single-D fittings with G20 (t), i.e.
obtained with n= 20 (the dotted line for the lowest T is just a guide
for the eye). Following the prescriptions of Papon et al.,15 the cou-
pling constant has been estimated from the lowest temperature
FID just above T g (i.e. T = 173 K), yielding b≈ 300 kHz.

Figure 3 shows how the experimental values of the efficiency
compare with a single-D theoretical efficiency derived for n= 20.
In order to do this comparison, the D(T) dependence was momen-
tarily calculated from the relation D= (6𝜏c)−1, with 𝜏c the relax-
ation time associated with the ⟨P2⟩decay, i.e. ⟨P2⟩∼ exp(−t/𝜏c) (see
for example Sturniolo and Pieruccini18) and from the assumption
that 𝜏c follows the same VFT relation of the 𝛼-process observed by
dielectric spectroscopy.20 Below, the VFT parameters for 𝜏c(T) (or
equivalently for D(T)) will be re-calculated from the fittings on 𝜂.

The matching with the efficiency dip is remarkable; however, it
is evident that a distribution of D needs be considered for a good

Figure 3. MSE efficiencies obtained in two sets of measurements at 22
MHz (up and down triangles). The dashed line corresponds to the single-D
efficiency 𝜂s;20 for 𝜏 = 16 μs, b= 300 kHz and D calculated as explained in
the text. The solid line is a fit to the data with a distribution of single-D
efficiencies as expressed by Eqn (20). The inset shows the theoretical
efficiency as a function of D for different numbers of poles and the
same b.

fit to the experimental data. In other words, the T dependence of
𝜂 found experimentally carries information on the distribution of
relaxation times in the system. In order to extract this information,
the data are fitted with a superposition of single-D contributions,
i.e.

𝜂 (T) = ∫
+∞

−∞
F𝛼

[
D,Dc (T)

]
𝜂s (D) d ln D (20)

where, for convenience, F𝛼 is chosen as the normalized distribution
from which the HN function can be generated:

F𝛼
(

D,Dc

)
=

(
Dc

D

)ac
sin (c𝜙)

𝜋

[
1 + 2

(
Dc

D

)a
cos (𝜋 a) +

(
Dc

D

)2a
]c∕2

(21)

with Dc the ‘central’ diffusion constant,

𝜙 = arctan

[
sin (𝜋 a)(

Dc∕D
)a + cos (𝜋 a)

]

+ 𝜋

{
1 − Θ

[
sin (𝜋 a)(

Dc∕D
)a + cos (𝜋 a)

]}
(22)

and Θ is the Heaviside step function. If 𝜂s(D) is replaced with the
function [1+ i𝜔/(6D)]−1 in Eqn (20), we find indeed the HN form
of the relaxation profile, i.e. {1+ [i𝜔/(6Dc)]a}−c where a and c (both
varying within the interval [0, 1]) are respectively the width and
symmetry parameters of the frequency distribution.

The solid line in Fig. 3 is a fitting to the data with the efficiency
expressed by Eqn (20) and n= 7 (using higher n values did not
change the results significantly). A VFT dependence on T was
assumed for Dc, with T V and A free to adjust; on the other hand,
consistently with the assumptions made in the previous section,
a 𝜏∞ value of 10−14 s was imposed. The shape parameters of
the HN distributions were also let free to adjust, yielding at the
end a≈ 0.55 and c ≈ 0.45. With regard to the VFT parameters, the
values A= 12.05 and T V ≈ 130 K were found. The latter is in fairly
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Figure 4. VFT plot of 𝜈(T) as obtained from the analysis of the MSE
refocusing efficiency and comparison with the corresponding behaviour
resulting from the parameters provided by Deegan and Nagel.20 The T
dependences of the central relaxation frequencies of the literature are also
reported for a comparison. The arrows indicate the T−1 bounds within
which the 1H NMR measurements were actually performed. Note that
the extrapolation to lower temperatures still compares well with the BDS
relaxation data of Arbe et al.21 The dashed segment marks a lower T bound
beyond which deviations from the 2H NMR data of Deegan and Nagel20

and Rössler et al.23 start to be significant.

good agreement with the viscosity data provided by Arbe et al.21

concerning the T dependence of the central relaxation time.
Figure 4 reports the VFT behaviour of 𝜈 ≡ (2𝜋𝜏c)−1 as derived

from the MSE efficiency with the procedure described above (solid
line). This dependence is compared with that obtained introducing
in the VFT expression for 𝜏 the parameters provided by Deegan
and Nagel20 on the basis of BDS data (triangles). Although the two
𝜈(T) curves are fairly close to each other, the associated parameters
are different (𝜏∞ ≈ 7.6× 10−14 s, A≈ 7.96 and T V = 142 K) because
in the present case 𝜏∞ has been fixed. The value of 142 K seems to
be rather larger than those which can be obtained by fitting the
viscosity (T V = 122 K) or other BDS data (T V = 130.6 K) from Arbe
et al.21 under the same constraint of 𝜏∞ = 10−14 s (the latter are
replotted as stars in Fig. 4 for convenience). Also, a value of T V = 128
K has been reported by Frick and Richter.22 Data on PB obtained by
stimulated echo 2H NMR are also reported for comparison.23

CRR size
As illustrated in the section Cooperative motion, the size of the
large scale cooperativity regions can be estimated from the relax-
ation functions once T K (which can be safely replaced by T V since
it only enters in the argument of the logarithm and the measure-
ment temperature is high enough compared with T V itself ) and
Δcp are known. If Donth’s approach is used instead, estimating the
average CRR size requires a precise determination of the specific
heats below and above T g, which needs a careful calibration of the
calorimeter (see for example Saiter et al.24 and Schick25).

From the calorimetric data provided by Bähr et al.26 we have
Δcp ≈ 0.52 J g−1 K−1; since the density of PB is ca 0.87 g cm−3, its
ratio with the gas constant is Δcp/R≈ 3.4. On the other hand, a T V

value of 130 K results from the MSE efficiency fitting, while from
the BDS data of Arbe et al.,21 replotted in Fig. 4, we find the Vogel
temperature reported above (i.e. 130.6 K).

Figure 5 shows the relaxation functions (and the corresponding
fittings) extracted from BDS and NMR analyses at temperatures of

Figure 5. Relaxation functions associated with the HN parameters of the
𝛼-processes in PB, as observed by means of BDS21 or deduced from the
analysis of the MSE efficiency for two temperatures (symbols). The solid
lines are best fits from which the parameters reported in Table 1 can be
obtained.

193 and 203 K. These values are the extremes of the T interval
within which both NMR and BDS data from Arbe et al.21 are avail-
able. The best fitting parameters are reported in Table 1; the results
show that the two techniques used to probe segmental relaxation,
although rather different, provide similar estimates for the cooper-
ativities. The only discrepancy seems to arise from the difference in
the HN width parameter. The value of a= 0.72 ascribed to the BDS
relaxation distribution, however, was just inferred in Arbe et al.21

and not directly derived from the loss profile analysis. Overall, the
BDS relaxation functions turn out to decay more rapidly than those
obtained from the NMR experiments; this is why a comparatively
lower number of rearranging units is found from dielectric anal-
ysis. Concerning the actual number of monomers involved in the
rearrangement, it is important to note that each technique pro-
vides a CRR size which increases on lowering T ; this behaviour is
expected in general (see also Hamonic et al.4, Dalle-Ferrier et al.27

and Capaccioli et al.28) and has recently been reported by Chua
et al.29 where nice calorimetric analyses are performed on amor-
phous poly(styrene) and poly(methyl methacrylate). Note that in
the spresent case the temperature is not very close to T g so the
CRR sizes are relatively small. As illustrated above, the compara-
tively narrower frequency distribution derived from the BDS data
of Arbe et al.21 yields N𝛼 values which are correspondingly smaller
than those obtained by NMR; this incidentally provides the same
CRR size from BDS at T = 193 K and from 1H NMR at 203 K.

CONCLUDING REMARKS
The distinction of the two length scales involved in the cooperative
rearrangement process is essential in the analysis of the relaxation
data and in the final estimate of the average CRR size. Consider
for instance the stress relaxation experiment illustrated above. The
decrease in time of the force probed by AFM is ultimately due to
the material yield triggered by local cooperative configurational
rearrangements. The analysis of the pattern works out some of
its characteristic features, namely those related to just the small
scale rearrangement. Only afterwards are these quantities used to
calculate the CRR size, i.e. the large scale rearrangement length.

In Donth’s approach, instead, scanning temperature relaxation
measurements (e.g. calorimetric or dielectric4) are needed to
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Table 1. Temperature T (the measurement technique to which the values of the line refer is indicated in parentheses), central relaxation time 𝜏0 (BDS
data are from Arbe et al.21), fitting parameters 𝜆, z, 𝜏* (and n), lower limit of the fitting interval tmin, and resulting values for average energy threshold

⟨𝜉⟩ ≡ [
∫

∞

0
d𝜁 p

]−1

∫
∞

0
d𝜁 𝜁 p, rearrangement chemical potentialΔ𝜇 and its dispersion around the mean 𝛿[Δ𝜇], fraction 𝜅 of CRRs inducing diffusive

configurational changes and total number of rearranging monomers N𝛼 , for the 𝛼-relaxation process of PB. The HN shape parameters a and c are 0.55
and 0.45 for the NMR measurements and 0.72 and 0.50 respectively for BDS (following the indications of Arbe et al.21)

T (K) 𝜏0 (s) n 𝜆 z 𝜏* (s) tmin (s) ⟨𝜉⟩ (kJ mol−1) Δ𝜇 (kJ mol−1) 𝛿[Δ𝜇] (kJ mol−1) 𝜅 N𝛼

193 (NMR) 4× 10−3 14 14.4 5.5 3× 10−6 5× 10−6 23 1.42 0.92 0.2 ≈14
203 (NMR) 1.1× 10−4 8 6.7 3.7 2× 10−7 6× 10−7 15.9 2 1.38 0.31 ≈9
193 (BDS) 1.8× 10−3 13 13 3.2 2× 10−5 2.6× 10−5 21.7 1.5 1 0.22 ≈9
203 (BDS) 6× 10−5 10 8.5 2.7 6× 10−7 2× 10−6 19.2 1.96 1.25 0.27 ≈7

estimate the temperature fluctuations characterizing the CRRs.
Their amplitude is indeed related to the CRR size by 𝛿T 2Nff ≈
kBT 2Δ

(
1∕cp

)
,3 where Δ indicates the difference between the val-

ues above and below the glass transition. In some sense, this
method probes the CRR size directly, while in the above procedure
the latter is calculated from the small scale readjustment features.
Notwithstanding these significant differences, the two methods
provide mutually consistent results.

The approach proposed in the present paper has the advan-
tage of being open, at least in principle, to the treatment of con-
finement problems by appropriately writing down the expression
of the configurational entropy. On the other hand, there are still
aspects of the theory which need to be developed. In particular,
working out a suitable expression for 𝜏* in order not to let it remain
just a fitting parameter would represent a significant improve-
ment, and in this direction work is presently being undertaken.

As expected also in other frameworks,2,4,27,28 the CRR size is
found to increase on cooling towards T g. This has been shown
explicitly for PB in the present contribution and it has also been
verified both for PnBMA and for semicrystalline PET.8

To conclude, we would like to draw attention to the method we
used to extract the relevant information about the distribution of
segmental relaxation times in PB. The derivation of the analytical
expression for the FID refocusing efficiency requires methods of
complex analysis, but as a final result one has the advantage that
this information can be worked out from the experiment without,
for example, the need to use deuterated samples (cf. the 2H NMR
experimental data of Fig. 4). Comparisons with the results obtained
with other techniques (cf. Fig. 4) give a feeling about the reliability
of our procedure, at least for PB. Of course, further checks on
different systems are under way.
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