
18 September 2017

intestazione repositorydell’ateneo

Using a lag-balance property to tighten tardiness bounds for global EDF / Valente, Paolo. - In: REAL-TIME SYSTEMS. -
ISSN 0922-6443. - STAMPA. - 52:4(2015), pp. 486-561.

Original

Using a lag-balance property to tighten tardiness bounds for global EDF

Publisher:

Published
DOI:10.1007/s11241-015-9237-9

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 11380/1075778 since: 2017-06-26T17:27:11Z

This is the peer reviewd version of the followng article:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/54011188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Noname manuscript No.
(will be inserted by the editor)

Using a Lag-Balance Property to Tighten Tardiness Bounds

for Global EDF

Paolo Valente

the date of receipt and acceptance should be inserted later

Abstract Several tardiness bounds for global EDF and global-EDF-like schedulers

have been proposed over the last decade. These bounds contain a component that is

explicitly or implicitly proportional to how much the system may be cumulatively

lagging behind, in serving tasks, with respect to an ideal schedule. This cumulative

lag is in its turn upper-bounded by upper-bounding each per-task component in iso-

lation, and then summing individual per-task bounds. Unfortunately, this approach

leads to an over-pessimistic cumulative upper bound. In fact, it does not take into

account a lag-balance property of any work-conserving scheduling algorithm.

In this paper we show how to get a new tardiness bound for global EDF by inte-

grating this property with the approach used to prove the first tardiness bounds pro-

posed in the literature. In particular, we compute a new tardiness bound for implicit-

deadline tasks, scheduled by preemptive global EDF on a symmetric multiprocessor.

According to our experiments, as the number of processors increases, this new tar-

diness bound becomes tighter and tighter than the tightest bound available in the

literature, with a maximum tightness improvement of 29%. A negative characteris-

tic of this new bound is that computing its value takes an exponential time with a

brute-force algorithm (no faster exact or approximate algorithm is available yet).

As a more general result, the property highlighted in this paper might help to

improve the analysis for other scheduling algorithms, possibly on different systems

and with other types of task sets. In this respect, our experimental results also point

out the following negative fact: existing tardiness bounds for global EDF, including

the new bound we propose, may become remarkably loose if every task has a low

utilization (ratio between the execution time and the minimum inter-arrival time of

the jobs of the task), or if the sum of the utilizations of the tasks is lower than the

total capacity of the system.
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1 Introduction

Many time-sensitive applications have soft real-time requirements, i.e., tolerate dead-

line misses, provided that some appropriate service-quality requirement is met. Small-

scale examples range from infotainment to non-safety-critical control systems, while

large-scale examples range from financial to IPTV services. In many cases, a suffi-

cient service-quality requirement is that an application-specific, maximum tardiness

is guaranteed with respect to deadlines (Kenna et al (2011)). Meeting this requirement

may even allow all deadlines to be met, where buffers can be used to compensate for

fluctuations of job completion times.

Guaranteeing deadlines, or at least a bounded tardiness, to time-sensitive appli-

cations is complicated by the fact that the growing computational demand of these

applications can now be met only using multiprocessors. Optimal multiprocessor

scheduling algorithms, guaranteeing all deadlines to feasible task sets, have been de-

vised by Anderson and Srinivasan (2004); Baruah et al (1996); Megel et al (2010);

Regnier et al (2011). These algorithms are relatively complex, as guaranteeing all

deadlines on a multiprocessor is not a trivial task. Sub-optimal but simpler algorithms

are available too (Devi and Anderson (2005); Valente and Lipari (2005b); Erickson

and Anderson (2012); Erickson et al (2014)). One such algorithm is Global Earliest

Deadline First (G-EDF). G-EDF has been proved to guarantee a bounded tardiness

to feasible task sets by Devi and Anderson (2005); Valente and Lipari (2005b). From

empirical results, Bastoni et al (2010) have also inferred that G-EDF is an effective

solution for soft real-time (SRT) tasks on (clusters of) up to 8 processors. Variants

of G-EDF have been defined as well (Erickson and Anderson (2012); Erickson et al

(2014)). In these variants, named G-EDF-like (GEL) schedulers, each job is assigned

a fixed priority as in G-EDF, but, differently from G-EDF, this priority is not a func-

tion of only the deadline of the job. In more detail, the priority of each job is computed

so as to optimize further goals in addition to guaranteeing a bounded tardiness.

Both G-EDF and GEL schedulers, besides being simpler than optimal schedul-

ing algorithms, cause a lower overhead than the latter (apart from possible GEL

schedulers with job priorities computed through complex formulas or algorithms).

Finally, differently from optimal algorithms, G-EDF and GEL schedulers enjoy the

job-level static-priority (JLSP) property, which is required in most synchronization

solutions (Brandenburg (2011)).

On the downside, being that G-EDF and GEL schedulers are not optimal, they

may or may not succeed in meeting the time requirements of an application, depend-

ing on the maximum tardiness that they can guarantee to the tasks of the application.

Maximum tardiness also determines buffer sizes where buffers are used to conceal

deadline misses, and memory may be a critical resource in, e.g., embedded systems.

As a consequence, tightness is an important property of tardiness bounds for these

schedulers. In this respect, in this paper we compute a new tardiness bound for G-

EDF and implicit-deadline tasks. This bound proved to be tighter than existing ones

within the scope of our experiments. Additionally, although we focus only on the

just-mentioned pair of scheduling algorithm and task model, we leverage a property

that holds for any work-conserving scheduler, as discussed in the description of our

contribution.
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Related work

Initial tardiness bounds for G-EDF were computed by comparing G-EDF against

an ideal schedule (Devi and Anderson (2005); Valente and Lipari (2005b)).1 Devi

and Anderson (2005) also proposed, without proof, an improvement over the original

bound reported in the paper. The same authors subsequently proved this improvement

in (Devi and Anderson (2008)).

A new technique for computing worst-case tardiness bounds for G-EDF was then

proposed by Erickson et al (2010). Using this technique, named compliant-vector

analysis (CVA), the authors obtained tardiness bounds that dominate the one proved

in (Devi and Anderson (2005)). They also obtained bounds that dominate the one

computed in (Devi and Anderson (2008)), by combining CVA with the same im-

provement proved in (Devi and Anderson (2008)).

Erickson and Anderson (2012) then presented an alternative improvement over

CVA, which they named PP Uniform Reduction Law. Finally, Erickson et al (2014)

turned the computation of the smallest-possible tardiness bounds with CVA and the

PP Uniform Reduction Law into a linear program. More precisely, the last two papers

focused on job lateness, defined as just the difference between completion time and

deadline, but the provided results can of course be used also to compute bounds to

the tardiness (defined, instead, as the maximum between 0 and the lateness).

To discuss the tightness of the bounds described so far, we can consider the fol-

lowing common, best-case definition: a tardiness bound for a scheduling algorithm S

is tight, for a number of processors M, if there exists at least one task set such that,

if the task set is scheduled with the algorithm S on M processors, then the maximum

tardiness experienced by at least one task of the set is equal to the value of the bound

for that task. Unfortunately, except for the case M = 2 (Devi and Anderson (2008)),

existing tardiness bounds for G-EDF have not been proved to be tight, even with re-

spect to this best-case definition. This leaves room for the existence of tighter bounds,

which is exactly what we show, experimentally, in this paper.

Contribution

In this paper we show how to get a new tardiness bound for G-EDF, by integrating

the approach used by Devi and Anderson (2008) with a balance property that G-EDF

shares with any work-conserving scheduling algorithm. In particular, we compute

such a bound for the following case: (1) implicit-deadline sporadic tasks scheduled

by preemptive G-EDF, (2) a system made of M identical, unit-speed processors, and

(3) no synchronization among tasks.

To compute this new bound, we use the same approach as in (Devi and Anderson

(2005, 2008); Valente and Lipari (2005b)). As in these works, we compute a bound

1 Unfortunately, the proofs in (Valente and Lipari (2005b)) contain an error. As shown in an amended,

but not peer-reviewed version of the paper (Valente and Lipari (2005a)), if the part of the proofs containing

that error is removed, then the rest of the proofs still allow a tardiness bound to be proved. But the latter

bound is larger than both the problematic bound in (Valente and Lipari (2005b)) and the bound in (Devi

and Anderson (2005)).
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made of two components. The first component accounts for the fact that, after a new

job is released, G-EDF may fail to fully utilize all the processors while executing

the jobs scheduled before the new job and the new job itself. This may lower the

number of jobs per second executed in parallel, i.e., the total speed of the system. In

particular, the system may become slow enough, in executing jobs, to finish the new

job later than its deadline.

In addition, exactly because of the above issue, there may be several late jobs at

some point in time. Suppose that a new unlucky job arrives at such a time instant.

Some of the late jobs may have a higher priority (earlier deadline) than this new

job. The new job may then suffer from a tardiness caused not only by the above

sub-optimal job-packing issue, but also by the need to wait for the completion of

several late jobs before being executed. The second component accounts for the latter

additional waiting.2

The first component is quite easy to compute, whereas most of the paper is de-

voted to computing the second component. To this purpose, we turn the last qual-

itative consideration into the following quantitative relations. First, given the extra

work that the system has to do to complete late jobs, we prove (trivially) that the time

that the new job has to wait before being executed increases with this extra work.

Then, we prove that this extra work grows, in its turn, with how much the system

is cumulatively lagging, when the new job is released, behind an ideal schedule, or

equivalently an ideal system, in which every job is completed by its deadline. In the

end, the second component is proportional to this cumulative lag. According to this

fact, we obtain the second component by computing an upper bound to this cumu-

lative lag (more precisely to the cumulative lag for a special subset of tasks, as we

explain in Section 4.5). The peculiarity of the proofs reported in this paper lies in how

we compute an upper bound to the cumulative lag.

To highlight this peculiarity, we need to add the following piece of information:

the cumulative lag is defined as the sum of individual per-task lags, where each per-

task lag measures how much the system is lagging behind the ideal system in ex-

ecuting the jobs of the task. We get an upper bound to the cumulative lag by the

same two steps as in Devi and Anderson (2005, 2008): first, we compute an upper

bound to each per-task lag, and then we sum these per-task upper bounds. But, dif-

ferently from Devi and Anderson (2005, 2008), we do not compute the upper bounds

to per-task lags in isolation from each other. In contrast, we prove and use the fol-

lowing lag-balance property: for each task, the bound to its lag contains a negative

component proportional to the sum of part of the other contributing lags. This sort

of internal counterbalancing brings down the value of the whole sum. Finally, as for

a comparison against CVA analysis (Erickson et al (2010); Erickson and Anderson

(2012); Erickson et al (2014)), in CVA analysis the components of a special vector

2 Actually, the situation is a little bit more complex, because: 1) some processor may become available

to execute the new job even before all higher-priority late jobs have been completed, and 2) the execution

of the new job may happen to be suspended and restarted several times (as it may happen to any job).

But, as we show formally through the lemmas proved in this paper (and as it has been already proved in

the literature), the essence of the problem is the same: the more remaining work the system has to do, to

complete higher-priority late jobs, the more time the new job may have to wait before being executed.
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play a similar role as the lags contributing to Σ . But no balance property is used to

upper-bound the sum of these components.

We tag the whole tardiness bound as harmonic, because of the relation, high-

lighted in Section 3, between the dominant term in the bound and a harmonic number.

We could have computed an even tighter bound for task sets with a total utilization

strictly lower than the system capacity, but this would have made formulas more com-

plicated and proofs longer (see the comment after Lemma 10 for details). Finally, the

value of the bound apparently remains the same regardless of whether the improve-

ment proved in (Devi and Anderson (2008)) is applied, i.e., whether it is assumed that

one of the lags contributing to the cumulative lag is not higher than the maximum job

length. We do not investigate this issue further in this paper.

We evaluated, experimentally, the tightness of the harmonic bound and of the

other bounds available in the literature. To this purpose, we simulated the execution

of a large number of random task sets. According to our results with up to 8 proces-

sors, the bound obtained by combining CVA with the improvement proved in (Devi

and Anderson (2008)), which we name CVA2, is the tightest one available in the lit-

erature. On the opposite end, the bound computed in (Devi and Anderson (2008)),

named DA DA in our results, quickly becomes substantially looser than CVA2 as

the number of processors M increases, until it becomes up to about 40% looser than

CVA2 with M = 8. Nevertheless, the harmonic bound, obtained by integrating the lag-

balance property with the approach used to compute DA, is always at least as tight as

CVA2, and becomes tighter and tighter than CVA2 as M increases. In particular, the

harmonic bound is from 18% to 29% tighter than CVA2 with M = 8.

On the opposite end, a negative characteristic of the harmonic bound is that its

formula is quite complex, and a brute-force algorithm takes an exponential time to

compute the second component of the bound (fortunately, this component has to be

computed once per task set, as it is the same for all the tasks in a task set). The con-

stants in the formula of the cost of the algorithm are however so small that computing

the harmonic bound was feasible for almost every group of 1000 task sets considered

in our experiments (Section 9). The only exceptions were some of the cases where

using a tardiness bound is apparently not necessary (discussed below). In addition,

the fact that in this paper we show only an exponential algorithm does not imply that

polynomial-time, exact or approximate algorithms cannot be devised. Investigating

these algorithms is out of the scope of this paper.

As a general result, the lag-balance property described in this paper might help

to reduce pessimism on worst-case response-times also with other scheduling algo-

rithms, systems and types of task sets. In fact, the property is so general that one

has the impression that it might be possible to extend the harmonic bound to non-

preemptive G-EDF or stochastic task-set models, since in both cases existing bounds

are already computed using the same approach as the harmonic bound itself (Devi

and Anderson (2008); Mills and Anderson (2010)). It would also be interesting to

compare the harmonic bound with bounds for improved versions of G-EDF, such as

G-FL ((Erickson and Anderson (2012); Erickson et al (2014)).

Finally, our experiments also provide the following general, negative information:

all the bounds considered in the experiments, including the harmonic bound, become

quite loose when all tasks have a low utilization, or when the total utilization of the
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task set is lower than the total capacity of the system. Fortunately, as we discuss in

detail in Section 9, in the first case tardiness bounds are apparently not very relevant,

whereas the second case is exactly the one for which there is room for improvement

for the harmonic bound.

Organization of this paper

In Section 2 we describe the system model. Then we report the harmonic bound in

Section 3. In Section 4 we provide the minimal set of definitions needed to give a

detailed outline of the proof of the bound. We provide such an outline in Section 5.

Although the lag-balance property is the key property that allows us to compute the

harmonic bound, the proof of the lag-balance property does not highlight the gen-

eral characteristics of G-EDF and a multiprocessor system that enable us to prove

this property. For this reason we devote Section 6 to the intuition behind this prop-

erty, or, more precisely, behind the time-balance property, which is the preliminary

property from which we derive the lag-balance property. The core of the paper then

follows: after proving a set of preliminary lemmas in Section 7, we report the proof

in Section 8. Finally we report our experimental results in Section 9.

2 Task and service model

In this section we introduce the basic notations used in the paper. All notations are

also summarized in Table 1. To justify an equality or an inequality, we often write the

reason why that relation holds on the equality/inequality sign. In most cases, we write

just the number of the equation or lemma by which that relation holds (see, e.g., the

first and last equalities in (2)). As for time intervals, we write [t1, t2], [t1, t2) or (t1, t2),
to refer to all the times t such that t1 ≤ t ≤ t2, t1 ≤ t < t2 or t1 < t < t2. For brevity,

we often use the notation

f (t1, t2)≡ f (t2)− f (t1), (1)

where f (t) is a any function of the time and any ordering between t1 and t2 may hold,

i.e., t1 may be either smaller than or larger than t2. From this definition, it follows that

∀t1, t2, t3 f (t1, t2)
(1)
= − f (t1)+ f (t2) =− f (t1)+ f (t3)− f (t3)+ f (t2)

(1)
=

f (t1, t3)+ f (t3, t2),
(2)

regardless of the ordering among the three time instants. Similarly:

∀t1, t2 f (t2) = f (t2)− f (t1)+ f (t1)
(1)
= f (t1)+ f (t1, t2). (3)

To simplify the notation, in summations over set of tasks we use the symbol of

the set of tasks to denote, instead of the set of tasks, the set of indexes of the tasks in

the set. Finally, to avoid special considerations for corner cases, we assume that, for

any expression x and any pair of integers n1 and n2, ∑
n2
i=n1

x = 0 if n1 > n2 (note that

x may or may not be a function of the index i). In the following two subsections we

describe the task and service models.
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Table 1: Notations.

τ , N Set and number of tasks

τi ∈ τ i-th task in τ

Ci Worst-case computation time of the jobs of task τi

Ti Period/Minimum inter-arrival time of the jobs of task τi

Ui =
Ci
Ti

≤ 1 Utilization of task τi

Usum = ∑i∈τ Ui ≤ M Total utilization of the task set

J
j
i j-th job of task τi

r
j
i , d

j
i = r

j
i +Ti Release time and absolute deadline of the j-th job of task τi

f
j

i Completion time of the j-th job of task τi in the MPS

MPS Real system, made of M unit-speed processors

M Number of processors of the MPS

DPS Ideal, reference system, made of one processor per task; the speed of each

processor is equal to Ui

W MPS
i (t) / W DPS

i (t) Amount of service (Subsection 4.3) given to task τi by the MPS/DPS up

to time t

l
j
i Length of the j-th job of task τi

Li = max j l
j
i Maximum length of the jobs of task τi; numerically equal to Ci, but mea-

sured in service units

lagh〈d〉(t) =W DPS
h (t)−

W MPS−B
h 〈d〉(t)

Lag of task τh at time t, with W MPS−B
h 〈d〉(t) defined by (21)

lagh(t) = lagh〈d
j
i 〉(t) Short form for lagh〈d

j
i 〉(t)

τMPS(Ĵ, t)⊆ τ Blocking tasks, i.e., subset of tasks owning, at time t, pending jobs with a

deadline earlier than or equal to that of Ĵ in the MPS

τDPS(Ĵ, t)⊆ τ Subset of tasks generated by the algorithm in Definition 6

τ(Ĵ, t)⊆ τ Extended set of blocking tasks, defined as τMPS(Ĵ, t)∪ τDPS(Ĵ, t)
[bk, fk) k-th non-growing-Lag interval

Λ(k) = max1≤p≤k λ (p) Maximum total lag up to time bk, with the function λ (p) defined by (24)

τ̂ Subset of tasks in τ(Ĵ,bk) with a positive lag at time bk

G Cardinality of τ̂

2.1 Task model

We consider a set τ of N tasks τ1, τ2, . . ., τN , with each task τi consisting of an

infinite sequence of jobs J1
i , J2

i , . . . to execute. The j-th job J
j
i of τi is characterized

by: a release (arrival) time r
j
i , a computation time c

j
i , equal to the time needed to

execute the job on a unit-speed processor, a finish time f
j

i , an absolute deadline d
j
i ,

within which the job should be finished, and a tardiness defined as max(0, f
j

i −d
j
i ).

Each task τi is in its turn characterized by a pair (Ci,Ti), where Ci ≡ max j c
j
i

and Ti is the minimum inter-arrival time of the jobs of the task, i.e., ∀ j r
j+1
i ≥ r

j
i +

Ti. No offset is specified for the release time of the first job of any task. There is

no synchronization between tasks. The deadline of any job J
j
i is implicit, i.e., equal

to r
j
i + Ti. We say that a job is pending during [r j

i , f
j

i ]. Note that, according to this

definition, a job is pending also while it is being executed.

We define as tardiness of a task the maximum tardiness experienced by any of

its jobs. Finally, for each task τi we define its utilization as Ui ≡
Ci
Ti
≤ 1. We denote

by Usum the total utilization ∑i∈τ Ui of the task set (note that, according to what was
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previously said, in the summation we use the symbol τ to denote the set of the indexes

of the tasks in τ).

Figure 1.A shows a possible sequence of job arrivals for a four-task set with total

utilization 3. The tasks are characterized by the following pairs (Ci,Ti): (3,4), (3,4),
(2,3) and (5,6). Every job is represented as a rectangle, with an up-arrow on top of its

left side: the projection onto the x-axis of the left extreme of the rectangle represents

the release time of the job, whereas the length of the base of the rectangle is the time

needed to complete the job on a unit-speed processor. Finally, every job is followed

by a down arrow, representing its deadline. The first job of every task is released at

time 0, except for J1
3 . The job J3

2 is the only non-first job that is released later than the

deadline of the previous job of the same task.

2.2 Service model

We consider a symmetric multiprocessor comprised of M identical, unit-speed pro-

cessors, and name this system MPS (MultiProcessor System). We assume that M <N,

that Usum ≤ M and that jobs are scheduled according to the global and preemptive

EDF (G-EDF) policy: 1) each time a processor becomes idle, the pending (and not

yet executing) job with the earliest deadline is dispatched on it, 2) if a job with an

earlier deadline than some of the jobs in execution arrives when all the processors

are busy, then the job with the latest deadline among those in execution is preempted,

i.e., it is suspended, and the newly arrived job is started. Ties are arbitrarily broken.

From this policy, the following property immediately follows.

Lemma 1 In the MPS, at all times the jobs in execution have the earliest deadlines

among all pending jobs. Ties are arbitrarily broken.

We say that a task is being served while one of its jobs is being executed. In

general, the execution of a job may be interrupted several times to grant the processor

to other jobs with earlier deadlines. For any job J
j
i , we use the term portion as a

short form to refer to any of the maximal parts of the job that are executed, without

interruption, during [r j
i , f

j
i ]. We call start time of a portion the time instant at which

the portion starts to be executed, and use the notation Ĵ ⊆ J
j
i to mean that Ĵ is a

portion of a job J
j
i . The portion Ĵ is pending from time r

j
i to its completion. For

brevity, hereafter we say deadline of Ĵ to refer to the deadline d
j
i of the job the portion

belongs to. As can be deduced from this notation, we assume that Ĵ may also be the

only portion of J
j
i , which happens if, once started, J

j
i is executed without interruption

until it is finished. Accordingly, for brevity, in the rest of the paper we use the term

portion to refer both to a proper contiguous slice of a job and to a whole job. To avoid

ambiguity, we stress that with the term job we always refer to a whole job.

We say that a pending job portion is blocked if it cannot start to be executed. In

our model a job portion can be blocked for only one of the following two reasons.

1. The first portion of a job J
j
i cannot be started before the preceding job J

j−1
i is

finished. In this respect, we say that a pending job portion Ĵ ⊆ J
j
i is blocked by
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5, 6

2, 3

3, 4

3, 4

t

τ1

Task C, T

E. DPS service

A. Job arrivals and deadlines

1

1

1

Proc. Speed B. MPS service

4
3

1
2

4 11873

1 1

1

2 5

τ2

τ3

τ4

P1

P2

P3

1 1
Speed

5/6

2/3

3/4

3/4

Proc.

DP1

DP2

DP3

DP4

{1, 2, 4}

{3, 4}

6 9

t

10 10

4 118732 5 6 910 10

t

t

4 118732 5 6 910 10

4 118732 5 6 910 10

{1, 2, 4}

{4}

J
2
2

J
4
1Second portion of

{1, 2, 3, 4} {1, 2, 3, 4} D. Blocking tasks for

J
3
2

t4 118732 5 6 91 10

F. Total lag for

-1
0
1
2
3

1

Fig. 1: Example of task set, MPS service, busy intervals, blocking tasks, DPS service,

total lag and non-growing-Lag intervals.
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precedence at time t if a previous portion of J
j
i or any portion of J

j−1
i is still

pending at time t.

2. If a pending portion Ĵ ⊆ J
j
i is not blocked by precedence at a given time t, then the

only other reason why it could not be started at that time is because all processors

are busy serving portions of jobs with deadlines earlier than or equal to d
j
i . In this

case, we say that the portion is blocked by priority at time t.

For the sake of clarity, we emphasize that only portions not blocked by precedence

may be deemed blocked by priority. Finally, we often use the following phrase for

brevity: we say just that a portion is blocked by priority, without specifying the time

instant at which, or the time interval during which the portion is in such a state, to

mean that the portion happens to be blocked by priority (at least) right before it starts

to be executed.

Before discussing the above definitions further, we show them through Figure 1.B,

which shows the execution of the jobs depicted in Figure 1.A, on an MPS with three

unit-speed processors. For each processor, each rectangle represents the execution of

a job portion on that processor, with the projection onto the x-axis of the left/right

side of each rectangle representing the start/finish time of the portion. Finally, each

(whole) job completion time is highlighted with a ⊤. As an example of job portions,

when J1
3 arrives at time 0.5, J1

4 is suspended. The second and last portion of J1
4 is then

started at time 2.5 after being blocked by priority during [0.5,2.5), and it is finished

at time 7. The only other portion blocked by priority is the whole job J2
2 , while J3

2 is

an example of job portion blocked by precedence.

Finally, given a maximal time interval during which a task τi is continuously

served, we define as chain (of portions of jobs) of task τi, the sequence of portions

of jobs of τi executed during the time interval. An example of a chain, in Figure 1.B,

consists of J2
2 and J3

2 , executed back-to-back during [5.5,10]. As a degenerate case,

a chain may be made of only one portion. In this respect, recall also that we use

the term portion as a short form to refer to both an actual portion and a whole job.

In addition, a job that starts to be executed right after being blocked by precedence,

necessarily belongs to a chain, as it starts to be executed right after the previous job

of the same task. Instead, we define as head of a chain the job portion executed for

first in the sequence. We conclude this section with the following note.

Note 1 If a chain contains at least two job portions, then the head of the chain is

necessarily the last portion of a job. In fact, by definition of job portions, the two job

portions cannot belong to the same job, and thus a new job of the same task starts to

be executed right after the head.

3 The harmonic bound

In this section, we report, first, the harmonic bound, and then a brute-force algorithm

to compute it. The formula of the harmonic bound is relatively complex. Then, to help

the reader better understand the formula and get an idea of the order of magnitude of

the bound, we also instantiate the formula for two extreme cases in which it becomes
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simpler. To the same purpose, we show, through a numerical example, how to com-

pute the bound with the brute-force algorithm. Finally, we provide a brief analysis of

the computational cost of the algorithm, plus some example of the execution time of

an implementation of the algorithm.

To write the harmonic bound, we start by introducing the following definition

and symbols. The motivation for introducing the following symbols is only ease of

notation, and none of them represents, alone, a relevant quantity (they are just com-

ponents of relevant quantities). The only exception is Ω , for which we describe the

quantity it represents when commenting on the harmonic bound.

Definition 1 For any set of tasks τ ′ ⊆ τ , containing G tasks, and for all

g ∈ {1,2, . . . , G}, let g′ denote the index of the g-th task in τ ′.

Using this notation, we can define the terms that appear in the formula of the

bound (in the next equation, v′ is the index of the v-th task in τ ′ according to Defini-

tion 1):

∀τ ′ such that τ ′ ⊆ τ and |τ ′| ≤ ⌈Usum⌉−1,

∀g ≤ |τ ′|+1, Mτ ′

g ≡ M−
g−1

∑
v=1

Uv′ ,
(4)

Γ ≡ M · max
τ ′⊆τ and

|τ ′|=⌈Usum⌉−1

|τ ′|

∑
g=1

Cg′

Mτ ′
g

, (5)

and

Ω ≡
1

M
· max

τ ′⊆τ and
|τ ′|≤⌈Usum⌉−1

[

Mτ ′

|τ ′|+1

(

Γ
|τ ′|

∑
g=1

Ug′

Mτ ′
g Mτ ′

g+1

+
|τ ′|

∑
g=1

Cg′

Mτ ′
g

)]

. (6)

We can now state the harmonic bound. In particular, first we report the bound, and

then we show that its value is positive. After that, we explain where the components

of the bound stem from. Finally, we analyze the bound in two extreme cases, and

show why we name it harmonic.

Theorem 1 (Harmonic Bound) For every job J
j
i ,

f
j

i −d
j
i ≤ Ω +

M−1

M
Ci. (7)

As stated in the following lemma, the right-hand side (RHS) of (7) is not negative.

Therefore it is not necessary to take the maximum between its value and 0 to turn it

into a tardiness bound (recall that tardiness is a non-negative quantity).

Lemma 2 The RHS of (7) is not negative, and is equal to 0 if and only if M = 1.

Proof First, since in both (5) and (6),

|τ ′| ≤ ⌈Usum −1⌉ ≤ M−1, (8)
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we have

∀g ≤ |τ ′|+1 Mτ ′

g = M−
g−1

∑
v=1

Uv′ ≥ M−
(|τ ′|+1)−1

∑
v=1

Uv′

(8)

≥

M−
[(M−1)+1]−1

∑
v=1

Uv′

Uv′≤1

≥ M−
M−1

∑
v=1

1 = M− (M−1) = 1 > 0.

(9)

The above inequality, plus Uv′ > 0 and Cv′ > 0, imply that all the terms in (5)

and (6), including the sums, are non-negative. In particular, if M = 1, then all the

sums are null. In fact, in this case |τ ′| = 0 in both (5) and (6) by (8). In the end,

Γ ≥ 0 and Ω ≥ 0, and, if M = 1 then Γ = Ω = 0. As for the term M−1
M

Ci, its value is

non-negative because M − 1 ≥ 0 and Ci > 0. In particular, M−1
M

Ci = 0 if and only if

M = 1. ⊓⊔

In the introduction we said that the tardiness bound reported in this paper contains

two components. The term M−1
M

Ci in the RHS of (7) is the first component mentioned

in the introduction. That is, this term accounts for the maximum tardiness that can

be caused by the fact that the MPS is sub-optimal in packing jobs on processors, and

hence in utilizing the full speed of the system. For example, the MPS fails in utilizing

all the processors while the job J1
4 is pending in Figure 1.B, and (the second portion

of) J1
4 ends up being completed after its deadline. By properly breaking jobs into

smaller portions and scheduling these portions in a more clever way, it would have

been possible to fully utilize all processors and complete J1
4 by its deadline (Anderson

and Srinivasan (2004)).

Instead, the quantity Ω is the second component of the bound we mentioned in

the introduction. As we already stated, this component stems from the following is-

sue: exactly because of the above sub-optimal job-packing problem, the MPS may

be already late in executing other higher-priority jobs when a new job arrives. By

Lemma 1, the MPS may have to complete part of these late jobs before one processor

becomes available to execute the new job. The component Ω accounts for the addi-

tional delay caused by this fact. In particular, as we also already said, given an ideal

system that completes every job by its deadline, this additional delay is proportional

to how much the MPS may be cumulatively lagging behind the ideal system, in terms

of amount of service received by tasks, when a new job arrives. Therefore, we obtain

Ω by computing an upper bound to this cumulative lag.

As a final consideration on Ω , we can note that Ω has the same value for every

task. This may pave the way to even tighter bounds. In fact, for example, the bound

computed by Erickson et al (2010) contains, for each task, a component equivalent

to Ω , but whose value varies (also) with the parameters of the task. That bound is

tighter than previous ones exactly because of this characteristic.

Finally, we consider two extreme cases to get an idea of the order of magnitude

of the bound (7). First, Ug′ → 0 for all τ ′ and for all g ≤ |τ ′|. This implies Mτ ′
g →

M. Defining C ≡ maxτi∈τ Ci, and considering also that |τ ′| ≤ M − 1 by (8), we get,
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from (7),

f
j

i −d
j
i ≤

1

M

[

M(0+C
M−1

∑
g=1

1

M
)

]

+
M−1

M
Ci =

M−1

M
C+

M−1

M
Ci =

M−1

M
(C+Ci).

(10)

On the opposite side, if Ug′ → 1 for all τ ′ and for all g ≤ |τ ′|, then Mτ ′
g → M −

(g−1). Assuming also that τ ′ is as large as possible, i.e., that |τ ′|= M−1, the sums

in (5) and (6) can be loosely upper-bounded as follows

|τ ′|

∑
g=1

Cg′

Mτ ′
g

≤C
M−1

∑
g=1

1

Mτ ′
g

Ug′→1

−→ C
M−1

∑
g=1

1

M− (g−1)
=C

M

∑
g=2

1

g
, (11)

|τ ′|

∑
g=1

Ug′

Mτ ′
g Mτ ′

g+1

Ug′→1,

|τ ′|=M−1
−→

M−1

∑
g=1

1

(M− (g−1))(M−g)
=

M

∑
g=2

1

g(g−1)
< 1, (12)

where the last inequality follows from the well-known equality ∑∞
g=1 1/(g ·(g+1)) =

1. In addition, if Ug′ → 1 for all τ ′ and for all g ≤ |τ ′|, then Mτ ′

|τ ′|+1
→ M− (|τ ′|+1−

1) = M− (M−1+1−1) = 1. Replacing (11), (12) and Mτ ′

|τ ′|+1
→ 1 in (7), we get

f
j

i −d
j
i ≤

1

M

[(

M ·C
M

∑
g=2

1

g

)

+
M

∑
g=2

1

g

]

+
M−1

M
Ci =

C

(

M

∑
g=2

1

g

)

(

1+
1

M

)

+
M−1

M
Ci.

(13)

As M increases, the RHS of (13) quickly becomes higher than the RHS of (10),

because of the term C ∑M
g=2

1
g
. In particular, as M increases, this term becomes the

dominant one in the RHS of (13). In this respect, the sum ∑M
g=2

1
g

is equal to the

harmonic number HM minus 1, while the whole term C
(

∑M
g=2

1
g

)

is an upper bound

to the quantity to which the sum ∑
|τ ′|
g=1

Cg′

Mτ ′
g

tends, in both (5) and (6), as Ug′ → 1. We

name the bound (7) harmonic bound after these facts.

It is easy to show that the RHS of (13) grows less than linearly with M (a coarse

upper bound to the order of growth of the RHS of (13) is logM). Similarly, one can

see numerically that the RHS of (7), and in particular, its component Ω , grows less

than linearly with M as well. The small slope of the RHS of (7) is the key property

for which the harmonic bound proves to be tighter than existing ones in our experi-

ments. As we highlight in Section 9.1, such a small slope follows from the fact that,

differently from the literature, we use the lag-balance property when computing an

upper bound to the cumulative lag of the MPS with respect to an ideal system.
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3.1 A brute-force algorithm for computing the harmonic bound

The hardest part in computing the value of the harmonic bound is of course computing

Γ and Ω . A brute-force algorithm for computing these values is the following. First,

compute Γ . To this purpose, generate, as a first step, all the possible subsets τ ′ ⊆ τ of

⌈Usum⌉−1 tasks. Then, for every subset τ ′ generated, compute the value of the sum

in (5) for all the possible orderings of the tasks in τ ′ (i.e., all the |τ ′|-tuples containing

all the tasks in τ ′). In fact, for a given subset τ ′ and for every g ≤ |τ ′|, the value of the

sum in (5) may change depending on which task is considered to be the g-th task in

τ ′ (this point should become clearer from the example that we give in a moment). As

a final step, use the maximum value of the sum obtained from the previous steps and

multiply it by M to get Γ . Once computed Γ , use the same approach to compute Ω ,

taking into account that, this time, all the subsets of at most ⌈Usum⌉−1 tasks need to

be generated (and not only all the subsets of exactly ⌈Usum⌉−1 tasks).

This algorithm can be refined in such a way to reduce, when possible, the number

of subsets to generate. To introduce this improvement, we can consider that, given

two subsets of tasks τ ′A and τ ′B, it is not necessary that τ ′A = τ ′B holds for the two

subsets to yield the same value for the max functions in (5) and (6). In fact, a sufficient

condition is that |τ ′A| = |τ ′B|, and, for every g = 1,2, . . . , |τ ′A|, both the g-th task in τ ′A
and the g-th task in τ ′B are characterized by the same pair (Ci,Ti). As a consequence,

to compute the max functions in (5) and (6) it is enough to restrict the search (and thus

the generation of subsets) to any maximal set of subsets such that, for each element

of the set, there is no other element for which the above condition holds.

We show now an example of the steps taken by this brute-force algorithm on

a real task set (more in general, this provides also a practical example of how the

harmonic bound can be computed). Consider a task set made of four tasks, with each

task characterized by the following pairs (Ci,Ti): τ1 → (4,5), τ2 → (4,5), τ3 → (4,5)
and τ4 → (3,5). Accordingly, Usum = 3 and hence ⌈Usum⌉− 1 = 2. All the possible

sets τ ′ in (5) consist therefore of two tasks, and the argument of the max function

in (5), which we denote by ArgΓ (τg,τh), can be rewritten as

ArgΓ (τg,τh) =
Cg

3
+

Ch

3−Ug

. (14)

The whole formula can then be rewritten as

Γ = 3 ·max
τg∈τ ,
τh∈τ ,
g 6=h

[

ArgΓ (τg,τh)
]

. (15)

According to the above considerations on how to reduce the number of subsets to

generate, to compute the value of the RHS of (15) it is enough to consider any pos-

sible maximal set of pairs of tasks (τg,τh), such that each pair in the set may yield a

different value for the argument of the max function in (15).3 Since τ1, τ2 and τ3 have

3 To compute (15), we have to consider pairs of tasks (τg,τh), and not just sets {τg,τh}, because the

value of ArgΓ (τg,τh) may change if the order of the argument changes, i.e., ArgΓ (τg,τh) 6= ArgΓ (τh,τg)
may hold.
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the same parameters, one such possible maximal set is: {(τ1,τ2), (τ1,τ4), (τ4,τ1)}.

Using this maximal set, we get, from (15),

Γ = 3 ·max

(

C1

3
+

C2

3−U1
,
C1

3
+

C4

3−U1
,
C4

3
+

C1

3−U4

)

=

3 ·max

(

4

3
+

4

3−4/5
,

4

3
+

3

3−4/5
,

3

3
+

4

3−3/5

)

=

3 ·max

(

104

33
,

85

33
,

8

3

)

= 3 ·
104

33
=

104

11
= 9.45.

(16)

The next step is computing Ω . According to (6) and to the fact that ⌈Usum⌉−1= 2,

the sets τ ′ to consider may consist of one or two tasks. If τ ′ contains just one task,

i.e., if τ ′ = {τg} for some τg ∈ τ , then the argument of the max function in (6) is a

function of τg. Denoting this argument by ArgΩ (τg), from (6) we get

ArgΩ (τg) = (3−Ug)
(

Γ
Ug

3·(3−Ug)
+

Cg

3

)

. (17)

In a similar vein, if τ ′ contains two tasks, i.e., τ ′ = {τg,τh}, then the argument of

the max function in (6), say ArgΩ (τg,τh), becomes

ArgΩ (τg,τh) = (3−Ug −Uh)
[

Γ
(

Ug

3·(3−Ug)
+ Uh

(3−Ug)·(3−Ug−Uh)

)

+
Cg

3
+ Ch

3−Ug

]

.

(18)

Accordingly, we can rewrite (6) as follows:

Ω =
1

3
·max















max
τg∈τ

[

ArgΩ (τg)
]

,max
τg∈τ ,
τh∈τ ,
g 6=h

[

ArgΩ (τg,τh)
]















. (19)

Similarly to the steps taken to compute Γ from (15), we can compute the value of

the first argument of the external max function in (19) by considering any maximal

set of tasks such that the value of ArgΩ (τg) may vary over the elements of the set. A

possible maximal set with this property is {τ1,τ4}. Instead, regarding ArgΩ (τg,τh), a

possible maximal set of pairs of tasks (τg,τh) such that the value of ArgΩ (τg,τh) may

differ over the elements of the set is: {(τ1,τ2), (τ1,τ4), (τ4,τ1)}. Expanding the RHS

of (19) according to these two sets, i.e., with the same procedure as that by which we

obtained (16) from (15), and computing the value of the resulting expression, we get

Ω = 3.15. Replacing this value in (7), we get the following tardiness upper bound for

every job of τ1, τ2 or τ3: 5.82, and the following bound for every job of τ4: 5.15.

3.2 Computational cost of the brute-force algorithm

We evaluate now the worst-case computational cost of the brute-force algorithm de-

fined in Section 3.1. To this purpose, we suppose that all the possible subsets τ ′ of

Usum − 1 tasks have to be considered to compute Γ in (5), and that all the possible

subsets τ ′ of at most Usum −1 tasks have then to be considered to compute Ω in (6).
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In such a case, the order of the number of subsets to generate, and therefore the order

of the cost of the brute-force algorithm as a function of N, is

(

N

⌈Usum⌉−1

)

≤

(

N

N/2

)

<
2N

√

N
2

π
, (20)

where the second inequality is one of the well-known simple upper bounds to the

central binomial coefficient (Koshy (2008)).

Finally, as an example of the actual execution time of the brute-force algorithm,

we provide such an example through the C implementation we made for the ex-

periments (Experiment-scripts (2014)). To compute the bound for all the tasks in a

worst-case task set, this C implementation takes, on an Intel Core i72760QM, from

about 23µs if M = 2 and N = 3, to about 17s if M = 8 and N = 17. Proposing also

more efficient algorithms to compute or approximate the harmonic bound is out of

the scope of this paper.

4 Preliminary definitions

Unfortunately, our proof of the harmonic bound is rather long. To help the reader not

to get lost in such a long proof, we break it as much as possible into manageable

pieces. To this purpose, we start by introducing, in this preliminary section, only the

definitions needed to provide a detailed outline of the proof itself. The major part

of these definitions basically coincide with corresponding definitions in (Devi and

Anderson (2008); Valente and Lipari (2005b)). Some concepts are however expressed

in a slightly different way, to better comply with the proof strategy adopted in this

paper.

Most of the following time intervals and quantities are defined as a function of a

generic portion Ĵ, belonging to a job J
j
i . These are the portion and the job that we use

as a reference, in the proof, to prove (7).

4.1 Busy interval and blocking tasks

The following time interval basically coincides with that defined in (Devi and Ander-

son (2008)[Definition 4]).

Definition 2 Given a job portion Ĵ ⊆ J
j
i blocked by priority and starting at time ŝ,

we define as busy interval for the portion Ĵ, the maximal time interval, starting not

before time r
j
i and ending at time ŝ, during which all processors are constantly busy

executing jobs with a deadline earlier than or equal to that of Ĵ.

For example, as shown in Figure 1.C, the busy interval for the second portion of

J1
4 is [0.5,2.5). The busy interval for a job portion Ĵ is a superset of the time interval

during which the portion is blocked by priority. In fact, by definition, while Ĵ is

blocked by priority, all processors are constantly busy executing jobs with a deadline
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earlier than or equal to that of Ĵ. But the same may happen also while Ĵ is blocked by

precedence.

To be able to block the execution of Ĵ, a task must own at least one pending job

with a deadline earlier than or equal to d
j
i . This holds also for τi itself, if the portion

Ĵ is blocked by precedence. In fact, the jobs of τi that precede J
j
i have an earlier

deadline than d
j
i . To give a concise name to all the tasks that can cause a portion Ĵ to

be blocked, we provide the following definition.

Definition 3 We define as set of blocking tasks τMPS(Ĵ, t)⊆ τ for the portion Ĵ ⊆ J
j
i

at time t, the set of tasks owning pending jobs4, in the MPS and at time t, with

deadlines earlier than or equal to d
j
i .

We add the superscript MPS in τMPS(Ĵ, t) to distinguish this set from the extended

set of blocking tasks that we define in Section 4.5. We stress that, by Definition 3,

the set τMPS(Ĵ, t) may include τi itself. To help visualize this set, Figure 1.D shows

both the cardinality of τMPS(J2
2 , t) and the contents of the set (through the labels

on the curve). Every job that is pending during [0,5.5) happens to have a deadline

earlier than or equal to d2
2 = 8. Therefore τMPS(J2

2 , t) consists, at every time instant

in [0,5.5), of the set of all the tasks with pending jobs.

Differently from the busy interval, the set of blocking tasks for a portion Ĵ ⊆ J
j
i

is intentionally well-defined also before time r
j
i . We discuss the reason behind this

choice in Section 4.5.

4.2 Service unit, processor speed and amount of service

Our proof of the harmonic bound contains several lemmas about amounts of service

received by tasks, or about differences between amounts of service. To measure the

amount of service received by a task, we assume, first, that any job portion is made

of a number of service units to execute, equal to the number of time units needed

to execute the portion on a unit-speed processor (as the processors of the MPS). We

define this number as length of the portion. Accordingly, we define the length l
j
i of a

job J
j
i as the sum of the lengths of its portions, and, for the overall task τi, we define

Li ≡ max j l
j
i . Of course, numerically, l

j
i = c

j
i and hence Li = Ci (we use different

symbols for lengths because the latter are measured in service units and not in time

units). Finally, we (re)define the speed of a processor as the number of service units

per time unit that the processor completes while executing a job.

As a next step to define a measure of the service received by a task τi in a system

S, we denote by I1
i (t), I2

i (t), . . ., IV
i (t) the maximal time intervals, in [0, t], such that,

during each of these time intervals, τi is continuously served on the same processor

of the system S. Finally, we denote by Ii(t) the union of these time intervals. For

example, according to Figure 1.B, in the MPS we have I4(8) = {[0,0.5], [2.5,7]}
and I3(5) = {[0.5,2.5], [3.5,5]}. For every time interval Iv

i (t) with v = 1,2, . . . ,V , we

define as amount of service received by τi during Iv
i (t), the number of service units

4 Recall that, by our definition of pending, also jobs in execution are still pending.
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executed for τi during Iv
i (t). This quantity is in its turn equal to the length of the time

interval Iv
i (t), multiplied by the speed of the processor on which the jobs of τi are

executed during Iv
i (t). Using this definition, we define the amount of service W S

i (t)
received by a task τi in a system S during [0, t], as the sum of the amounts of service

received by the task during the time intervals I1
i (t), I2

i (t), . . ., IV
i (t).

For the MPS, we denote the last quantity by W MPS
i (t). Since all the processors

of the MPS have unit speed, W MPS
i (t) is equal, numerically, to the total time spent

by the processors of the MPS executing the jobs of τi during [0, t] (but the unit of

measure differ). For example, considering Figure 1.B, W MPS
1 (4) = 3, W MPS

3 (4) = 2.5
and W MPS

4 (4) = 2.

4.3 Dedicated-Processor System (DPS)

As we discussed in the introduction and in Section 3, we compute the component Ω in

(7) by computing an upper bound to how much the MPS may be cumulatively lagging

behind an ideal system when a new job arrives. In this subsection we introduce the

ideal system by which we compute this cumulative lag. Such a system is equivalent

to the PS schedule used, e.g., in (Devi and Anderson (2005, 2008))5.

Definition 4 Given a task set τ , we define as Dedicated-Processor System (DPS), an

ideal system containing, for each task in τ , a dedicated processor that executes only

the jobs of that task, at a constant speed equal to the utilization Ui of the task.

The execution time of a job J
j
i on the dedicated processor associated to τi is then

c
j
i

Ui
≤ Ti, because c

j
i ≤ Ci and Ui =

Ci
Ti

(Section 2). This property, plus the fact that

each processor executes only the jobs of its associated task, guarantee that the DPS

completes every job no later than its deadline.

As an example, Figure 1.E shows both the characteristics of the DPS associated to

the task set in Figure 1.A, and the execution of the jobs on that DPS. The execution

of the jobs is represented with rectangles, whose left and right extremes have the

same meaning as for the MPS in Figure 1.B. The height of each rectangle is equal

to the speed of the dedicated processor executing the job, with the same scale as in

Figure 1.B. In other words, the area of the rectangle representing the execution of

a job in the DPS is equal to the sum of the areas of the rectangles representing the

execution of the portions of the same job in the MPS. Since, for each task τi, every

job in Figure 1.A has an execution time equal to Ci, apart from J3
2 , the DPS completes

every job exactly on its deadline, apart from J3
2 .

Similarly to W MPS
i (t), we denote by W DPS

i (t) the amount of service received by

τi in the DPS during [0, t]. W DPS
i (t) is equal to the total time during which the i-th

dedicated processor executes jobs of τi in [0, t], multiplied by Ui. For example, in

Figure 1.E we have W DPS
1 (4) = 4∗ (3/4) = 3 =W MPS

1 (4), whereas W DPS
3 (4) = 3.5∗

(2/3) = 2.3, which is lower than W MPS
3 (4) = 2.5. On the opposite side, W DPS

4 (4) =
4∗ (5/6) = 3.3, which is higher than W MPS

4 (4) = 2.

5 A PS schedule is an ideal fluid schedule in which each task executes at a precisely uniform rate given

by its utilization. In (Devi and Anderson (2008)) the PS schedule is defined formally in Equation (7).
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4.4 Lag of a task

As we already said in the introduction, we define the cumulative lag of the MPS as the

sum of per-task lags. We define the latter quantity as follows (the following definition

is the counterpart of the lag as defined by Equation (8) in (Devi and Anderson (2008)).

Definition 5 Given a task τh, a generic time instant t, a generic deadline d of some

job, and the maximum index m ≡ maxdn
h
≤d n, i.e., the index m of the latest-deadline

job, of τh, among those with a deadline earlier than or equal to d, we define

W MPS−B
h 〈d〉(t)≡ min

[

W MPS
h (t),

m

∑
n=1

ln
h

]

, (21)

where ln
h is the length of the n-th job of the task τh, and

lagh〈d〉(t)≡W DPS
h (t)−W MPS−B

h 〈d〉(t). (22)

To measure how much the MPS is lagging behind the DPS in serving τh, one

would have probably expected the simpler and more natural difference lagh(t) ≡
W DPS

h (t)−W MPS
h (t). Instead, we consider a lower-bounded difference that takes into

account the service provided to τh by the MPS only with respect to jobs with a dead-

line at most equal to d. We use this lower-bounded difference because it greatly sim-

plifies several formulas and proof steps. To give some examples, we can continue the

example we made at the end of Section 4.3. Using as a reference the deadline d2
2 = 8

of J2
2 , we have lag1[8](4) = 0, lag3[8](4) =−0.16 and lag4[8](4) = 1.3.

We already said that we use a generic job J
j
i as a reference in the proof. As a

consequence, we use the quantity lagh〈d
j
i 〉(t) very often. For this reason, for ease of

notation, we define the following short form for lagh〈d
j
i 〉(t):

lagh(t)≡ lagh〈d
j
i 〉(t), (23)

and, in the rest of the paper, we always use the short form lagh(t) instead of the full

expression lagh〈d
j
i 〉(t). In particular, we refer to the quantity lagh(t) also when we

use the phrase lag of τh at time t. Finally note that, though the terms tardiness and lag

may be somehow interchangeable in natural language, the concept of tardiness, as

defined in Section 2, must not be confused with the concept of lag, as defined in (22)

(and measured in service units).

4.5 Total lag

As we already explained in Section 3, we compute Ω by computing an upper bound to

the cumulative lag of the MPS with respect to the DPS. We define now precisely this

cumulative lag. By Lemma 1, given the last portion Ĵ of the job J
j
i in (7), the only jobs

that determine the delay by which Ĵ is completed are the jobs with a deadline earlier

than or equal to d
j
i . Accordingly, by Definition 3, the natural set of tasks to consider
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for computing the cumulative lag that influences the tardiness of J
j
i is τMPS(Ĵ, t). Un-

fortunately, considering just this set of tasks further complicates proofs. Instead, we

get simpler proofs if we define the cumulative lag as a function of a more artificial su-

perset of τMPS(Ĵ, t). This extended set may contain also some tasks that do not belong

to τMPS(Ĵ, t). To define this extended set, we start from the following intermediate set.

Definition 6 Given a job portion Ĵ ⊆ J
j
i blocked by priority and a generic time instant

t, we define the set of tasks τDPS(Ĵ, t) as the set generated by the following algorithm:

Initial state. At system start-up, the set is empty, i.e., τDPS(Ĵ,0) = /0.

Entrance (insertion) of a task. A task enters τDPS(Ĵ, t) when it exits τMPS(Ĵ, t),
if the lag of the task is non-positive. More formally, if te is a generic time in-

stant at which a task τh exits τMPS(Ĵ, te), but such that lagh(te) ≤ 0 holds, then

τDPS(Ĵ, t+e ) = τDPS(Ĵ, te)∪ {τh}, where τDPS(Ĵ, t+e ) is the content of τDPS(Ĵ, t)
right after time te.

Exit (extraction) of a task. A task exits τDPS(Ĵ, t) if its lag becomes strictly posi-

tive. More formally, if te is a generic time instant at which lagh(t) becomes strictly

positive for a task τh in τDPS(Ĵ, te), then τDPS(Ĵ, t+e ) = τDPS(Ĵ, te)\{τh}.

For example, according to Figure 1.D, the task τ3 is the first task to exit

τMPS(J2
2 , t). It happens at time 2.5, because the task stops having pending jobs in the

MPS. But, according to Figure 1.E, the task has still a pending job in the DPS at time

2.5. Thus, lag3(2.5)≤ 0 and hence τDPS(J2
2 ,2.5

+) = τDPS(J2
2 ,2.5)∪{τ3}= {τ3}. For

the same reason, τDPS(J2
2 ,3

+) = τDPS(J2
2 ,3)∪{τ1,τ2}= {τ1,τ2,τ3}. The first task to

exit τDPS(J2
2 , t) is τ2, right after time 4, because lag2(4

+)> 0. Finally, it is pointless

to consider the contents of the set τDPS(J2
2 , t) after the start time, 5.5, of J2

2 .

Using the set τDPS(Ĵ, t), we can define the set of tasks that we use to define the

cumulative lag.

Definition 7 We define as extended set τ(Ĵ, t) of blocking tasks for a job portion

Ĵ ⊆ J
j
i blocked by priority, the union τMPS(Ĵ, t)∪ τDPS(Ĵ, t).

We can now define formally the cumulative lag of the MPS. We use the name

total lag for the exact quantity that we use in the proof, to distinguish it from the

informal quantity mentioned so far.

Definition 8 We define as total lag for a job portion Ĵ ⊆ J
j
i blocked by priority, the

sum ∑h∈τ(Ĵ,t) lagh(t).

The above quantity is the counterpart of the total lag in (Devi and Anderson

(2008)[Equation (11)]). Recall that, by (23), lagh(t) = lagh〈d
j
i 〉(t) in Definition 8.

Figure 1.F shows the graph of the total lag for J2
2 during [0,5.5). As can be seen by

comparing Figure 1.F with figures 1.D, 1.B and 1.E, the total lag for J2
2 decreases

or is at most constant while |τMPS(J2
2 , t)| ≥ 3 holds, i.e., while |τMPS(J2

2 , t)| is greater

than or equal to the number of processors M. As it will be possible to deduce from the

proof of Lemma 16, the reason is that during these time intervals the MPS provides

the tasks in τMPS(J2
2 , t), and hence in τ(J2

2 , t), with a total amount of service per time

unit equal to M, while the total speed of the DPS can be at most equal to Usum ≤ M.
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In contrast, the total lag happens to grow while |τMPS(J2
2 , t)| ≤ 2, i.e., during [3,4),

because the sum of the speeds of the busy dedicated processors in the DPS happens

to be higher than 2, i.e., than the sum of the speeds of the busy processors in the MPS.

As τMPS(Ĵ, t), also τ(Ĵ, t) is well-defined also before the release time r
j
i of J

j
i .

The purpose of having these sets well-defined also before r
j
i is having the total lag

well-defined before r
j
i too. This is instrumental in our approach for computing an

upper bound to the total lag, because we compute this upper bound by following the

evolution of the total lag also during the time interval [0,r j
i ]. In particular, denoting

by ŝ the start time of Ĵ, we compute an upper bound to the total lag by induction on

the beginning of every sub-interval of [0, ŝ] during which the total lag does not grow.

In the next subsection we define the concepts we use to implement this strategy.

4.6 Growing-Lag and non-growing-Lag intervals

To compute an upper bound to the total lag, we consider, separately, the time intervals

during which the total lag grows or does not grow, respectively. To give a shorter

name to these intervals, we borrow from Devi and Anderson (2008) the capitalized

term Lag as a synonym of total lag. Using this term, we give the following definition.

Definition 9 We define as growing-Lag or non-growing-Lag interval for a portion

Ĵ ⊆ J
j
i blocked by priority and starting at time ŝ, every maximal time interval in [0, ŝ)

such that the total lag for Ĵ (Definition 8) is, respectively, strictly increasing at all

times in the interval or not increasing at any time in the interval.

During non-growing-Lag intervals the total lag may then even decrease. Fig-

ure 1.G shows non-growing-Lag intervals and, by difference, growing-Lag intervals

for the job portions blocked by priority (for the moment do not consider the numbers

above the non-growing-Lag intervals). The graph of the total lag for J2
2 in Figure 1.F

allows non-growing-Lag intervals to be immediately deduced for J2
2 . On the other

hand, the non-growing-Lag interval for the second portion of J1
4 , namely [0,2.5), can

be deduced by the fact that the deadlines of the jobs released during [0,2.5) are ear-

lier than both d4
1 and d2

2 . Then, according to Definition 3, during [0,2.5) the sets of

blocking task for the second portion of J1
4 and for J2

2 coincide. Hence, during [0,2.5)
the graph of the total lag for the second portion of J1

4 coincides with the graph of the

total lag for J2
2 in Figure 1.F.

4.7 Definitions used in the computation of an upper bound to the total lag

As we already stated, one of the main steps of the proof is computing an upper bound

to the cumulative lag, i.e., to the total lag introduced in Definition 8. We compute

this bound by induction on the start times of non-growing-Lag intervals. To this pur-

pose, we order non-growing-Lag intervals, globally, by start times, as detailed in the

following definition.



22 Paolo Valente

Definition 10 Consider the union of all the non-growing-Lag intervals for all the

portions blocked by priority. Consider then the global sequence of the start times of

these non-growing-lag intervals, i.e., the union of the sequences of the start times of

the non-growing-lag intervals for each portion blocked by priority. Given this global

sequence of start times, we define as k-th non-growing-Lag interval, with k ≥ 1, the

non-growing-Lag interval whose start time is the k-th one in the global sequence. If

two non-growing-Lag intervals start at the same time, we assume that the tie is broken

arbitrarily.

The numbers reported above non-growing-Lag intervals in Figure 1.G are an ex-

ample of a possible valid ordering. Hereafter we use the symbols bk and fk to denote

the start and finish times of the generic k-th non-growing-Lag interval [bk, fk). Note

that we assume non-growing-Lag intervals to be right-open intervals, in accordance

to the fact that a busy interval for a portion is a right-open interval, and, as we prove

in Lemma 19, terminates at the same time instant as the last non-growing Lag interval

for the portion.

To implement our proof by induction of an upper bound to the total lag, we also

use a helper quantity Λ(k). To define this quantity, we define, firstly, the maximum

total lag for the k-th non-growing-Lag interval as follows

λ (k)≡ ∑
h∈τ(Ĵk,bk)

lagh〈d̂k〉(bk), (24)

where Ĵk is the job portion for which the total lag at the start time bk of the k-th

non-growing-Lag interval is maximum, among the portions whose last non-growing-

Lag interval is [bk, fk), and d̂k is the deadline of Ĵk (i.e., the deadline of the job Ĵk

belongs to). In (24) we cannot use the short expression lagh(bk) as in Definition 8,

because the job to which Ĵk belongs may not be J
j
i as in Definition 8. As an example

of λ (k), consider the third non-growing Lag interval in Figure 1.G, i.e., the interval

[b3, f3) = [4,5.5). According to Figure 1.B, this interval is the last non-growing Lag

interval for only J2
2 . Moreover, from the graph of the total lag for J2

2 in Figure 1.F and

the values of the lags computed in the example right after Definition 5, we have that

the total lag for J2
2 is equal to 1.16 at time b3 = 4. As a consequence, λ (3) = 1.16.

Using the function λ (·), we define Λ(k) as the maximum among the values of

λ (·) at times b1, b2, . . ., bk, i.e.,

Λ(k)≡ max
1≤p≤k

λ (p). (25)

Figure 2 shows an example of how λ (k) and Λ(k) may vary with k. Note that,

since Λ(k) is the maximum possible value of the total lag at the beginning of every

non-growing-Lag interval starting in [0,bk], it is easy to show that Λ(k) is more in

general the maximum possible value of the total lag, for any job portion, at all times

in [0,bk]. Therefore, to compute an upper bound to the total lag for any possible job

portion, we compute an upper bound to Λ(k) that holds for all k.

In particular, we achieve the latter goal by computing an upper bound to λ (k)
that holds for all k, and, in more detail, we get an upper bound to λ (k) by comput-

ing an upper bound to ∑h∈τ(Ĵ,bk)
lagh(bk) that holds for any job portion Ĵ ⊆ J

j
i for
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Fig. 2: Possible graphs of λ (k) and Λ(k): λ (k) may fluctuate with k, whereas Λ(k) is

monotonically non-decreasing. In particular, for all k and for all p ≤ k, Λ(k)≥ λ (p).

which the k-th non-growing-Lag interval is the last non-growing-Lag interval (recall

that lagh(bk) = lagh〈d
j
i 〉(bk) by (23)). A non-trivial aspect related to this step is that

τ(Ĵ,bk) may contain up to all the N tasks in τ . Fortunately, exploiting the fact that

the sum ∑h∈τ(Ĵ,bk)
lagh(bk) is of course at most equal to the sum of only its positive

terms, we can upper-bound the sum ∑h∈τ(Ĵ,bk)
lagh(bk) by considering far less tasks.

In particular, we can consider only the following set of tasks.

Definition 11 Assuming that Ĵ ⊆ J
j
i is one of the job portions for which [bk, fk] is a

non-growing-Lag interval, we define τ̂ as the subset of τ(Ĵ,bk) whose tasks have a

positive lag at time bk, i.e.,

τ̂ ≡ {τh|τh ∈ τ(Ĵ,bk)∧ lagh(bk)> 0}. (26)

To simplify the notation, we have not included any dependence on k or Ĵ in the

symbol of the set. In fact, in all lemmas we always use the set τ̂ only in relation to

the k-th non-growing-Lag interval and the portion Ĵ. From (26), we have

∑
h∈τ(Ĵ,bk)

lagh(bk)≤ ∑
g∈τ̂

lagg(bk). (27)

It is then enough to compute an upper bound to the RHS of the last inequality to

get an upper bound to the total lag at the beginning of the generic k-th non-growing-

Lag interval. This simplifies the proofs, because τ̂ contains at most ⌈Usum⌉−1 tasks,

as stated in Lemma 20.

5 Proof outline

In this section we outline the proof of the harmonic bound, which we provide then in

Section 8. In particular, in this section we highlight the main lemmas. The proofs of

these lemmas are then provided in Section 8, apart from the next preliminary lemma.

Our proof of the harmonic bound moves from the following fact.



24 Paolo Valente

Lemma 3 If a job J
j
i is fully executed without interruption as it is released, then

f
j

i − d
j
i ≤ 0. Otherwise, suppose that J

j
i is still fully executed without interruption,

but starts to be executed only (right) after being blocked by precedence. In this case,

if Ĵ is the head of the chain J
j
i belongs to, and Ĵ ∈ Je

i , with e < j, we have that

f
j

i −d
j
i ≤ f e

i −de
i (28)

holds, where f e
i and de

i are the completion time and the deadline of Je
i .

Proof First, (Ci ≤ Ti)∧ (d j
i = r

j
i +Ti) =⇒ r

j
i +Ci ≤ d

j
i . Therefore, if J

j
i is started

immediately after its release time r
j
i , and executed without interruption, then f

j
i =

r
j
i + c

j
i ≤ r

j
i +Ci ≤ d

j
i . Instead, suppose that the job J

j
i is blocked by precedence

and then executed without interruption, as, e.g, J3
2 in Figure 1.B. In this case, we

prove (28) by induction, using the following relations:

f
j

i −d
j
i = f

j−1
i + c

j
i −d

j
i ≤ f

j−1
i +Ci −d

j
i ≤ f

j−1
i +Ti −d

j
i =

f
j−1

i +(r j
i − r

j
i )+Ti −d

j
i = ( f

j−1
i − r

j
i )+(r j

i +Ti)−d
j
i =

( f
j−1

i − r
j
i )+d

j
i −d

j
i = f

j−1
i − r

j
i ≤ f

j−1
i −d

j−1
i ,

(29)

where the last inequality follows from r
j
i ≥ d

j−1
i . As for a base case, if j − 1 = e,

then (28) follows directly from (29). As for an inductive step, the inductive hypothesis

is that

f
j−1

i −d
j−1
i ≤ f e

i −de
i . (30)

In this case the thesis follows by substituting (30) in (29). ⊓⊔

From this lemma we can derive the following central corollary for the proof re-

ported in this paper.

Corollary 1 A necessary condition for a job to experience a non-null tardiness is

that either (a) the last portion of the job is blocked by priority, or (b) the whole job is

executed after being blocked by precedence, and the head of the chain the job belongs

to is in its turn blocked by priority.

Proof We prove the thesis by contradiction. Suppose that the condition is false. It

implies that either the job starts as it is released (because it is not blocked for any

reason), or the job is blocked by precedence but the head of the chain it belongs to

is a whole job that starts as it is released (by definition of a head, this is the only

possibility if the head is not blocked by priority; in fact the head of a chain cannot

start right after being blocked only by precedence, because the task is not in service

right before the head starts to be executed). In the first case, the tardiness of the job

is 0 by Lemma 3, whereas in the second case it is the head to have a null tardiness by

Lemma 3. But, by the second part of Lemma 3, the tardiness of the job is therefore 0

also in the second case. ⊓⊔
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Fig. 3: Dependencies among main lemmas, and between the latter and Theorem 1.

According to Note 1 at the end of Section 2.2, the head of the chain in sub-

condition (b) in Corollary 1 is necessarily the last portion of some job. In the end,

considering this fact and sub-condition (a) in Corollary 1, to get an upper bound to

the tardiness of any job, we need to focus only on last portions blocked by priority.

This is exactly what we do in most of the proof of the harmonic bound, which con-

sists of the following two main steps. To help the reader visualize the proof flow, we

report in Figure 3 the dependencies among main lemmas, and between the latter and

Theorem 1 (the figure also shows lemmas and sub-steps that we describe later in Sec-

tion 8). Finally, the proofs the lemmas reported in the following steps are provided in

Section 8.

Step 1: compute an upper bound to the tardiness as a function of the total lag

As we discussed in Section 3, a job J
j
i may experience a positive tardiness, because

the service scheme of the MPS is sub-optimal in packing jobs on the processors so

as to fully utilize all processors. In particular, exactly because of this sub-optimal job

packing, the MPS may be also cumulatively lagging behind in executing some jobs

when J
j
i is released. Our first main step is to compute an upper bound to the tardiness

as a function of these facts.

Lemma 4 For every job J
j
i , there exists at least one integer k for which the following

inequality holds:

f
j

i −d
j
i ≤

Λ(k)

M
+

M−1

M
Ci, (31)
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where, with some abuse of notation, the denominator of the first fraction is measured

in service units per time unit6, whereas the coefficient M−1
M

is a pure number.

The quantity
Λ(k)

M
is an upper bound to the component of the difference f

j
i − d

j
i

caused by the cumulative lag of the MPS, i.e., by the total lag of the MPS with

respect to the DPS. Instead, as in the RHS of (7), the fixed component M−1
M

Ci in the

RHS of (31) accounts for the sub-optimal job packing of the MPS.

Step 2: compute an upper bound to the total lag

Whereas the fixed component M−1
M

Ci in (31) is already in closed form, the component
Λ(k)

M
is still in open form, as it depends on Λ(k). This motivates the second and last

main step of the proof: upper-bounding the component
Λ(k)

M
by computing an upper

bound to Λ(k) that holds for all k. This bound is reported in the next lemma.

Lemma 5 Let

Λ ≡ M · max
τ ′⊆τ and

|τ ′|=⌈Usum⌉−1

|τ ′|

∑
g=1

Lg′

Mτ ′
g

, (32)

then we have, for all k ≥ 1,

Λ(k)≤ max
τ ′⊆τ and

|τ ′|≤⌈Usum⌉−1

[

Mτ ′

|τ ′|+1 ·

(

Λ
|τ ′|

∑
g=1

Ug′

Mτ ′
g Mτ ′

g+1

+
|τ ′|

∑
g=1

Lg′

Mτ ′
g

)]

. (33)

We familiarized already with all the terms in (33) in Section 3, except for Λ and

Lg′ . In practice, these two terms are the counterparts of Γ and Cg′ in (5) and (6).

In more detail, Λ turns into Γ , and Lg′ turns into Cg′ after replacing (33) in (31)

(because the denominator in
Λ(k)

M
is a speed, and amounts of services are then turned

into times). This replacement is actually our final sub-step for proving Theorem 1.

Regarding the computation of the bound (33), we already said in Section 4.7

that we compute it by computing an upper bound to ∑g∈τ(Ĵ,bk)
lagg(bk) that holds for

any job portion Ĵ ⊆ J
j
i for which the k-th non-growing-Lag interval is the last non-

growing-Lag interval. In the same section, we already pointed out also that, thanks

to (27), we achieve this goal by computing an upper bound to the sum ∑g∈τ̂ lagg(bk).
The peculiarity of the proof reported in this paper lies in how we compute an

upper bound to the sum ∑g∈τ̂ lagg(bk). In this respect, we compute this upper bound

with the same two steps as in (Devi and Anderson (2005, 2008)): first, we compute a

bound to each lag in the sum ∑g∈τ̂ lagg(bk), and then we sum these per-task bounds.

But we do get a smaller value for the sum of the per-task bounds than that in (Devi

and Anderson (2005, 2008)). The reason is that we compute each per-task bound

6 The denominator of the first fraction is measured in service units per time unit to let the quantity

represented by the first fraction be measured in time units. In fact, the other component of the RHS of (31)

is measured in time units, whereas Λ(k) is measured in service units.
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using the lag-balance property, which we can now state more precisely as follows:

the upper bound to lagg(bk) for each task τg ∈ τ̂ decreases as the sum of the lags of

part of the other tasks in τ̂ increases. This internal counterbalance enables us to bring

down the value of the sum of the per-task bounds over all the tasks in τ̂ .

We state the lag-balance property formally in Lemma 24 in Section 8.3 (where

we describe the sub-steps by which we implement Step 2). Instead, in the rest of

this outline, we focus on the preliminary property from which we derive the lag-

balance property. We call this preliminary property time-balance property, and we

focus on it here, because, for not repeating similar steps twice, we use this property

also to compute the bound (31) in Step 1. For this reason, to prove this property is a

preliminary Step 0 in our proof.

Step 0: prove the time-balance property

The next lemma states the time-balance property.

Lemma 6 (Time-balance property) Given: (a) a job portion Ĵ ⊆ J
j
i blocked by pri-

ority, (b) the busy interval [b̂, ŝ) for Ĵ, (c) any time instant t1 ∈ [b̂,min{d
j
i , ŝ}), and

(d) any subset ϒ ⊆ τMPS(Ĵ, t1) not containing τi (including the empty set), we have

ŝ−d
j
i ≤

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(ŝ)− l̂

M−∑v∈ϒ Uv

, (34)

where l̂ is the size, in service units, of the part of the job J
j
i not yet executed in the

MPS by time ŝ, and the quantity M −∑v∈ϒ Uv is measured in service units per time

unit (i.e., is a speed).

The above degrees of freedom in choosing t1 andϒ are key to use the time-balance

property for proving the lag-balance property as a part of Step 2. Instead, we use the

special case t1 = b̂ and ϒ = /0 to prove Lemma 4 in Step 1.

Although the time-balance property is the cornerstone on which the harmonic

bound depends, the proof of Lemma 6 does not highlight the core properties of G-

EDF that enable the time-balance property, and hence the lag-balance property, to

hold (the proof of Lemma 6 consists only of algebraic steps). For this reason, we

devote the next section to the intuition behind the time-balance property.

6 Intuition behind the time-balance property

The time-balance property, and therefore the lag-balance property, follow from a gen-

eral balance property that G-EDF shares with any work-conserving scheduler. Here-

after we refer to this property as just the general property. In this section we provide,

first, a description of this property and an intuitive explanation of the reason why

it holds. Then we show, again intuitively, the link between the general property and

the time-balance property. The reader not interested in these aspects may skip to the

proof machinery in Section 7.
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6.1 The general property

Lemma 7 (General property) Given: (a) a job portion Ĵ ⊆ J
j
i that starts to be exe-

cuted at time ŝ, (b) any time instant t1, with t1 ≤ ŝ and such that at least M tasks have

pending jobs at all times in [t1, ŝ), (c) any subset ϒ ⊆ τ not containing τi (including

the empty set), and

1. the parameters of every task in τ and the arrival time of every job;

2. the amounts of service received by every task, by time t1, in the MPS and in the

DPS, respectively;

3. the service pattern of the DPS from time 0 on;

4. the amount of service received in the MPS by every task in τ \ϒ during [t1, ŝ);

and, assuming (for simplicity) that for every task τv ∈ ϒ the equality lagv(t) =
W DPS

v (t)−W MPS
v (t) holds at all times t in [t1, ŝ), we have that the following implica-

tion holds: if all the quantities considered in the above items 1-4 are fixed and if any

work-conserving algorithm is used to schedule jobs in the MPS, then the difference

ŝ−d
j
i decreases as the sum ∑v∈ϒ lagv(ŝ) increases.7

According to the purpose of this section, we discuss and justify Lemma 7 in-

tuitively. First, the general property is more general than the time-balance property

because, differently from Lemma 6, in Lemma 7: a) the scheduling algorithm can

be any work-conserving algorithm, including, but not limited to, G-EDF, b) t1 is not

constrained to belong to a busy interval, and c) ϒ is any subset of tasks that does not

contain τi. In particular, a task in ϒ may or may not be served during [t1, ŝ).
To visualize the property, let Scenario A and Scenario B be two generic scenarios

such that:

– for every parameter and quantity in items 1-4 in Lemma 7, the parameter or the

quantity has the same value in both scenarios;

– in Scenario A, the value of the sum of the lags ∑v∈ϒ lagv(ŝ) is higher than in

Scenario B.

The top half of Figure 4 shows the service provided by the MPS and the DPS

during [t1, ŝ) for a possible Scenario A. The execution of job portions is represented

with rectangles. In particular, the job portions of the tasks in/not in ϒ are represented

with filled/empty rectangles; apart from Ĵ, which is represented with a dark rectangle.

Finally, the bottom half of Figure 4 shows the service provided by the MPS and the

DPS in a possible Scenario B. Note that, according to item 3 in Lemma 7, the service

of the DPS is identical in both scenarios.

As for the service of the MPS in Scenario B, we can consider that each of the

parameters and the quantities in items 1-3 in Lemma 7 has the same value in both

scenarios. Therefore the only possibility for the sum ∑v∈ϒ lagv(ŝ) to be lower in Sce-

nario B (with respect to Scenario A) is that, in Scenario B, the tasks in ϒ receive

in the MPS more total service, during [t1, ŝ), than in Scenario A. Let this extra total

service be equal to ∆ service units.

7 For the sake of precision, the invariants considered in this lemma are stronger than those strictly

needed for the general property to hold. The reason why we show the property with stronger invariants is

that the general property becomes quite hard to visualize otherwise.
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Proc. A. MPS service
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Fig. 4: Example of the general property, with ϒ = {τ1,τ4}. The execution of job

portions of the tasks in/not in ϒ is represented by filled yellow/empty rectangles. In

scenario B, the tasks in ϒ receive ∆ extra units of total service in the MPS, during

[t1, ŝ), with respect to scenario A.

Since, in Scenario B, every task not belonging to ϒ receives the same amount of

service, in the MPS, as in Scenario A (by item 4), it follows that the overall total work

done by the MPS in Scenario B during [t1, ŝ) is larger than the total work done by the

MPS in Scenario A, exactly by ∆ service units. As shown by Figure 4 for the case

M = 3, this implies that in Scenario B the length of [t1, ŝ), i.e., the difference ŝ− t1,

is larger by ∆/M time units with respect to Scenario A. The reason is that the MPS

works at constant total speed M during [t1, ŝ), which, in its turn, happens because at

least M tasks have pending jobs at all times in [t1, ŝ), and the scheduling algorithm is

work-conserving.

Before completing the justification of the general property, it may be worth stress-

ing that, being the length of [t1, ŝ) in scenario B larger than in scenario A, also the
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DPS may happen to provide the tasks in ϒ with more total service in Scenario B than

in Scenario A. This implies that the difference between the values of ∑v∈ϒ lagv(ŝ) in

scenario B and scenario A may be less than ∆ , whereas one may have expected, in

the first place, that it was equal to ∆ . The exact relation between ∆ and the values of

∑v∈ϒ lagv(ŝ) is correctly taken into account (implicitly) in the proof of Lemma 6. In

any case, what matters for the general property to hold is that, if the sum of the lags

∑v∈ϒ lagv(ŝ) in Scenario B is lower than in Scenario A, then the length of [t1, ŝ) is

larger too.

To complete the justification of the property, suppose, on the opposite end, that

we move from Scenario B to Scenario A, i.e., from an original generic scenario to an

alternative scenario in which the value of every parameter and quantity in items 1-4

in Lemma 7 is again the same as in the original scenario, but in which the sum of the

lags ∑v∈ϒ lagv(ŝ) is higher, and not lower, than in the original scenario. Reversing the

above arguments and visualizing what happens through Figure 4, we deduce that now

the difference ŝ− t1 decreases by ∆/M. Putting this and the previous case together,

and considering that, being t1 fixed, the difference ŝ− d
j
i of course grows/decreases

with ŝ− t1, we get the general property as stated in Lemma 7.

6.2 From the general to the time-balance property

The time-balance property, as stated in Lemma 6, is an instance of the general prop-

erty in which: 1) the scheduling algorithm is G-EDF, 2) the time interval [t1, ŝ) is a

subset of the busy period for the job portion Ĵ, and 3) ϒ ⊆ τMPS(Ĵ, t1). The second

fact is essential for the RHS of (34) in Lemma 6 to contain a component propor-

tional to the total lag. And the presence of this component is the property that allows

us to use Lemma 6 for proving Lemma 4 in Step 1. On the other hand, the relation

ϒ ⊆ τMPS(Ĵ, t1) is instrumental in turning the time-balance property into a property

(the lag-balance property) that allows us to compute a tighter upper bound to the total

lag in Step 2.

Accordingly, also the lag-balance property, as reported in this paper in Lemma 24,

happens to be an instance of a more general lag-balance property. In fact, by re-

peating about the same steps by which we derive the lag-balance property from the

time-balance property (proof of Lemma 24), but applying these steps to the general

property instead of the time-balance property, one would obtain a general lag-balance

property that holds for any work-conserving scheduler.

On the opposite end, the time-balance property in Lemma 6 holds under more

relaxed constraints than imposing that all the parameters and quantities in items 1-

4 in Lemma 7 are fixed. In fact, for the RHS of (34) to decrease as ∑v∈ϒ lagv(ŝ)
increases, it is enough that only all the other variables in the RHS of (34) are fixed.

The time-balance property in (34) holds under the above weaker constraints, be-

cause the bound (34) is computed assuming that the DPS provides the most unfavor-

able service it could provide, i.e., the service that causes the difference ŝ−d
j
i to reach

its maximum possible value. The reader will find details in the proof of Lemma 6.

In particular, in that proof we exploit (implicitly) that fact that, after assuming that

the above worst-case DPS service occurs, the general property holds for any work-
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conserving scheduler, provided that only the parameters in item 1 in Lemma 7 and

the sum ∑h∈τ(Ĵ,t1)
lagh(t1) are fixed. Unfortunately, even if the service of the DPS is

fixed, the general property becomes however quite hard to visualize when only these

two weaker invariants hold. We do not show the property also for this case.

7 Proof machinery

As a support to the proof of the harmonic bound, in this section we provide a proof

machinery containing all the properties we need to implement the steps described in

the outline in Section 5. As the definitions in Section 4, most properties basically

coincide with corresponding properties of the machineries used in (Devi and Ander-

son (2008); Valente and Lipari (2005b)). Some properties are a little generalized with

respect to (Devi and Anderson (2008); Valente and Lipari (2005b)), to prepare the

ground for the use of the lag-balance property.

The machinery is a fairly rich collection of lemmas; therefore, although in the

following subsections we try to describe, intuitively, the role in the proof of each

property, the full picture and the contribution of every component will probably be

completely clear only after putting all the pieces together in Section 8. Alternatively,

the reader may skip directly to the proof in Section 8, and jump back to next lemmas

as needed.

7.1 Busy interval and blocking tasks

An obvious condition for Lemma 6 to hold in Step 0 is that the time instant t1 defined

in that lemma exists. The next lemma guarantees this fact.

Lemma 8 Given a job portion Ĵ ⊆ J
j
i blocked by priority and the release time r

j
i of

J
j
i , the start time b̂ of the busy interval for Ĵ belongs to [r j

i ,d
j
i ).

Proof First, b̂ ≥ r
j
i holds by Definition 2. Second, as for the remaining inequality

b̂ ≤ d
j
i , we prove it by contradiction. To this purpose, suppose that the opposite, i.e.,

b̂ > d
j
i holds, and let Θ denote the set of M jobs in execution at time b̂.

By Definition 2, all the jobs in Θ have a deadline earlier than or equal to d
j
i . Hence

they have all been released before time d
j
i . This fact, plus the fact that all the jobs in Θ

are still pending at time b̂ (recall that, according to our definition of pending, a job in

execution is still pending), imply that there exists a minimal time instant ts ∈ [r j
i ,d

j
i ],

such that all the jobs in Θ are pending throughout [ts, b̂]. Therefore, since Θ contains

M jobs, all with a deadline earlier than or equal to d
j
i , by Lemma 1 all the processors

of the MPS would have been busy executing jobs with deadlines earlier than or equal

to d
j
i throughout [ts, b̂] (i.e., executing either jobs in Θ or jobs with an even earlier

deadline). But, by Definition 2, this implies that the busy interval for Ĵ should have

started at or before time ts, which contradicts our assumption that b̂ > d
j
i (because

ts ≤ d
j
i ). ⊓⊔
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We conclude this subsection with the following property, which we use in various

lemmas to implement Step 2.

Lemma 9 Given a job portion Ĵ ⊆ J
j
i starting at time ŝ after being blocked by prior-

ity, all the tasks in τMPS(Ĵ, t) are in service (i.e., have their jobs in execution) at all

times t in every sub-interval of [0, ŝ) during which |τMPS(Ĵ, t)| ≤ M holds, whereas

only tasks in τMPS(Ĵ, t) are in service at all times t in every sub-interval of [0, ŝ)
during which |τMPS(Ĵ, t)|> M holds.

Proof The thesis trivially follows from Lemma 1 and the fact that the tasks in

τMPS(Ĵ, t) own, of course, the portions with the earliest deadlines among all the por-

tions pending during any sub-interval of [0, ŝ). ⊓⊔

7.2 Dedicated-Processor System (DPS)

The next lemma states the main property of the DPS that allows us to prove Lemma 4

in Step 1. Informally, this property says that the maximum tardiness of a job grows

with the difference between the total work that the MPS may do while the last portion

of the job waits to be started, and the total work that the DPS has to do while executing

the same job. The link between this property and Lemma 4 is that, as we also prove,

this difference is in its turn upper-bounded by a quantity that grows with Λ(k).
Before reporting the lemma, we stress two points. First, instead of providing di-

rectly an upper bound to f
j

i −d
j
i , the lemma provides an upper bound to ŝ−d

j
i for a

generic job portion Ĵ, where ŝ is the start time of Ĵ. This intermediate result will come

in handy for proving the time-balance property in Step 0. Second, the lemma refers

to two time intervals that start from a generic time instant t1 ∈ [b̂,min{d
j
i , ŝ}) (where

the upper limit min{d
j
i , ŝ} for t1 is needed to let both time intervals be well-defined,

as explained in the proof). As we already discussed in the description of Step 0, we

exploit this degree of freedom to get a tighter upper bound to the total lag in Step 2.

Lemma 10 Given a job portion Ĵ ⊆ J
j
i blocked by priority, the busy interval [b̂, ŝ)

for Ĵ, and any time instant t1 ∈ [b̂,min{d
j
i , ŝ}), we have

ŝ−d
j
i ≤

∑h∈τ W MPS
h (t1, ŝ)−∑h∈τ W DPS

h (t1,d
j
i )

M
, (35)

where: W MPS
h (t1, ŝ)

(1)
= W MPS

h (ŝ)−W MPS
h (t1), W DPS

h (t1,d
j
i )

(1)
= W DPS

h (d j
i )−W DPS

h (t1),
and the quantity M is measured in service units per time unit (i.e., is a speed).

Proof First, by Lemma 8, t1 exists. Second, both time intervals [t1, ŝ] and [t1,d
j
i ] are

well-defined, because t1 ≤ ŝ and t1 ≤ d
j
i hold by definition of t1. Then, considering

the following trivial equality: ŝ− d
j
i = (ŝ− t1)− (d j

i − t1), we prove the thesis by:

1) computing ŝ− t1 as a function of the total work done by the MPS during [t1, ŝ),

i.e., of the sum ∑h∈τ

[

W MPS
h (ŝ)−W MPS

h (t1)
]

, 2) computing a lower bound to d
j
i −

t1 as a function of the total work done by the DPS during [t1,d
j
i ], i.e., of the sum
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∑h∈τ

[

W DPS
h (d j

i )−W DPS
h (t1)

]

, and 3) subtracting this lower bound from the value

computed for ŝ− t1 in the first step.

As for the first step, all processors of the MPS are constantly busy throughout

[t1, ŝ), by definition of busy interval, and because [t1, ŝ) ⊆ [b, ŝ). Therefore, the MPS

works at constant total speed M during [t1, ŝ). It follows that

ŝ− t1 =
∑h∈τ

[

W MPS
h (ŝ)−W MPS

h (t1)
]

M

(1)
=

∑h∈τ W MPS
h (t1, ŝ)

M
, (36)

where the denominator is measured of course in service units per time unit.

Regarding the second step, and considering that, by Definition 4, the maximum

total speed of the DPS is ∑h∈τ Uh, with ∑h∈τ Uh ≤ M, we get

d
j
i − t1 ≥

∑h∈τ

[

W DPS
h (d j

i )−W DPS
h (t1)

]

M

(1)
=

∑h∈τ W DPS
h (t1,d

j
i )

M
. (37)

Subtracting (37) from (36), we get the thesis. ⊓⊔

Note that we could correctly replace M with ∑h∈τ Uh in (37), and obtain a tighter

upper bound than (35) for the case ∑h∈τ Uh < M. Instead, we use M in (37) to get

simpler formulas.

7.3 Lag

The next lemma provides us with two sufficient conditions for the quantity lagh(t) to

be equal to just the difference between the amounts of service received by the task τh

in the DPS and in the MPS. We use this property in almost all lemmas related to lags.

Lemma 11 Given a job portion Ĵ ⊆ J
j
i , if a task τh belongs to τMPS(Ĵ, t) at time t,

or, more in general, if only jobs of τh with a deadline earlier than or equal to d
j
i have

been executed by time t, then

W MPS−B
h 〈d j

i 〉(t) =W MPS
h (t), (38)

which implies lagh(t) =W DPS
h (t)−W MPS

h (t).

Proof We start by proving the thesis for the more general case where the MPS has not

yet executed any job of τh with a deadline strictly later than d
j
i by time t. This implies

W MPS
h (t) ≤ ∑m

n=1 ln
h with m defined as in Definition 5. Then (38) holds from (21).

Therefore,

lagh(t)
(23)
= lagh〈d

j
i 〉(t)

(22)
= W DPS

h (t)−W MPS−B
h (t)

(38)
= W DPS

h (t)−W MPS
h (t). (39)

As for the special case where τh belongs to τMPS(Ĵ, t) at time t, by Definition 3,

the task has at least one pending job with a deadline earlier than or equal to d
j
i at

time t. This implies that by time t the MPS has not yet executed any job of τh with a

deadline strictly later than d
j
i . Then (38) and hence (39) hold also in this case. ⊓⊔
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The next lemma tells us that, given a portion Ĵ ⊆ J
j
i , the lag lagh(t) of a task

belonging to τMPS(Ĵ, t) does not increase while the task is served in the MPS. We use

this property in two other lemmas in Step 2.

Lemma 12 Given a job portion Ĵ ⊆ J
j
i , the lag lagh(t) of a task τh decreases by at

least (1−Ui)(t2 − t1) service units in a time interval [t1, t2] during which the task

continuously belongs to τMPS(Ĵ, t) and is continuously served in the MPS.

Proof During [t1, t2], the task receives an amount of service W MPS
h (t2)−W MPS

h (t1) =
t2 − t1 in the MPS. On the other side, the amount of service W DPS

h (t2)−W DPS
h (t1)

given to the task in the DPS is at most Ui · (t2 − t1). In addition, since τh continuously

belongs to τMPS(Ĵ, t) during [t1, t2], lagh(t) = W DPS
h (t)−W MPS

h (t) holds at all t in

[t1, t2] by Lemma 11. Using these relations, we can write

lagh(t2)− lagh(t1) =
[

W DPS
h (t2)−W MPS

h (t2)
]

−
[

W DPS
h (t1)−W MPS

h (t1)
]

=
[

W DPS
h (t2)−W DPS

h (t1)
]

−
[

W MPS
h (t2)−W MPS

h (t1)
]

≤

Ui · (t2 − t1)− (t2 − t1) = (Ui −1)(t2 − t1) =−(1−Ui)(t2 − t1).

(40)

⊓⊔

The following two lemmas link the maximum lag of a task, on the start time of a

generic job portion, with how late that portion is. In the first lemma, we assume that

the length of the job the portion belongs to is maximum. As we explain in more detail

in Section 7.7, this assumption helps us simplify proofs in Step 2.

Lemma 13 Given a job portion Ĵ ⊆ J
j
i blocked by priority, and a job portion Ĵh ⊆ Jl

h

starting at time sh, and denoting by l̂h the size, in service units, of the part of the

job Jl
h not yet executed in the MPS by time sh, we have that, if: 1) the job Jl

h has the

maximum possible length, i.e., ll
h = Lh, 2) τh belongs to τMPS(Ĵ,sh), and 3) sh ≥ rl

h,

then

lagh(sh)≤ (sh −dl
h)Uh + l̂h. (41)

Proof To prove the thesis, we prove, firstly, two preliminary relations. For both rela-

tions, we use that fact that, since ll
h = Lh, the DPS continuously executes Jl

h during

[rl
h,d

l
h], by Definition 4. This implies that, by time dl

h, the DPS has finished executing

Jl
h and no subsequent job of τh. Instead, being l̂h the part of Jl

h not yet executed by the

MPS by time sh, it follows

l̂h =W DPS
h (dl

h)−W MPS
h (sh). (42)

As for the second relation, we consider two alternatives. First, sh ≤ dl
h. In this

case, from sh ≥ rl
h it follows that [sh,d

l
h] ⊆ [rl

h,d
l
h] and hence the DPS continuously

executes Jl
h during [sh,d

l
h]. This implies W DPS

h (dl
h)−W DPS

h (sh) = (dl
h − sh)Uh, which,

reversed, yields W DPS
h (sh)−W DPS

h (dl
h) = (sh − dl

h)Uh. If, instead, sh > dl
h, then the

DPS may not serve the task τh continuously during [dl
h,sh]. It follows that

W DPS
h (sh)−W DPS

h (dl
h)≤ (sh −dl

h)Uh. (43)
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In the end, the last inequality holds for any ordering between sh and dl
h. We can

now compute our bound to lagh(ŝ) with the following derivations, where the first

equality follows from Lemma 11 and the fact that τh belongs to τMPS(Ĵ,sh),

lagh(sh) =W DPS
h (sh)−W MPS

h (sh) =

W DPS
h (dl

h)−W DPS
h (dl

h)+W DPS
h (sh)−W MPS

h (sh)
rearranging

=
[

W DPS
h (sh)−W DPS

h (dl
h)
]

+
[

W DPS
h (dl

h)−W MPS
h (sh)

]
(43)

≤

(sh −dl
h)Uh +

[

W DPS
h (dl

h)−W MPS
h (sh)

] (42)
=

(sh −dl
h)Uh + l̂.

(44)

⊓⊔

Lemma 14 Given a job portion Ĵ ⊆ J
j
i blocked by priority, and a job portion Ĵh ⊆ Jl

h

that starts at time sh, with sh = rl
h (which implies that Ĵh is the first portion of Jl

h), we

have that, if τh belongs to τMPS(Ĵ,sh), then lagh(sh) = 0 holds.

Proof First, if l = 1 also holds, i.e., Jl
h is the very first job of τh, then either the

MPS or DPS have not yet executed any job of τh by time sh. In the end, W DPS
h (sh) =

W MPS
h (sh) = 0. Otherwise, if l > 1, then the DPS has finished Jl−1

h at time sh, and is

just starting to execute Jl
h. But, this is exactly the case also for the MPS. Therefore, by

time sh the MPS has provided τh with exactly the same amount of service as the DPS,

i.e., W DPS
h (sh) = W MPS

h (sh) holds. The thesis then follows from Lemma 11, because

τh belongs to τMPS(Ĵ,sh). ⊓⊔

The last property of the lag of a task that we use in Step 2 is concerned with the

possible values of this function at the time instants at which the task enters or exits

the sets τMPS(Ĵ, t) and τ(Ĵ, t).

Lemma 15 Given a job portion Ĵ ⊆ J
j
i blocked by priority, we have that, if te is a time

instant at which a task τe enters the set τMPS(Ĵ, t) or the set τ(Ĵ, t), then lage(te) = 0.

If, instead, the task τe exits τ(Ĵ, t) at time te, then lage(te)> 0.

Proof As for the case of a task entering τMPS(Ĵ, t) or τ(Ĵ, t), according to Defini-

tions 6 and 7, a task can enter τ(Ĵ, t) only by entering τMPS(Ĵ, t). Then, focusing on a

task that enters τMPS(Ĵ, t) at time te, we can note, first, that it cannot happen because

of a job completion in the MPS. In fact, when a job is completed in the MPS, either

the task has no more pending jobs in the MPS, or the next job to execute for the task

has a strictly later deadline than the just completed one. Second, if a task already has

pending jobs right before time te in the MPS, then the task cannot enter τMPS(Ĵ, t)
because of the arrival of a new job at time te either. In fact, the newly-released job has

a strictly later deadline than the pending ones.

In the end, the only possibility for a task τe to enter τMPS(Ĵ, t) at time te is that the

task has no pending job in the MPS right before time te, and a new job of the task is

released at time te. Since the DPS has certainly finished all previous jobs of the task

by time te too (by Definition 4), it follows that W DPS
e (te) = W MPS

e (te). This implies

lage(te) = 0 by Lemma 11.
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As for the exit from τ(Ĵ, t), we can consider two alternatives. First, it happens

because the task τe exits τMPS(Ĵ, t) at time te. In this case, by Definitions 6 and 7, the

only possibility for the task to not enter τDPS(Ĵ, t+e ), and hence to exit also τ(Ĵ, t), is

that lage(te) > 0. The second alternative is that τe exits τ(Ĵ, t) for a different reason

than because the task τe exits τMPS(Ĵ, t) at time te. In this second case, the only

possibility for the task to exit τ(Ĵ, t) at time te is that the task belongs to τDPS(Ĵ, te)
and exits the latter set at time te. For this to happen, lage(te)> 0 must hold, again by

Definition 6. ⊓⊔

7.4 Total lag

In Section 4.5 we highlighted that, according to Figures 1.D and 1.F, the number of

tasks in τMPS(J2
2 , t) is lower than the total utilization of the task set while the total

lag grows. This is a concrete example of the general property stated in the following

lemma.

Lemma 16 If the total lag for a job portion Ĵ ⊆ J
j
i blocked by priority is strictly

increasing at all t in [ta, tb), then |τMPS(Ĵ, t)| ≤ ⌈Usum⌉−1 holds for all t in [ta, tb).

Proof To prove the thesis, we start by considering that the total lag cannot increase

when the set τ(Ĵ, t) changes. In fact, by Lemma 15, if a task enters τ(Ĵ, t), then its

lag is zero, while if a task exits τ(Ĵ, t), then its lag is positive.

Consider then any sub-interval [t1, t2) ⊆ [ta, tb) such that neither the set τ(Ĵ, t) or

the set τMPS(Ĵ, t) change at any time in [t1, t2). If τ(Ĵ, t) changes at time t2, then, as

above noted, the total lag cannot increase at time t2. In addition, if only τMPS(Ĵ, t)
changes at time t2, then the total lag does not change at all, because the total lag is

a continuous function in all time intervals during which τ(Ĵ, t) does not change (as

lags are continuous functions). It follows that, if the thesis holds for any sub-interval

[t1, t2) defined as above, then the thesis holds also for the whole time interval [ta, tb).
Since τ(Ĵ, t) = τ(Ĵ, t1) holds for all t ∈ [t1, t2), and defining, for brevity, W MPS−B

h (t)≡

W MPS−B
h 〈d j

i 〉(t), the variation of the total lag during [t1, t2) is equal to

∑h∈τ(Ĵ,t1)
[lagh(t2)− lagh(t1)]

(22)
=

∑h∈τ(Ĵ,t1)

[

(W DPS
h (t2)−W MPS−B

h (t2))− (W DPS
h (t1)−W MPS−B

h (t1))
]

=

∑h∈τ(Ĵ,t1)

[

(W DPS
h (t2)−W DPS

h (t1))− (W MPS−B
h (t2)−W MPS−B

h (t1))
]

=

∑h∈τ(Ĵ,t1)
(W DPS

h (t2)−W DPS
h (t1))+

−∑h∈τ(Ĵ,t1)
(W MPS−B

h (t2)−W MPS−B
h (t1))

Def. 4
≤

∑h∈τ(Ĵ,t1)
Uh · (t2 − t1)−∑h∈τ(Ĵ,t1)

(W MPS−B
h (t2)−W MPS−B

h (t1))
τ(Ĵ,t1)⊆τ

≤

Usum · (t2 − t1)−∑h∈τ(Ĵ,t1)
(W MPS−B

h (t2)−W MPS−B
h (t1)) ≤

Usum · (t2 − t1)−∑h∈τMPS(Ĵ,t1)
(W MPS−B

h (t2)−W MPS−B
h (t1)),

(45)

where the last inequality follows from τMPS(Ĵ, t1) ⊆ τ(Ĵ, t1) and W MPS−B
h (t2)−

W MPS−B
h (t1) ≥ 0 for all h ∈ τ(Ĵ, t1) (by (21) and because W MPS

h (t2)−W MPS
h (t1)≥ 0).
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As for the sum in the last line in (45), by Lemma 11, we have:

∀τh ∈ τMPS(Ĵ, t1) W MPS−B
h (t) =W MPS

h (t). (46)

In addition, by Lemma 9, a number of processors at least equal to |τMPS(Ĵ, t1)| is

busy serving tasks in τMPS(Ĵ, t1) during [t1, t2). Since every processor of the MPS has

unit speed, it follows that

∑
h∈τMPS(Ĵ,t1)

(W MPS
h (t2)−W MPS

h (t1))≥ min
[

|τMPS(Ĵ, t1)|,M
]

· (t2 − t1). (47)

Replacing (46) and (47) in (45), we get

∑
h∈τ(Ĵ,t1)

[lagh(t2)− lagh(t1)]≤
{

Usum −min
[

|τMPS(Ĵ, t1)|,M
]}

· (t2 − t1). (48)

Since Usum ≤ M, the only possibility for the RHS of (48) to be strictly positive

is that |τMPS(Ĵ, t1)| < Usum. In this respect, being |τMPS(Ĵ, t1)| an integral number,

the last relation implies that |τMPS(Ĵ, t1)| can be equal at most to the largest integer

strictly lower than Usum, i.e., that |τMPS(Ĵ, t1)| ≤ ⌈Usum⌉−1. ⊓⊔

7.5 An upper bound to the extra work done by the MPS with respect to the DPS

The following lemma states that the total lag is an upper bound to the difference be-

tween the total work done by the MPS and the total work done by the DPS during the

two time intervals considered in Lemma 10. This result, combined with Lemma 10

itself, allows us to prove the bound (31) in Step 1.

Actually, the lemma provides a relation between two more general quantities than

just two total amounts of work. In fact, the relation concerns the total service given

to any subset of tasks in τ . This generalization, plus the fact that, as in Lemma 10,

the two time intervals of interest start from a generic time instant t1 ∈ [b̂,min{d
j
i , ŝ}),

are instrumental in exploiting the lag-balance property to get a tighter upper bound

to the total lag in Step 2. The proof of the lemma is relatively long, so, for ease

of exposition, we state the lemma first, and then: (a) introduce the idea behind the

proof, (b) present the per-task bounds used to prove the lemma as a separate lemma,

(c) provide the proof.

Lemma 17 Given: (a) a portion Ĵ ⊆ J
j
i blocked by priority, (b) the busy interval [b̂, ŝ)

for Ĵ, (c) any time instant t1 ∈ [b̂,min{d
j
i , ŝ}), and (d) any set of tasks ϒ that does not

contain τi, we have

∑
h∈τ\ϒ

W MPS
h (t1, ŝ)− ∑

h∈τ\ϒ

W DPS
h (t1,d

j
i )≤ ∑

h∈τ(Ĵ,t1)\ϒ

lagh(t1)− l̂, (49)

where: W MPS
h (t1, ŝ)

(1)
= W MPS

h (ŝ)−W MPS
h (t1), W DPS

h (t1,d
j
i )

(1)
= W DPS

h (d j
i )−W DPS

h (t1)

and l̂ is the size, in service units, of the part of the job J
j
i not yet executed in the MPS

by time ŝ.
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To compute an upper bound to the left-hand side (LHS) of (49), we focus on a

set of tasks with the following two properties: (1) it contains at least all the tasks,

except for those in ϒ , that are served by the MPS during [t1, ŝ], and (2) for every task

in the set, it is possible to lower-bound the service that the task receives in the DPS

during [t1,d
j
i ] as a function of the service that it receives in the MPS during [t1, ŝ]. As

for the first property, to compute the value of the first sum in the LHS of (49) it is

necessary to consider at least all the tasks served during [t1, ŝ], except for those in ϒ .

Instead, the second property allows us to lower-bound the value of the second sum in

the LHS of (49) as a function of the first sum. In particular, it allows us to prove that

the difference between the two sums is upper-bounded exactly by the RHS of (49).

To define such a set, we start from the following superset.

Definition 12 Referring to the notations in Lemma 17, we define as τ the union of

the set of tasks served during [t1, ŝ] in the MPS and of the set τ(Ĵ, t1).

The set we need is τ \ϒ , where ϒ is defined as in Lemma 17. In fact, as for the

first property, the following equality trivially holds:

∑
h∈τ\ϒ

W MPS
h (t1, ŝ) = ∑

h∈τ\ϒ

W MPS
h (t1, ŝ). (50)

On the other hand, the second property follows from the fact that the superset τ
itself enjoys the second property, as stated in the following lemma.

Lemma 18 Given: (a) a portion Ĵ ⊆ J
j
i blocked by priority, (b) the busy interval [b̂, ŝ)

for Ĵ, (c) any time instant t1 ∈ [b̂,min{d
j
i , ŝ}), and (d) the set τ in Definition 12, we

have

∀τh ∈ τ W MPS
h (t1, ŝ)≤W DPS

h (t1,d
j
i )+ lagh(t1). (51)

In addition, τi ∈ τ , and

W MPS
i (t1, ŝ)≤W DPS

i (t1,d
j
i )+ lagi(t1)− l̂, (52)

where l̂ is the size, in service units, of the part of the job J
j
i not yet executed in the

MPS by time ŝ.

Proof First, as we demonstrated at the beginning of the proof of Lemma 10, both

time intervals [t1, ŝ] and [t1,d
j
i ] are well-defined. In addition, J

j
i is pending at time t1,

by definition of t1 and by Lemma 8. Therefore τi belongs to τMPS(Ĵ, t1), and hence

to τ(Ĵ, t1). This implies that τi belongs to τ , because τ(Ĵ, t1)⊆ τ . Using this fact, we

prove the rest of the thesis by considering, separately, (a) the tasks in τ \ {τi} that

receive some service in the MPS during [t1, ŝ), (b) the task τi itself, and (c) the tasks

in τ \{τi} that do not receive any service in the MPS during [t1, ŝ).
As for the first subset, consider any task τh ∈ τ \ {τi}, for which some jobs are

executed, completely or in part, by the MPS during [t1, ŝ). These jobs have deadlines

earlier than or equal to d
j
i . This implies that, by time t1, the MPS has not yet executed

any job of τh with a deadline later than d
j
i . Therefore, by Lemma 11 we have

W MPS−B
h 〈d j

i 〉(t1) =W MPS
h (t). (53)
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Moreover, the fact that the jobs of τh executed during [t1, ŝ) have deadlines earlier

than or equal to d
j
i also implies that the DPS must have completed all of these jobs

by time d
j
i . Of course, by time d

j
i , the DPS may have executed, completely or in part,

also other jobs of τh. In the end, the following inequality holds:

W MPS
h (ŝ)≤W DPS

h (d j
i ). (54)

Using the last two relations, we can write:

W MPS
h (t1, ŝ)

(1)
= W MPS

h (ŝ)−W MPS
h (t1)

(54)

≤ W DPS
h (d j

i )−W MPS
h (t1) =

W DPS
h (d j

i )−W MPS
h (t1)+W DPS

h (t1)−W DPS
h (t1) =

[

W DPS
h (d j

i )−W DPS
h (t1)

]

+
[

W DPS
h (t1)−W MPS

h (t1)
] (1)
=

W DPS
h (t1,d

j
i )+

[

W DPS
h (t1)−W MPS

h (t1)
] (53)
=

W DPS
h (t1,d

j
i )+(W DPS

h (t1)−W MPS−B
h 〈d j

i 〉(t1))
(22)
=

W DPS
h (t1,d

j
i )+ lagh〈d

j
i 〉(t1)

(23)
= W DPS

h (t1,d
j
i )+ lagh(t1).

(55)

Consider now τi. The DPS must of course have finished J
j
i by time d

j
i , whereas the

MPS has still to execute at least l̂ service units of that job at time ŝ, i.e., W MPS
i (ŝ) ≤

W DPS
i (d j

i )− l̂ holds. Setting h = i in (55), and replacing the last inequality instead

of (54), we get (52).

We are left now with the tasks in τ \ {τi} whose jobs are not executed at all by

the MPS during [t1, ŝ). If τh is one such task, we have W MPS
h (t1, ŝ) = 0. In addition, if

lagh(t1) ≥ 0 holds for the task, then W DPS
h (t1,d

j
i )+ lagh(t1) ≥ 0 trivially holds. The

last inequality implies that (51) holds as well, because Wh(t1, ŝ) = 0.

On the other hand, in the case where lagh(t1) < 0 holds, we can consider that,

by (23), (22) and (21), lagh(t1)≥W DPS
h (t1)−∑m

n=1 ln
h , i.e., |lagh(t1)| is equal at most

to the sum of the sizes of the job portions, with a deadline earlier than or equal to

d
j
i , that the DPS has still to execute at time t1. This sum is in its turn at most equal

to W DPS
h (t1,d

j
i ), because during [t1,d

j
i ] the DPS must finish both these job portions

and possible other jobs of τh, released during [t1,d
j
i ) and with a deadline earlier than

or equal to d
j
i . In the end, also in this case, W DPS

h (t1,d
j
i )+ lagh(t1)≥ 0 holds, which,

combined with Wh(t1, ŝ) = 0, proves (51) again. ⊓⊔

Of course τ(Ĵ, t1) and hence τ may not contain all the tasks that receive service

in the DPS during [t1,d
j
i ]. Thus the bounds (51) and (52) may be loose in some

scenarios. This is not however a problem, because we are interested in worst-case

scenarios. Using the relations proved so far, we can now prove Lemma 17.



40 Paolo Valente

Proof (Lemma 17) Considering that, by Lemma 18, τ contains τi, we have

∑h∈τ\ϒ W MPS
h (t1, ŝ)

(50)
= ∑h∈τ\ϒ W MPS

h (t1, ŝ)
rearranging

=

∑h∈τ\(ϒ∪{i})W
MPS
h (t1, ŝ)+W MPS

i (t1, ŝ)
(51)+(52)

≤

∑h∈τ\(ϒ∪{i})

(

W DPS
h (t1,d

j
i )+ lagh(t1)

)

+W DPS
i (t1,d

j
i )+ lagi(t1)− l̂

rearranging
=

∑h∈τ\ϒ W DPS
h (t1,d

j
i )+∑h∈τ\ϒ lagh(t1)− l̂

τ⊆τ
≤

∑h∈τ\ϒ W DPS
h (t1,d

j
i )+∑h∈τ\ϒ lagh(t1)− l̂

τ(Ĵ,t1)⊆τ
=

∑h∈τ\ϒ W DPS
h (t1,d

j
i )+∑h∈τ(Ĵ,t1)\ϒ

lagh(t1)+

+∑h∈(τ\τ(Ĵ,t1))\ϒ
lagh(t1)− l̂.

(56)

From (56), we have that the thesis holds if ∑h∈(τ\τ(Ĵ,t1))\ϒ
lagh(t1)≤ 0 holds. We

prove the latter inequality by proving that lagh(t1) ≤ 0 holds for every task τh in

(τ \τ(Ĵ, t1))\ϒ . To this purpose, we prove, as a first step and by contradiction, that τh

cannot have pending jobs at time t1. Suppose then that τh has some pending job in the

MPS at time t1. It follows that one or more of these pending jobs are executed, at least

in part, during [t1, ŝ). In fact, by definition of τ , for τh to belong to (τ \ τ(Ĵ, t1)) \ϒ ,

the task must receive some service during [t1, ŝ). But the deadline of the jobs executed

during [t1, ŝ) has to be earlier than or equal to d
j
i , by Definition 2. This implies that τh

belongs to τMPS(Ĵ, t1) and therefore to τ(Ĵ, t1) as well, by Definitions 3 and 7. This

contradicts the fact that τh belongs to (τ \ τ(Ĵ, t1))\ϒ .

Now, since τh has no pending job in the MPS at time t1, then W MPS
h (t1)≥W DPS

h (t1)
holds. In addition, we can consider that, according to the above arguments, jobs of

τh with a deadline earlier than or equal to d
j
i are executed during [t1, ŝ). Since these

jobs are released after time t1, it follows that no job with a strictly later deadline than

d
j
i may have been released by time t1. Therefore, at time t1 the DPS can have served

only jobs with a deadline earlier than or equal to d
j
i . From this fact and the inequality

W MPS
h (t1)≥W DPS

h (t1) it follows that lagh(t1)≤ 0 by (22). ⊓⊔

7.6 Busy intervals are subsets of non-growing-Lag intervals

By comparing figures 1.C and 1.G, we can see that the busy interval for each portion

blocked by priority happens to be a sub-interval of the last non-growing-Lag interval

for the same portion. This is not an accident, but a general property, as stated in the

following lemma.

Lemma 19 The busy interval [b̂, ŝ) for a job portion Ĵ blocked by priority is a sub-

interval of the last non-growing-Lag interval for that portion. In particular, if the last

non-growing-Lag interval for Ĵ is [bk, fk), then b̂ ≥ bk, fk = ŝ and

∀t1 ∈ [b̂, ŝ) ∑
h∈τ(Ĵ,t1)

lagh(t1)≤ ∑
h∈τ(Ĵ,bk)

lagh(bk). (57)
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Proof Since the last non-growing Lag interval for Ĵ must finish before time ŝ by

Definition 9, we have that, if (57) holds, then the first part of the lemma holds,

i.e., [b̂, ŝ) ⊆ [bk, fk) and fk = ŝ. To prove (57), we can consider that, by definition

of busy interval, |τMPS(Ĵ, t1)| ≥ M > ⌈Usum⌉− 1 holds for all t1 in [b̂, ŝ). Therefore,

by Lemma 16, (57) holds for all t1 in [b̂, ŝ). ⊓⊔

Thanks to the last lemma, the total lag at any time instant in a busy interval is not

higher than the total lag at the beginning of the non-growing-Lag interval the busy

interval belongs to. This is a necessary condition in our proof of an upper bound to

Λ(k) in Step 2.

7.7 Reduced set of tasks used to upper-bound the total lag in Step 2

In this subsection we report the properties of the set τ̂ defined in Definition 11, plus

several abbreviations and assumptions that help simplify the proof of an upper bound

to Λ(k) in Step 2. We start by the following lemma.

Lemma 20 Suppose that the k-th non-growing-Lag interval is a non-growing-Lag

interval for a job portion Ĵ ⊆ J
j
i blocked by priority.

1. If bk = 08 or k = 1, then τ̂ = /0 and hence ∑h∈τ(Ĵ,bk)
lagh(bk)≤ 0.

2. Otherwise, defining as b̃q the beginning of the growing-Lag interval for Ĵ that

terminates at time bk,

(a) for every task τg in τ̂ , there exists a minimal time instant sg such that sg ≤ b̃q,

and τg is served in the MPS at all times t in [sg,bk) and belongs to τMPS(Ĵ, t)
at all times t in [sg,bk];

(b) denoting by Ĵg ⊆ Jl
g the head of the chain of τg that starts at time sg, we have

that sg > rl
g holds (rl

g is the release time of Jl
g), and Ĵg is blocked by priority;

(c) the set τ̂ is made of at most ⌈Usum⌉−1 tasks.

Proof As for item 1, if bk = 0 the thesis holds trivially. Instead, we prove the thesis

for k = 1 after proving item 2.a. Regarding item 2.a, consider any task τg ∈ τ̂ . By

Definitions 6 and 7, for τg to belong to τ̂ ⊆ τ(Ĵ,bk), and, at the same time, have a

positive lag at time bk (as provided by (26)), τg must belong to τMPS(Ĵ,bk), because

τDPS(Ĵ,bk) contains only tasks with a non-positive lag. In particular, by Definition 3,

this implies that τg has at least one pending job at time bk. Defining as tg the minimum

time instant such that [tg,bk] is a maximal time interval during which τg has always

pending jobs in the MPS, from the previous property we have that this time instant

exists (as a degenerate case, tg = bk). We prove item 2.a using tg. In particular, we

prove, first, that at all times t in the intersection [tg,bk)∩ [b̃q,bk), the task τg is being

served in the MPS and belongs to τMPS(Ĵ, t). Then we prove that tg < b̃q, and that

this inequality plus the previous property imply item 2.a.

As for the first step, from the fact that τg belongs to τMPS(Ĵ,bk), i.e., owns at least

one pending job with a deadline earlier than or equal to d
j
i in the MPS at time bk, and

8 Multiple non-growing-Lag intervals for different job portions may start at time 0, hence bk = 0 may

hold even for k > 1.
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the fact that, by definition of tg, τg has always pending jobs in the MPS throughout

[tg,bk], it follows that τg has always at least one pending job with a deadline earlier

than or equal to d
j
i in the MPS throughout [tg,bk] (because the jobs of any task are

both released and executed in increasing-deadline order). But, still by Definition 3,

this implies that τg belongs to τMPS(Ĵ, t) at all times t in [tg,bk]. In this respect, the

intersection [tg,bk]∩ [b̃q,bk) is a growing-Lag interval by definition of b̃q. Therefore,

by Lemma 16, τMPS(Ĵ, t) ≤ ⌈Usum⌉− 1 < M at all times t in [tg,bk]∩ [b̃q,bk). This

relation and the fact that τg belongs to τMPS(Ĵ, t) at all times t in [tg,bk] imply that τg

is continuously served during [tg,bk]∩ [b̃q,bk) by Lemma 9.

As for the second step, we consider first that, if tg < b̃q, then there exists a time

instant sg such that tg ≤ sg ≤ b̃q and τg is constantly in service during [sg,bk). In fact,

as a degenerate case, sg = b̃q, because from the previous step and tg < b̃q we have

that τg is constantly in service at least during [b̃q,bk). We prove then that sg exists by

proving, by contradiction, that tg < b̃q. Suppose that tg ≥ b̃q holds. By definition of

tg, τg starts to have pending jobs at time tg. As a consequence, according to what we

proved in the previous step, τg enters τMPS(Ĵ, t) at time tg, and therefore lagg(tg) = 0

holds by Lemma 15. This finally implies lagg(bk)≤ 0 by Lemma 12 and because τg

is constantly served, and continuously belongs to τMPS(Ĵ, t), during [tg,bk). But this

is absurd by (26). In the end, the above-defined time instant sg exists.

The fact that τg is constantly served during [sg,bk) also implies that sg has pending

jobs also throughout [sg, b̃q). In this respect, the jobs of τg executed before time b̃q

have of course a deadline earlier than or equal to that of the job of τg in execution

at time b̃q. As a consequence, since τg belongs to τMPS(Ĵ, b̃q), then τg continuously

belongs to τMPS(Ĵ, t) also during [sg, b̃q). This completes the proof of item 2.a.

We prove now item 2.b. Using the same arguments as above, we also have, again

by Lemma 12 and since τg is continuously served during [sg,bk), that for τg to have

a strictly positive lag at time bk, the lag of the task must be strictly positive at time

sg. For this to happen, by Lemma 14, sg > rl
g must hold. In this respect, by definition

of a head, the only possibility for the head Ĵg to start after time rl
g is that the head is

blocked by priority.

As for item 2.c, from item 2.a we have that every task τg of τ̂ constantly belongs

to τMPS(Ĵ, t) during [sg,bk), and hence during [b̃q,bk). But, by Lemma 16, |τ̂ | ≤
⌈Usum⌉−1 at all times during [b̃q,bk) (because [b̃q,bk) is a growing-Lag interval).

We can finally prove also the sub-case k = 1 of item 1. If k = 1, then the k-th non-

growing-Lag interval is the very first non-growing-Lag interval. As a consequence,

by Lemma 19, no job may have been blocked by priority before time bk. Thanks to

item 2.b, τ̂ is therefore the empty set. ⊓⊔

In Figure 5 we show an example of the chains of the tasks in τ̂ in execution at

the beginning b̃q of the growing-Lag interval that precedes the k-th non-growing-

Lag interval [bk, fk). The MPS has 7 processors. Rectangles represent job portions

executed on the processors as in Figure 1.B. We assume that the non-growing-Lag

interval [bk, fk) shown in Figure 5 is the last non-growing-Lag interval for a portion

Ĵ ⊆ J
j
i blocked by priority. The portion Ĵ is depicted as a filled, dark rectangle. Some

rectangles are drawn with dashed lines during [b̃q,bk), meaning that the portions they

represent may or may not be executed during [b̃q,bk). In fact, by Lemma 16, what
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Fig. 5: Chains of tasks in τ̂ . Rectangles represent job portions executed on processors.

In particular, the dark rectangle represents the execution of the portion Ĵ blocked by

priority, whose last non-growing-Lag period is [bk, fk), whereas filled light rectangles

represent the chains, of the tasks in τ̂ , in execution at the beginning b̃q of the growing-

Lag interval that precedes [bk, fk).

matters for [b̃q,bk) to be a growing-Lag period, is only that these portions have a

strictly later deadline than d
j
i . In the figure we assume that |τ̂ |= 4, and we represent

the chains, in execution at time b̃q, of the four tasks in τ̂ with filled, light rectan-

gles. Note that the figure shows the possible case where a chain happens to terminate

exactly at time bk (on P4). The figure also shows other information that we use later.

We introduce now some abbreviations and assumptions that we use in the rest

of this paper to simplify the proofs. With the following assumptions we do not lose

generality, because we just change the values of the indexes of the tasks in τ̂ .

Assumption 1 For each task τg ∈ τ̂ , hereafter we refer to its chain in execution at

time b̃q (with b̃q defined as in Lemma 20) as just its chain, and we denote by sg the

start time of the chain. Second, we suppose that τ̂ = {τ1,τ2, . . . ,τG}, and s1 ≤ s2 ≤
. . .≤ sG holds, i.e., that the indexes of the tasks in τ̂ are ordered by the start times of

the chains. In particular, for two consecutive tasks τv and τv+1, both belonging to τ̂
and such that their chain heads both start at the same time sv = sv+1, we assume that

the chain head of τv has a deadline earlier than or equal to that of the chain head of

τv+1. Finally, we also assume that the chain starting at time sg, with 1 ≤ g ≤ G, is

executed on the g-th processor.

By Assumption 1 and item 2.c in Lemma 20, we have

G = |τ̂| ≤ ⌈Usum⌉−1. (58)

In Figure 5 the start times of the chains and the allocation of the chains on the

processors do reflect Assumption 1. Note also that each chain head starts in a time

interval during which all the processors are busy. This happens because, by item 2.b

of Lemma 20, the heads of the chains are all blocked by priority.

Basing on Assumption 1, we can prove the following general property on the

sum of the variations of the lags of the tasks in τ̂ . This property comes in handy in a

number of proofs.

Lemma 21 Given an integer g with 2≤ g≤ G, and g−1 time instants t1, t2, . . ., tg−1,

with tv ∈ [sv,bk), the following relation holds:

∀ t ∈ ( max
1≤v≤g−1

tv,bk)
g−1

∑
v=1

lagv(tv, t)≤ 0. (59)
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Proof From tv ∈ [sv,bk) for all v ∈ {1,2, . . . ,g − 1}, we have that, for all

t ∈ (max1≤v≤g−1 tv,bk) and all v ∈ {1,2, . . . ,g− 1}, the following inclusions hold:

[tv, t) ⊆ [tv,bk) ⊆ [sv,bk). As for the time interval [sv,bk), we have that τv is contin-

uously served and continuously belongs to τMPS(Ĵ, t) during [sv,bk), by item 2.a of

Lemma 20. From this fact and [tv, t) ⊆ [sv,bk), we have that lagv(tv, t)
(1)
= lagv(t)−

lagv(tv)≤ 0 by Lemma 12. Replacing the last inequality in the LHS of the inequality

in (59), we get the thesis. ⊓⊔

As we already said in the description of Step 0, we use the time-balance property

stated in Lemma 6 to compute a lag-balance property that, in its turn, allows us to get

a tighter upper bound to the total lag. The following lemma reports both the subset

ϒg that we use to obtain the lag-balance property from the time-balance property, and

a time instant tmax
g that allows us to use Lemma 6 with this subset, i.e., such that the

hypotheses of Lemma 6 hold with ϒ =ϒg after setting t1 = tmax
g . Since it may not be

easy to visualize the job portions and the time instants considered in the lemma and

in its proof, we show an example before proving the lemma.

Lemma 22 Given a task τg ∈ τ̂ with g > 1, and defining: Ĵg ⊆ Jl
g as the head of the

chain of τg, ϒg ⊆ {τ1,τ2, . . . ,τg−1} as any subset of the first g− 1 tasks in τ̂ , b̂v as

the beginning, for each task τv ∈ ϒg ∪ {τg}, of the busy interval of the job portion

of τv in execution at time sg, and tmax
g ≡ maxτv∈ϒg∪{τg} b̂v, we have that: (1) tmax

g ∈

[b̂g,min{sg,d
l
g}), and (2) ϒg ⊆ τMPS(Ĵg, t

max
g ).

Suppose that the chains of the tasks in τ̂ in Lemma 22 are those shown in Figure 5,

and that g = 3 and ϒ3 = {τ1,τ2}. With these assumptions, the job portions of the tasks

in ϒ3 in execution at time sg = s3 are the ones in execution on processors P1 and P2

at time s3.

Proof We start by proving item 1, i.e., that b̂g ≤ tmax
g and tmax

g < min{sg,d
l
g} hold.

The first inequality trivially holds by definition of tmax
g . As for the second inequality,

we prove first that tmax
g < sg and then that tmax

g < dl
g. Regarding tmax

g < sg, since the

heads of the chains of the tasks in τ̂ are all blocked by priority, we have that b̂v < ŝv

for all τv in ϒg ∪ {τg}. Therefore, by definition of tmax
g , tmax

g = maxτv∈ϒg∪{τg} b̂v <
maxτv∈ϒg∪{τg} ŝv = sg, where the last equality follows from Assumption 1.

Given a task τv ∈ϒg, let Ĵu be the portion of the task in execution at time sg, and

let ŝu and d̂u be the start time and the deadline of Ĵu. Figure 5 shows both Ĵu and ŝu

assuming g = 3 and v = 2. Since Ĵg is blocked by priority at least right before time

sg (by item 2.b of Lemma 20), but Ĵu is already in execution by time sg (time s3 in

Figure 5), we have that d̂u ≤ dl
g must hold, by Lemma 1, for Ĵg not to preempt Ĵu

before time sg. Now let Ĵv be the head of the chain Ĵu belongs to, namely the portion

of τ2 starting at time s2 in Figure 5. If d̂v is the deadline of Ĵv, then we also have that

d̂v ≤ d̂u (because either Ĵu = Ĵv or Ĵv belongs to a previous job, of τv, than that Ĵu

belongs to). Combining this inequality with d̂u ≤ dl
g, we get d̂v ≤ dl

g.

Since the last inequality holds for any task τv ∈ϒg, it follows that, denoting by d̂v

the deadline of the head of the chain of each task τv ∈ϒg in execution at time sg, and
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defining d̂g ≡ dl
g, we have ∀τv ∈ϒg ∪{τg} d̂v ≤ dl

g. Considering also Lemma 8, this

implies that ∀τv ∈ϒg ∪{τg}, b̂v < d̂v ≤ dl
g. As a consequence, by definition of tmax

g ,

tmax
g = maxτv∈ϒg∪{τg} b̂v < dl

g.

We prove now item 2, i.e., that every task τv in ϒg belongs to τMPS(Ĵg, t
max
g ).

Consider the chain of a task τv ∈ ϒg in execution at time sg and the deadline d̂u of

the above-defined portion Ĵu in execution at time sg. As shown in Figure 5 for g = 3

and v = 2, the set of the portions of the chain of τv executed during [sv,sg] ([s2,s3]
in the figure) consists of Ĵu, plus possible other portions executed before Ĵu (if Ĵu is

not the head of the chain). The latter portions therefore belong to previous jobs of τv,

with respect to the job Ĵu belongs to. As a consequence, since we already proved that

d̂u ≤ dl
g, all these portions have a deadline earlier than or equal to dl

g.

Thanks to the above property, and by definition of τMPS(Ĵg, t) (Definition 3), to

prove item 2 we prove that at least one of these portions is pending in the MPS at

time tmax
g . To this purpose, suppose first that tmax

g < sv (i.e., tmax
g < s2 in Figure 5).

In this case we can consider that, by definition, tmax
g ≥ b̂v, and, by Lemma 8, b̂v is at

least equal to the release time of the job Ĵv belongs to. As a consequence, the head Ĵv

is already pending (although still blocked by priority) at time tmax
g . As for the other

alternative, namely tmax
g ≥ sv, we already proved, at the beginning of this proof, that

tmax
g < sg also holds. In the end, tmax

g ∈ [sv,sg) (namely, tmax
g ∈ [s2,s3) in Figure 5),

i.e., one of the portions of τv executed during [sv,sg] is executing, and thus pending

(according to our definition of pending), at time tmax
g . Thus, in both alternatives, a

portion with a deadline earlier than or equal to dl
g is pending at time tmax

g . ⊓⊔

To further simplify proofs, we make also the following last assumption in the

lemmas by which we compute an upper bound to the total lag.

Assumption 2 Given any job portion Ĵ ⊆ J
j
i blocked by priority, and: (a) assuming

that the k-th non-growing Lag interval is the last non-growing Lag interval for that

portion, (b) making Assumption 1, and (c) denoting, for every task τg in τ̂ , by Jl
g the

job to which the head of the chain of τg starting at time sg belongs, we assume that

ll
g = Lg holds.

This assumption does not affect the correctness of the proof of the harmonic

bound. When needed, we use the following lemma to prove this fact.

Lemma 23 Suppose that the k-th non-growing-Lag interval is a non-growing-Lag

interval for a job portion Ĵ ⊆ J
j
i blocked by priority, and consider any task τg ∈ τ̂ .

Let Ĵg ∈ Jl
g be the head of the chain of τg starting at time sg. If the length of Jl

g is

strictly lower than the maximum possible job length for the task, i.e., l
j
g < Lg, then

the start time ŝ of the portion Ĵ does not decrease if the job Jl
g is replaced with a job

with a length equal to Lg (without changing any other parameter).

Proof Let Jg be the long job with which the shorter job Jl
g is replaced. For brevity,

we call true scenario the original scenario, and artificial scenario the one in which

Jl
g is replaced with Jg. Since this replacement does not change either the deadline of

any job, or the length of any job but Jl
g, it follows that, by Lemma 1, the schedule of

all the jobs in the MPS during [0,sg] is exactly the same in both scenarios.
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Consider then the time interval [sg,bk). By item 2.a of Lemma 20 (and as shown

in Figure 5 for every task in {τ1,τ2,τ3,τ4}), in both scenarios the g-th processor is

constantly busy serving task τg during [sg,bk). In addition, in both scenarios, all the

parameters of all the jobs of all the tasks but τg are the same. Thus, during [sg,bk), the

schedule of all the jobs of all the tasks but τg is exactly the same in both scenarios.

In particular, this implies that the value of bk is the same in both scenarios, because,

by Lemma 16, the k-th non-growing-Lag period starts when at least a new task enters

τMPS(Ĵ, t), and τg already belongs to τMPS(Ĵ,bk) by item 2.a of Lemma 20.

As a last step, we analyze what happens during [bk, ŝ]. To this purpose, we define,

firstly, as fg the time instant at which the chain of τg terminates. Since the parameters

of all the jobs but Jl
g are the same in both scenarios, whereas the head Ĵg is longer

in the artificial scenario (because Jg is longer than Jl
g and the schedule of the jobs of

τg is identical in both scenarios up to time sg), it follows that the value of fg in the

artificial scenario cannot be lower than in the true scenario. Consider for example the

chain of τ1 in Figure 5, and visualize what happens after increasing the size of the

portion of τ1 that starts at time s1.

We consider now two alternatives for the true scenario. The first is that fg ≥ ŝ.

This is what happens, e.g., with the chain of τ2 in Figure 5. As highlighted by the

figure, since Ĵ is blocked by priority, and hence τi cannot be in service right before

time ŝ, τg 6= τi holds. Moreover, recall that, in the artificial scenario, fg cannot be

lower than in the true scenario. Finally, the parameters of all the jobs but Jl
g are the

same in both scenario. In the end, during [bk, ŝ] the schedule of all the job portions

of all the tasks but τg is exactly the same in both scenarios. Therefore ŝ has the same

value in both scenarios.

Finally, consider the second alternative, i.e., fg < ŝ. This is what happens in Fig-

ure 5 for all the chains except for that of τ2. According to the above arguments, the

amount of service received by every task by time bk is exactly the same in both sce-

narios. In addition, in the artificial scenario the value of fg cannot be lower than in

the true scenario. Considering also that the parameters of all the jobs but Jl
g, which

becomes longer, are the same in both scenarios, it follows that, in the artificial sce-

nario, the MPS cannot have less work to do during [bk, ŝ] than in the true scenario. To

visualize this fact, suppose that τg = τ1 in Figure 5, and imagine that, in the artificial

scenario, the chain of τ1 terminates at the same time as or later than in the true sce-

nario. In the end, since the MPS works at constant total speed M during [bk, ŝ] in both

scenarios, in the artificial scenario ŝ cannot be lower than in the true scenario. ⊓⊔

8 Proof of the harmonic bound

Using the machinery provided in Section 7, in this section we prove Theorem 1 by

the steps outlined in Section 5 (and shown in Figure 3).

8.1 Step 0: prove the time-balance property

Step 0 consists in proving Lemma 6 (Section 5). For the reader’s convenience, we

sum up the statement of the lemma before providing the proof. Given: (a) the busy
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interval [b̂, ŝ) for a portion Ĵ ⊆ J
j
i , (b) any time instant t1 ∈ [b̂,min{d

j
i , ŝ}), and (c)

any subset ϒ ⊆ τMPS(Ĵ, t1) not containing τi, including the empty set, we have

ŝ−d
j
i ≤

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(ŝ)− l̂

M−∑v∈ϒ Uv

, (60)

where l̂ is the size, in service units, of the part of the job J
j
i not yet executed in the

MPS by time ŝ.

Proof (Lemma 6) We start from (35) and split both the work done by the MPS and the

work done by DPS into two components: total service provided to the tasks in τ \ϒ ,

and total service provided to the tasks in ϒ . This split helps us let the time-balance

property emerge. We have then the following relations, where the inclusion on the

last equality follows from ϒ ⊆ τMPS(Ĵ, t1)⊆ τ(Ĵ, t1),

ŝ−d
j
i

(35)

≤
∑h∈τ W MPS

h
(t1,ŝ)−∑h∈τ W DPS

h
(t1,d

j
i )

M

splitting
=

∑h∈τ\ϒ W MPS
h

(t1,ŝ)+∑v∈ϒ W MPS
v (t1,ŝ)−∑h∈τ\ϒ W DPS

v (t1,d
j
i )−∑v∈ϒ W DPS

v (t1,d
j
i )

M

moving
terms=

(

∑h∈τ\ϒ W MPS
h

(t1,ŝ)−∑h∈τ\ϒ W DPS
v (t1,d

j
i )
)

+∑v∈ϒ W MPS
v (t1,ŝ)−∑v∈ϒ W DPS

v (t1,d
j
i )

M

(49)

≤
(

∑h∈τ(Ĵ,t1)\ϒ
lagh(t1)−l̂

)

+∑v∈ϒ W MPS
v (t1,ŝ)−∑v∈ϒ W DPS

v (t1,d
j
i )

M

ϒ⊆τ(Ĵ,t1)
=

(

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(t1)−l̂

)

+∑v∈ϒ W MPS
v (t1,ŝ)−∑v∈ϒ W DPS

v (t1,d
j
i )

M
.

(61)

The last two terms in the numerator of the last line of (61) enable us to let the

time-balance property come into play. To this purpose, first we rewrite these terms as

follows:

∑v∈ϒ W MPS
v (t1, ŝ)−∑v∈ϒ W DPS

v (t1,d
j
i )

(2)
=

∑v∈ϒ W MPS
v (t1, ŝ)−∑v∈ϒ

[

W DPS
v (t1, ŝ)+W DPS

v (ŝ,d j
i )
]

rearranging
=

−
{

∑v∈ϒ [W
DPS
v (t1, ŝ)−W MPS

v (t1, ŝ)]
}

−∑v∈ϒ W DPS
v (ŝ,d j

i ).

(62)

Now, from ϒ ⊆ τMPS(Ĵ, t1) it follows that the MPS can have executed, by time

t1 and for any task in ϒ , only jobs with a deadline earlier than or equal to d
j
i . The

same then holds also by time ŝ, because, by Definition 2, the MPS can execute only

jobs with a deadline earlier than or equal to d
j
i during [t1, ŝ). As a consequence, by

Lemma 11,

∀τv ∈ϒ lagv(t1, ŝ) =
[

W DPS
v (ŝ)−W MPS

v (ŝ)
]

−
[

W DPS
v (t1)−W MPS

v (t1)
]

=
[

W DPS
v (ŝ)−W DPS

v (t1)
]

−
[

W MPS
v (ŝ)−W MPS

v (t1)
] (1)
= W DPS

v (t1, ŝ)−W MPS
v (t1, ŝ).

(63)

Replacing (63) in the last line of (62), we get

∑v∈ϒ W MPS
v (t1, ŝ)−∑v∈ϒ W DPS

v (t1,d
j
i ) =

−∑v∈ϒ lagv(t1, ŝ)+∑v∈ϒ W DPS
v (d j

i , ŝ)
Def. 4
≤

−∑v∈ϒ lagv(t1, ŝ)+(s−d
j
i )∑v∈ϒ Uv.

(64)
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Finally, replacing (64) in the last line of (61), we have

ŝ−d
j
i ≤

(

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(t1)−l̂

)

−∑v∈ϒ lagv(t1,ŝ)+(s−d
j
i )∑v∈ϒ Uv

M

rearranging
⇐⇒

(ŝ−d
j
i )

M−∑v∈ϒ Uv

M
≤

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(t1)−∑v∈ϒ lagv(t1,ŝ)−l̂

M

(3)
⇐⇒

(ŝ−d
j
i )

M−∑v∈ϒ Uv

M
≤

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(ŝ)−l̂

M

solving for

ŝ−d
j
i⇐⇒

ŝ−d
j
i ≤

∑h∈τ(Ĵ,t1)
lagh(t1)−∑v∈ϒ lagv(ŝ)−l̂

M−∑v∈ϒ Uv
.

(65)

⊓⊔

8.2 Step 1: compute an upper bound to the tardiness as a function of the total lag

Step 1 consists in proving Lemma 4. For the reader’s convenience, we sum up also

the statement of Lemma 4 before giving the proof. For every job J
j
i , there exists at

least one integer k for which the following inequality holds:

f
j

i −d
j
i ≤

Λ(k)

M
+

M−1

M
Ci. (66)

Proof (Lemma 4) By Corollary 1, if none of the following two conditions holds,

then f
j

i − d
j
i ≤ 0, and hence (66) trivially holds: (a) the last portion of J

j
i is blocked

by priority, or (b) J
j
i is wholly executed without interruption after being blocked by

precedence right before starting, and the head of the chain J
j
i belongs to is in its turn

blocked by priority. We complete then the proof by demonstrating that (66) holds also

if any of the these two conditions holds.

About the first condition, suppose that: Ĵ ⊆ J
j
i is the last portion of J

j
i , [b̂, ŝ) is the

busy interval of Ĵ, and [b̂, ŝ) belongs to the k-th non-growing-Lag interval [bk, ŝ). Let

ĉ and l̂ denote, respectively, the time needed to execute Ĵ on a unit-speed processor

and the length of Ĵ in service units. It follows that ĉ is numerically equal to l̂, but it is

measured in time units instead of service units. With some abuse of notation, we can

write, concisely, that l̂
M

= ĉ
M

, assuming that the denominator is a speed in the first

fraction and a pure number in the second. Using this equality, plus Lemma 6 with

ϒ = /0 and t1 = b̂, we get

ŝ−d
j
i

Lemma 6
≤

∑h∈τ(Ĵ,b̂) lagh(b̂)−l̂

M
. (67)

Using this inequality, we can write:

f
j

i −d
j
i = ŝ+ ĉ−d

j
i = ŝ−d

j
i + ĉ

(67)

≤
∑h∈τ(Ĵ,b̂) lagh(b̂)−l̂

M
+ ĉ

(57) with

t1=b̂

≤
∑h∈τ(Ĵ,bk)

lagh(bk)−l̂

M
+ ĉ

(25)

≤ Λ(k)−l̂

M
+ ĉ = Λ(k)

M
− l̂

M
+ ĉ =

Λ(k)
M

− ĉ
M
+ ĉ = Λ(k)

M
+ M−1

M
ĉ ≤ Λ(k)

M
+ M−1

M
Ci.

(68)

Instead, if the second condition holds, let Je
i , with e < j, be the job the head

of the chain belongs to. We denote then as f e
i and de

i the completion time and the
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deadline of Je
i . Since the head is blocked by priority and, according to the final note

in Section 2.2, is the last portion of the job Je
i , the difference f e

i − de
i can be upper-

bounded by repeating the same steps (and hence obtaining the same upper bound) as

in (68). The thesis then follows from the fact that, by Lemma 3, f
j

i −d
j
i ≤ f e

i −de
i .

⊓⊔

8.3 Step 2: upper-bound the total lag

Step 2 consists in proving Lemma 5. First we describe the strategy and the relations

by which we prove the lemma, and then we report the main sub-steps by which we

get to prove the lemma.

We prove Lemma 5 by induction. Denoting, for brevity, by B the RHS of (33),

Lemma 5 states that Λ(k) ≤ B holds for all k. In this respect, as we show in Sec-

tion 8.7, Λ(1) ≤ B is trivial to prove for any B ≥ 0. Instead, regarding the inductive

step, consider that, denoting by Ĵk the portion for which the total lag at time bk is

maximum, and by d̂k the deadline of Ĵk, we have

Λ(k)
(25)
= max

1≤p≤k
λ (p) = max

[(

max
1≤p≤k−1

λ (p)

)

,λ (k)

]

(25)
=

max [Λ(k−1),λ (k)]
(24)
= max



Λ(k−1), ∑
h∈τ(Ĵk,bk)

lagh〈d̂k〉(bk)



 .

(69)

By (69), the following implication holds:



Λ(k−1)≤ B =⇒ ∑
h∈τ(Ĵk,bk)

lagh〈d̂k〉(bk)≤ B





(69)
=⇒ (Λ(k−1)≤ B ⇒ Λ(k)≤ B) .

(70)

The consequent in (70) is exactly what has to be proved, as an inductive step, to

prove by induction that Λ(k) ≤ B holds for all k. As a consequence, we can prove

that Λ(k)≤ B holds for all k, by proving, as a base case, that Λ(1)≤ B, and, for the

inductive step, the antecedent in (70), i.e., the implication

Λ(k−1)≤ B =⇒ ∑
h∈τ(Ĵk,bk)

lagh〈d̂k〉(bk)≤ B.
(71)

To prove the implication (71), which holds for the job portion Ĵk for which the

total lag at time bk is maximum, we prove that the same implication holds for any job

portion Ĵ ⊆ J
j
i , blocked by priority and for which the k-th non-growing-Lag interval

is the last non-growing-Lag interval. In particular, we use the following relations to

prove that, if the antecedent in (71) holds, then the consequent in (71) holds for the
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above generic portion Ĵ ⊆ J
j
i :

∑
h∈τ(Ĵ,bk)

lagh〈d
j
i 〉(bk)

(23)
= ∑

h∈τ(Ĵ,bk)

lagh(bk)
(27)

≤

∑
g∈τ̂

lagg(bk)
(3)
= ∑

g∈τ̂

lagg(sg)+ ∑
g∈τ̂

lagg(sg,bk).

(72)

where lagg(sg,bk) = lagg(bk) − lagg(sg). In view of (72), we prove that

∑h∈τ(Ĵ,bk)
lagh(bk) ≤ B holds by, first, computing an upper bound to ∑g∈τ̂ lagg(sg),

and then adding ∑g∈τ̂ lagg(sg,bk) to this bound. To get an upper bound to

∑g∈τ̂ lagg(sg), we compute a bound to each lag in the summation, and then sum these

per-task bounds. We can now state, even more precisely, that the peculiarity of our

proofs lies in how we compute a bound to each lag in the sum ∑g∈τ̂ lagg(sg).
We take the following four sub-steps to get to prove Lemma 5. The first three sub-

steps are also shown in Figure 3, to further help understand their role in the proof. The

bounds computed in the first three sub-steps are all in open form, in that they contain

at least one term whose value has not yet been computed (Λ(k − 1)). To simplify

proofs, in all the next lemmas we assume that Assumption 2 holds, which implies, in

particular, that the head of each task τg starting at time sg belongs to a job of length

Lg. The proofs of the lemmas are provided from Section 8.4 onwards.

Sub-step 2.1: Compute an upper bound in open form to lagg(sg) for τg ∈ τ̂

As a first sub-step, we prove the following lemma, stating the lag-balance property.

Lemma 24 (Lag-balance property) If ϒg ⊆ {τ1,τ2, . . . ,τg−1} is any subset of the

first g−1 tasks in τ̂ , and l̂g is the size, in service units, of the head Ĵg ⊆ Jl
g starting at

time sg, then the following inequality holds for the g-th task:

lagg(sg)≤Ug

Λ(k−1)−∑v∈ϒg
lagv(sg)− l̂g

M−∑v∈ϒg
Uv

+ l̂g. (73)

If ϒg = {τ1,τ2, . . . ,τg−1}, then the bound (73) to lagg(sg) decreases as the sum of

the first g−1 addends in ∑g∈τ̂ lagg(sg) increases (in this respect, recall Assumption 1

in Section 7.7 regarding the indexes of the tasks in τ̂). This internal counterbalance

among the lags of the tasks in τ̂ is the key property that allows us to get a tighter

bound to the whole sum ∑g∈τ̂ lagg(sg), and hence to the total lag by (72).

Sub-step 2.2: Compute an upper bound to ∑g∈τ̂ lagg(sg) in open form

In this sub-step, we compute an upper bound to ∑g∈τ̂ lagg(sg) using Lemma 24. To

simplify the notation, in this and in the next subsections we use the following defini-

tions and properties:

Mg ≡ M−
g−1

∑
v=1

Uv, (74)
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Mg −Ug = M−
g−1

∑
v=1

Uv −Ug = Mg+1, (75)

∀τg ∈ τ̂ ∆g ≡
g−1

∑
v=1

lagv(sv,sg)

(59) with
tv=sv, t=sg

≤ 0. (76)

Note that Mg is a special case of the more general quantity Mτ ′
g in (4). In addition,

recall that we denote as G the number of tasks in τ̂ (Assumption 1 in Section 7.7).

Lemma 25 The following inequality holds:

G

∑
g=1

lagg(sg)≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
−

G

∑
g=1

Ug∆g

MgMg+1
+

G

∑
g=1

Lg

Mg

)

. (77)

Sub-step 2.3: Compute an upper bound to the total lag in open form

As a penultimate sub-step, we compute an upper bound to ∑h∈τ(Ĵ,bk)
lagh(bk) in open

form through (72), and, in particular, by adding ∑g∈τ̂ lagg(sg,bk) to the bound (77).

Lemma 26 For every job portion Ĵ for which [bk, fk) is the last non-growing-Lag

interval, we have

∑
h∈τ(Ĵ,bk)

lagh(bk)≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
+

G

∑
g=1

Lg

Mg

)

. (78)

Sub-step 2.4: Compute an upper bound to the total lag and to the tardiness in closed

form

As a last sub-step, we prove first Lemma 5, i.e., that Λ(k) ≤ B holds for all k. Then

we prove Theorem 1 by just replacing the bound Λ(k)≤ B in (31).

8.4 Sub-step 2.1: Compute an upper bound in open form to lagg(sg) for τg ∈ τ̂

For the reader’s convenience, we repeat the statement of Lemma 24 here. If ϒg ⊆

{τ1,τ2, . . . ,τg−1} is any subset of the first g−1 tasks in τ̂ , and l̂g is the size, in service

units, of the head Ĵg ⊆ Jl
g starting at time sg, then the following inequality holds for

the g-th task:

lagg(sg)≤Ug

Λ(k−1)−∑v∈ϒg
lagv(sg)− l̂g

M−∑v∈ϒg
Uv

+ l̂g. (79)



52 Paolo Valente

Proof (Lemma 24) First, we derive a bound to sg − dl
g, and then turn this bound

into (79). Defining b̂g as the beginning of the busy interval of Ĵg and tmax
g as in

Lemma 22, we have, by Lemma 22, that tmax
g ∈ [b̂g,min{sg,d

l
g}) and

ϒg ⊆ τMPS(Ĵg, t
max
g ). This implies that Lemma 6 holds for Ĵg after setting Ĵ = Ĵg,

J
j
i = Jl

g, b̂ = b̂g, ŝ = sg, t1 = tmax
g , ϒ =ϒg and l̂ = l̂g. We have then:

sg −dl
g

Lemmas 22
and 6
≤

∑h∈τ(Ĵg,tmax
g ) lagh〈d

l
g〉(t

max
g )−∑v∈ϒg

lagv〈d
l
g〉(sg)− l̂g

M−∑v∈ϒg
Uv

, (80)

where we used the general form (22) for the two lag functions. In fact, in both ex-

pressions the reference deadline is dl
g, and not d

j
i as in (23).

As a first step to turn (80) into (79), we prove that the first sum of lags in the RHS

of (80) is upper-bounded by Λ(k− 1). Let [b̂g,sg) and [bp, fp) be, respectively, the

busy interval and the last non-growing-Lag interval for Ĵg. Since tmax
g ∈ [b̂g,sg), we

have also that Lemma 19 holds for Ĵg and tmax
g after setting Ĵ = Ĵg, b̂ = b̂g, ŝ = sg,

t1 = tmax
g and bk = bp. Replacing these equalities in (57) and writing explicitly the

first argument dl
g in the lag functions, we get

∑
h∈τ(Ĵg,tmax

g )

lagh〈d
l
g〉(t

max
g )≤ ∑

h∈τ(Ĵg,bp)

lagh〈d
l
g〉(bp). (81)

We prove now that p ≤ k − 1, from which we derive that the RHS of (81) is

upper-bounded by Λ(k− 1). By item 2.a of Lemma 20, sg ≤ b̃q holds, where b̃q is

the beginning of the growing-Lag interval that terminates at time bk (see Figure 5).

Since b̃q < bk, it follows that sg < bk holds too. But, by Definition 2, b̂g < sg, and,

still by Lemma 19, bp ≤ b̂g. Combining the last three inequalities, we have bp < bk,

which implies p ≤ k− 1 by the ordering among busy intervals (Definition 10). See

for example Figure 5, showing a possible bp in case g = 3. We have

∑
h∈τ(Ĵg,bp)

lagh〈d
l
g〉(bp)

(25), (24)
and p≤k−1

≤ Λ(k−1). (82)

As for the other sum, ∑v∈ϒg
lagv〈d

l
g〉(sg), recall that ϒg is a subset of τ̂ by As-

sumption 1. Using the deadlines dl
g and d

j
i of Jl

g and J
j
i (J

j
i is the reference job in

the definition of τ̂), we define m(v) ≡ max
dn

v≤d
j
g

n and m′(v) ≡ max
dn

v≤d
j
i

n, i.e., we

define m(v) and m′(v) as the indexes of the latest-deadline jobs of τv, among those

with a deadline earlier than or equal to, respectively, dl
g and d

j
i . Since dl

g ≤ d
j
i holds

by Definition 3 and item 2.a of Lemma 20, it follows that m(v)≤ m′(v) holds for all
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v in ϒg. Using this inequality, we can write

∑
v∈ϒg

lagv〈d
l
g〉(sg)

(22)+(21)
= ∑

v∈ϒg

[

W DPS
v (sg)−min(W MPS

v (sg),
m(v)

∑
n=1

ln
v )

]

m(v)≤m′(v)

≥

∑
v∈ϒg

[

W DPS
v (sg)−min(W MPS

v (sg),
m′(v)

∑
n=1

ln
v )

]

(22)
=

∑
v∈ϒg

lagv〈d
j
i 〉(sg)

(23)
= ∑

v∈ϒg

lagv(sg).

(83)

Using all the inequalities proved so far, we get

sg −dl
g

(80)+(81)+(82)

≤
Λ(k−1)−∑v∈ϒg lagv〈d

l
g〉(sg)−l̂g

M−∑v∈ϒg Uv

(83)

≤

Λ(k−1)−∑v∈ϒg lagv(sg)−l̂g

M−∑v∈ϒg Uv
.

(84)

We can now compute our bound to lagg(sg) from (84). Considering that: 1) by

Assumption 2, we replace Jl
g with a job of length Lg if ll

g < Lg, 2) τg belongs to

τMPS(Ĵ,sg) by item 2.a of Lemma 20, and 3) sg > rl
g by item 2.b of Lemma 20, we

have that Ĵg satisfies the conditions of Lemma 13 after setting h = g. As a conse-

quence,

lagg(sg)

(41) with
h=g

≤ (sg −dl
g)Ug + l̂g

(84)

≤ Ug

Λ(k−1)−∑v∈ϒg lagv(sg)−l̂g

M−∑v∈ϒg Uv
+ l̂g.

(85)

⊓⊔

8.5 Sub-step 2.2: Compute an upper bound to ∑g∈τ̂ lagg(sg) in open form

To prove the upper bound to ∑g∈τ̂ lagg(sg) stated in Lemma 25, we use the following

(algebraic) properties of the coefficients Mg.

Lemma 27 The following two relations holds:

∀g ∈ {1,2, . . . ,G+1} Mg > 0, (86)

∀Q ∈ {1,2, . . . ,G},∀g ∈ {1,2, . . . ,Q} 1−MQ+1

Q

∑
v=g

Uv

MvMv+1
=

MQ+1

Mg

. (87)

In particular, the last inequality implies, after setting g = Q,

1−
UQ

MQ

=
MQ+1

MQ

. (88)
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Proof As for (86), we can write

Mg
(74)
= M−

g−1

∑
v=1

Uv

g≤G+1

≥ M−
G+1−1

∑
v=1

Uv = M−
G

∑
v=1

Uv

Uv≤1

≥ M−
G

∑
v=1

1 =

M−G
(58)

≥ M− (⌈Usum⌉−1)≥ M− (M−1) = 1 > 0.

(89)

Instead, to prove (87), we proceed by induction on g, in reverse order, i.e., as a

base case we consider g = Q, and, as an inductive step, we prove that, if the thesis

holds for a given g ∈ {2,3,4, . . . ,Q}, then it holds for g−1 as well.

Base case. If g = Q, then the LHS of (87) becomes:

1−MQ+1
UQ

MQMQ+1

= 1−
UQ

MQ

=
MQ −UQ

MQ

(75)
=

MQ+1

MQ

. (90)

Inductive step. We want to prove that

∀g ∈ {2, , . . . ,Q}

1−MQ+1

Q

∑
v=g

Uv

MvMv+1
=

MQ+1

Mg

=⇒ 1−MQ+1

Q

∑
v=g−1

Uv

MvMv+1
=

MQ+1

Mg−1
(91)

Manipulating the LHS of the consequent of the above implication, we have

1−MQ+1

Q

∑
v=g−1

Uv

MvMv+1
= 1−MQ+1

Q

∑
v=g

Uv

MvMv+1
−

MQ+1Ug−1

Mg−1Mg

Inductive
hypothesis

=

MQ+1

Mg

−
MQ+1Ug−1

Mg−1Mg

= MQ+1

Mg−1 −Ug−1

Mg−1Mg

(75)
= MQ+1

Mg

Mg−1Mg

=
MQ+1

Mg−1
.

(92)

⊓⊔

We can now prove Lemma 25, which states that

G

∑
g=1

lagg(sg)≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
−

G

∑
g=1

Ug∆g

MgMg+1
+

G

∑
g=1

Lg

Mg

)

. (93)

Proof (Lemma 25) The idea to prove the bound is to upper-bound each addend of

the sum in the LHS of (93) using (73), starting from the last addend downward.

Actually, to prove the thesis, we prove, by induction, a stronger property, i.e., that,

for all integers q ∈ {0,1, . . . ,G},

G

∑
g=1

lagg(sg)≤
MG+1

Mq+1

q

∑
g=1

lagg(sg)+Λ(k−1)
G

∑
g=q+1

Ug

Mg

MG+1

Mg+1
+

−
G

∑
g=q+1

∆g

Ug

Mg

MG+1

Mg+1
+

G

∑
g=q+1

Lg

MG+1

Mg

.

(94)
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Before proving (94), we prove that (93) does follow from (94). To this purpose, if we

set q = 0 in (94), and recall that we assume ∑
n2
i=n1

x = 0 if n1 > n2, we get

G

∑
g=1

lagg(sg)≤

MG+1

Mq+1
·0+Λ(k−1)

G

∑
g=1

Ug

Mg

MG+1

Mg+1
−

G

∑
g=1

∆g

Ug

Mg

MG+1

Mg+1
+

G

∑
g=1

Lg

MG+1

Mg

=

MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
−

G

∑
g=1

Ug∆g

MgMg+1
+

G

∑
g=1

Lg

Mg

)

.

(95)

We prove now (94) by induction. We proceed in reverse order, that is, as a base

case we prove that (94) holds for q = G (the maximum possible value for q), while

as an inductive step we prove that if (94) holds for an integer q ∈ {1, . . . ,G}, then it

holds for q−1.

Base case: q = G. We have that, if q = G, then (94) becomes the trivial inequality

G

∑
g=1

lagg(sg)≤
G

∑
g=1

lagg(sg). (96)

Inductive step: we want to prove that, if (94) holds for an integer q ∈ {1, . . . ,G}
(inductive hypothesis), then it holds for q − 1 as well. To this purpose, first we

compute the following upper bound to the first term in (94), where the inequality



56 Paolo Valente

Mq+1/Mq > 0 used in one of the steps follows from (86):

MG+1

Mq+1
∑

q
g=1 lagg(sg) =

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1
lagq(sq)

(73)

≤

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1 lagg(sq)−l̂q

Mq
+ l̂q

)

(3)
=

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1(lagg(sg)+lag(sg,sq))−l̂q

Mq
+ l̂q

)

(76)
=

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1 lagg(sg)−∆q−l̂q

Mq
+ l̂q

)

rearranging
=

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1 lagg(sg)−∆q

Mq
+ l̂q(1−

Uq

Mq
)

) (88) with
Q=G=q
=

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1 lagg(sg)−∆q

Mq
+ l̂q

Mq+1

Mq

)

l̂q≤Lq and

Mq+1/Mq>0

≤

MG+1

Mq+1
∑

q−1
g=1 lagg(sg)+

MG+1

Mq+1

(

Uq

Λ(k−1)−∑
q−1
g=1 lagg(sg)−∆q

Mq
+Lq

Mq+1

Mq

)

rearranging
=

MG+1

Mq+1

(

1−
Uq

Mq

)

∑
q−1
g=1 lagg(sg)+Λ(k−1)

Uq

Mq

MG+1

Mq+1
+

−∆q
Uq

Mq

MG+1

Mq+1
+Lq

MG+1

Mq+1

Mq+1

Mq

(88) with
Q=G=q
=

MG+1

Mq+1

Mq+1

Mq
∑

q−1
g=1 lagg(sg)+Λ(k−1)

Uq

Mq

MG+1

Mq+1
+

−∆q
Uq

Mq

MG+1

Mq+1
+Lq

MG+1

Mq+1

Mq+1

Mq

simplifying
=

MG+1

Mq
∑

q−1
g=1 lagg(sg)+Λ(k−1)

Uq

Mq

MG+1

Mq+1
−∆q

Uq

Mq

MG+1

Mq+1
+Lq

MG+1

Mq
.

(97)

We can now write

∑G
g=1 lagg(sg)

Inductive
hypothesis

≤
MG+1

Mq+1
∑

q
g=1 lagg(sg)+Λ(k−1)∑G

g=q+1
Ug

Mg

MG+1

Mg+1
+

−∑G
g=q+1 ∆g

Ug

Mg

MG+1

Mg+1
+∑G

g=q+1 Lg
MG+1

Mg

(97)

≤
MG+1

Mq
∑

q−1
g=1 lagg(sg)+

+Λ(k−1)∑G
g=q+1

Ug

Mg

MG+1

Mg+1
+Λ(k−1)

Uq

Mq

MG+1

Mq+1
+

−∑G
g=q+1 ∆g

Ug

Mg

MG+1

Mg+1
−∆q

Uq

Mq

MG+1

Mq+1
+

+∑G
g=q+1 Lg

MG+1

Mg
+Lq

MG+1

Mq

rearranging
=

MG+1

Mq
∑

q−1
g=1 lagg(sg)+Λ(k−1)∑G

g=q
Ug

Mg

MG+1

Mg+1
+

−∑G
g=q ∆g

Ug

Mg

MG+1

Mg+1
+∑G

g=q Lg
MG+1

Mg
.

(98)

⊓⊔
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8.6 Sub-step 2.3: Compute an upper bound to the total lag in open form

In this sub-step we prove Lemma 26, i.e., the following upper bound:

∑
h∈τ(Ĵ,bk)

lagh(bk)≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
+

G

∑
g=1

Lg

Mg

)

. (99)

As we already said, we prove this bound by adding ∑g∈τ̂ lagg(sg,bk) to the

bound (77). As can be seen, the only difference between the RHS of (99) and the

RHS of (77) is the absence of the term −MG+1 ∑G
g=1 Ug

∆g

MgMg+1
in the RHS of (99).

To prove that this term cancels from the RHS of (77) after adding ∑g∈τ̂ lagg(sg,bk),
we use the following property.

Lemma 28 The following inequality holds:

∀Q ∈ {0,1, . . . ,G}
Q−1

∑
g=1

lagg(sg,sQ)−MQ+1

Q

∑
g=1

Ug
∑

g−1
v=1 lagv(sv,sg)

MgMg+1
≤ 0. (100)

The above inequality holds for purely algebraic reasons, and its proof is relatively

long. We report this proof in the appendix to not break the main flow. We can now

prove Lemma 26.

Proof (Lemma 26) We prove the thesis in two steps. First, we substitute, in (72),

the sum ∑g∈τ̂ lagg(sg) with the RHS of (77), and the sum ∑g∈τ̂ lagg(sg,bk) with the

following upper bound. Second, we prove that the sum of the RHS of (77) and the

following upper bound is smaller than or equal to the RHS of (99). As for the upper

bound to ∑g∈τ̂ lagg(sg,bk), we can write the following relations:

∑g∈τ̂ lagg(sg,bk)
(2)
= ∑G

g=1 lagg(sg,sG)+∑G
g=1 lagg(sG,bk)

(59) with g=G+1,v=g,
tv=sG, t=bk

≤

∑G
g=1 lagg(sg,sG) = ∑G−1

g=1 lagg(sg,sG)+ lagG(sG,sG)
(1)
=

∑G−1
g=1 lagg(sg,sG).

(101)

Using (101), we can write

∑h∈τ(Ĵ,bk)
lagh(bk)

(72)

≤ ∑g∈τ̂ lagg(sg)+∑g∈τ̂ lagg(sg,bk)
(101)

≤

∑g∈τ̂ lagg(sg)+∑G−1
g=1 lagg(sg,sG)

(77)+(76)

≤

MG+1

(

Λ(k−1)∑G
g=1

Ug

MgMg+1
−∑G

g=1 Ug
∑

g−1
v=1 lagv(sv,sg)

MgMg+1
+∑G

g=1
Lg

Mg

)

+

+∑G−1
g=1 lagg(sg,sG)

rearranging
=

MG+1

(

Λ(k−1)∑G
g=1

Ug

MgMg+1
+∑G

g=1
Lg

Mg

)

+

+∑G−1
g=1 lagg(sg,sG)−MG+1 ∑G

g=1 Ug
∑

g−1
v=1 lagv(sv,sg)

MgMg+1

(100)
with Q=G

≤

MG+1

(

Λ(k−1)∑G
g=1

Ug

MgMg+1
+∑G

g=1
Lg

Mg

)

.

(102)

⊓⊔
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8.7 Sub-step 2.4: Compute an upper bound to the total lag and to the tardiness in

closed form

In this last sub-step we prove, firstly, Lemma 5, i.e., that Λ(k)≤B holds for all k, with

B equal to the RHS of (33). To achieve this goal, we start by proving (71), i.e., the

implication that lets the inductive step (Λ(k−1)≤B⇒Λ(k)≤B) hold. In particular,

as we already said, we prove (71) by focusing on a generic job portion Ĵ ⊆ J
j
i for

which the k-th non-growing-Lag interval is the last non-growing-Lag interval. In this

respect, the problem with computing a quantity for which (71) holds (after replacing

Ĵk with Ĵ) is that, according to (78) and depending on the value of Λ(k−1), the sum

∑h∈τ(Ĵ,bk)
lagh(bk) may be higher than Λ(k−1). Fortunately, as we prove in the next

lemma, and still according to (78), there exists a saturation value, which we denote

as Λ , such that

Λ(k−1)≥ Λ =⇒ ∑
h∈τ(Ĵ,bk)

lagh(bk)≤ Λ(k−1). (103)

Therefore, intuitively, if Λ(k) reaches or overcomes the threshold Λ , then it can-

not grow any more with k, until it becomes again lower than or equal to Λ . This is,

informally, the property we use to prove (71). In the next lemma we prove that such

a threshold Λ is equal to the quantity already denoted by Λ in Lemma 5.

Lemma 29 If Λ is defined as in (32), then (103) holds for all k > 1 and for every

portion Ĵ for which [bk, fk) is the last non-growing-Lag interval.

Proof We prove the thesis through the following derivations:

∑
h∈τ(Ĵ,bk)

lagh(bk)
(78)

≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
+

G

∑
g=1

Lg

Mg

)

≤ Λ(k−1) ⇐⇒

Λ(k−1) ·

(

MG+1

G

∑
g=1

Ug

MgMg+1
−1

)

+MG+1

G

∑
g=1

Lg

Mg

≤ 0

(87) with
Q=G,
g=1,
v=g
⇐⇒

−Λ(k−1)
MG+1

M1
+MG+1

G

∑
g=1

Lg

Mg

≤ 0
(74)
⇐⇒

−Λ(k−1)
MG+1

M
+MG+1

G

∑
g=1

Lg

Mg

≤ 0
(86)
⇐⇒ −Λ(k−1)

1

M
+

G

∑
g=1

Lg

Mg

≤ 0 ⇐⇒

−
Λ(k−1)

M
≤−

G

∑
g=1

Lg

Mg

⇐⇒
Λ(k−1)

M
≥

G

∑
g=1

Lg

Mg

⇐⇒ Λ(k−1)≥ M
G

∑
g=1

Lg

Mg

.

(104)

As for the RHS of the last inequality, we can consider the following true proposition:

G
(58)

≤ ⌈Usum⌉−1 ∧ ∀g ≤ G,
Lg

Mg

Lg>0,
(86)
> 0. (105)
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We can then continue our derivations as follows:

Λ(k−1)≥ M
G

∑
g=1

Lg

Mg

(105)
⇐= Λ(k−1)≥ M

⌈Usum⌉−1

∑
g=1

Lg

Mg

Def. 1,
(4)
⇐=

Λ(k−1)≥ M · max
τ ′⊆τ and

|τ ′|=⌈Usum⌉−1

|τ ′|

∑
g=1

Lg′

Mτ ′
g

(32)
= Λ .

(106)

⊓⊔

Using the previous lemma, we can finally prove Lemma 5.

Proof (Lemma 5) We prove the thesis, i.e., that Λ(k)≤B for all k, by induction. Since

B differs from the RHS of (7) only in that Cv′ is replaced by Lv′ and Γ is replaced by

Λ , we have that B ≥ 0 follows from exactly the same steps as the proof of Lemma 2,

after substituting Lv′ for Cv′ and Λ for Γ .

Base case: k = 1. According to (25), Λ(1) = ∑h∈τ(Ĵ1,b1)
lagh(b1). Then, by item

1 in Lemma 20 with Ĵ = Ĵ1, we have Λ(1) = ∑h∈τ(Ĵ1,b1)
lagh(b1) ≤ 0. Therefore

Λ(1)≤ B holds because B ≥ 0.

Inductive step: we prove that, if Λ(k− 1) ≤ B holds, then Λ(k) ≤ B holds. We

consider two alternatives. First, B < Λ , with Λ defined as in Lemma 29. In this case,

considering also the inductive hypothesis, we have Λ(k − 1) ≤ B < Λ , and hence

Λ(k − 1) < Λ . Then we have the following sequence of relations, where the last

inequality follows from the fact that, according to the second inequality in (58), i.e.,

|τ̂| ≤ ⌈Usum⌉−1, plus Definition 1 and (4), the expression in the LHS of the last line

yields the maximum possible value for the expression in the penultimate line:

∑
h∈τ(Ĵ,bk)

lagh(bk)
(78)

≤ MG+1 ·

(

Λ(k−1)
G

∑
g=1

Ug

MgMg+1
+

G

∑
g=1

Lg

Mg

) Λ(k−1)<Λ ,
Ug≥0, (86)

<

MG+1 ·

(

Λ
G

∑
g=1

Ug

MgMg+1
+

G

∑
g=1

Lg

Mg

)

(58)
=

M|τ̂|+1 ·

(

Λ
|τ̂|

∑
g=1

Ug

MgMg+1
+

|τ̂|

∑
g=1

Lg

Mg

) (58) +
Def. 1 + (4)

≤

max
τ ′⊆τ and

|τ ′|≤⌈Usum⌉−1

[

Mτ ′

|τ ′|+1 ·

(

Λ
|τ ′|

∑
g=1

Ug′

Mτ ′
g Mτ ′

g+1

+
|τ ′|

∑
g=1

Lg′

Mτ ′
g

)]

= B.

(107)

The thesis, i.e., Λ(k)≤B, follows from replacing the bounds Λ(k−1)≤B (which

holds by the inductive hypothesis) and (107) in the first and in the second argument

of the last max function in (69); that is, restarting from that last max function,

Λ(k)
(69)
= max



Λ(k−1), ∑
h∈τ(Ĵk,bk)

lagh〈d̂k〉(bk)





Inductive Hp.
+

(107)

≤ max [B,B] = B. (108)
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The second case is that B ≥Λ . For this case we consider two further alternatives:

Λ(k − 1) < Λ and Λ(k − 1) ≥ Λ . For the first alternative, the thesis follows from

exactly the same steps as for the first case above. For the second alternative, i.e., if

Λ(k−1)≥ Λ holds, we have

∑
h∈τ(Ĵ,bk)

lagh(bk)

Lemma 29,
(103) and

Λ(k−1)≥Λ

≤ Λ(k−1)

Inductive
hypothesis

≤ B.
(109)

Similarly to the first case, the thesis, i.e. Λ(k)≤ B, follows from replacing Λ(k−
1)≤ B (which holds by the inductive hypothesis) and (109) in (69). ⊓⊔

We can now easily prove the harmonic bound.

Proof (Theorem 1) Substituting (33) in (31), we get

f
j

i −d
j
i ≤

1

M
· max

τ ′⊆τ and
|τ ′|≤⌈Usum⌉−1

[

Mτ ′

|τ ′|+1 ·

(

Λ
|τ ′|

∑
g=1

Ug′

Mτ ′
g Mτ ′

g+1

+
|τ ′|

∑
g=1

Lg′

Mτ ′
g

)]

+

+
M−1

M
Ci,

(110)

with the assumption that the denominator in the first fraction, namely 1
M

, is a speed.

Moving from this assumption to the assumption that this denominator is a pure num-

ber, we have to replace Lg′ with Cg′ , and Λ with Γ in (110). This yields (7) according

to (6).

To complete the proof, we note that we obtained (110) from (33) and (31), and we

proved (33) and (31) using Assumption 2. Nevertheless, having derived (7) from (110)

is enough for the bound (7) to hold also if Assumption 2 does not hold. In fact, de-

noting by ŝ the start time of the last portion of J
j
i , by Lemma 23 we have that the

maximum possible value for ŝ, in the case Assumption 2 does not hold, is not higher

than the maximum possible value for ŝ in the case Assumption 2 holds. The same

property therefore holds also for the maximum possible value of f
j

i . Thus, if the dif-

ference f
j

i − d
j
i is at most equal to the RHS of (7) under Assumption 2, then this

difference is at most equal to the same quantity also if Assumption 2 does not hold.

⊓⊔

9 Experiments

In this section we compare the tightness of the harmonic bound with that of existing

bounds for implicit-deadline tasks. To obtain the results reported in this section, we

simulated the execution of random task sets, generated according to the distributions

of utilizations and periods considered in previous work about tardiness or lateness

(e.g., Erickson and Anderson (2012); Ward et al (2013); Erickson et al (2014)). In
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the next paragraphs we describe how we generated the task sets, simulated their exe-

cution and measured tightness. Then we report our results. Both the code used in the

experiments and our full results can be found in (Experiment-scripts (2014)9).

Systems and task sets. We generated task sets for systems with two to eight

processors, as eight has been inferred as the largest number of processors for which

G-EDF is an effective solution to provide SRT guarantees (Bastoni et al (2010)). In

particular, for each number of processors M, we considered task sets with total utiliza-

tions Usum in the range [M/2,M], increasing in steps of M/10. Regarding individual

task utilizations, we considered three uniform and three bimodal distributions. As for

uniform distributions, we considered a light, a medium and a heavy one, with task

utilizations distributed in, respectively, in [0.001,0.1], [0.01,0.99] and [0.5,0.99]. In-

stead, in the three bimodal distributions, task utilizations were uniformly distributed

in either [0.01,0.5] or [0.5,0.99], with probabilities, respectively, 8/9 and 1/9, 6/9

and 3/9, and 4/9 and 5/9. We call, respectively, light, medium and heavy these three

bimodal distributions. Finally, we considered three possible uniform distributions for

task periods, denoted as short, moderate and long, and in the ranges [3ms,33ms],
[10ms,100ms] and [50ms,250ms].

We generated 1000 sets of implicit-deadline periodic tasks for every: number of

processors M in [2,8], total utilization Usum in [M/2,M], combination of distributions

of task utilizations and periods. For brevity, hereafter we denote as just group of

task sets, each group of 1000 task sets generated with the same combination of these

parameters.

Simulation. We simulated the execution of the task sets using RTSIM (2011).

We let each simulation last for the maximum duration supported by RTSIM, which

happened to be, for any task set, at least 8K times as long as the longest task period.

Tardiness Bounds. We considered the harmonic bound (HARM) and the three

tardiness bounds for G-EDF computed, respectively, with the analysis of Devi and

Anderson (2008) (DA), the CVA analysis using the PP Reduction Rule (CVA), and

the CVA analysis using the alternative optimization rule proved by Devi and Ander-

son (2008), as defined by Erickson et al (2010) (CVA2). We calculated the values of

the latter three bounds using SchedCAT (2014).

Tightness index and normalized error. Given: a tardiness bound, a simulation

run for a task set, and a task in the set, we define as observed tightness index of

the bound for that task, the ratio between the value of the bound for that task and

the maximum tardiness that that task experiences in the run. We use this index as

a tightness measure in our results, because this index is unbiased with respect to a

change of the time scale, i.e., the value of the index does not change if the execution

time, the period and the arrival times of the jobs of every task are all multiplied by a

common factor. This invariant does not hold, for example, for the difference between

the value of a bound and the maximum observed tardiness.

A problem of the observed tightness index is however that it is well-defined only

for tasks that experience a non-null tardiness. Fortunately, there happened to be a

clear distinction among groups of task sets in terms of experienced tardiness: for

9 All experiments can be repeated by applying two patches to SchedCAT (2014), replacing one file

in RTSIM (2011), and running an ad-hoc script.
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each group of task sets, either all the tasks of all the task sets happened to experience

a non-null tardiness, or almost all the tasks of all the task sets experienced a null

tardiness. In particular, as we highlight when discussing results, in the second case

all bounds happened to be remarkably loose.

To measure the tightness of the bounds also in the second case, we introduce a

second measure of tightness too. This second metric may be less robust with respect

to scaling issues than the observed tightness index, but is well-defined also for tasks

that experience a null tardiness. We call this metric observed normalized error, and

we define it as the difference between the value of the bound and the actual maximum

tardiness experienced by the task, divided by the period of the task. The idea behind

this normalization is that the period of a task, especially with implicit deadlines,

represents somehow a reference time interval for understanding how tolerable a given

error on the tardiness is for that task. In other words, a given absolute error on the

tardiness of a task is likely to be less relevant for a task with a large period than for a

task with a short period. The purpose of the normalization is of course also to try to

offset the above-discussed time-scale problems.

Measures and statistics. At the end of each simulation run we computed, for

each bound and for each task, the observed tightness index and the normalized error

of the bound for that task. Then, for each bound and each group of task sets, we com-

puted the minimum and the average values of the observed tightness indexes and of

the normalized errors for that bound, over all the tasks of all the task sets in the group.

For brevity, hereafter we call these four quantities the minimum and the average tight-

ness index, and the minimum and the average normalized error for that group of task

sets. We also computed the 95% confidence interval for the average tightness index

and the average normalized error. For both average values, and over all the groups of

task sets, the confidence interval was never above 15% of the average, and, for most

groups of task sets, it was below 5%. For this reason, to reduce clutter we do not show

also confidence intervals in the next figures.

For both the minimum and the average tightness indexes, it is worth noting that

lower values than the ideal value, one, are of course not allowed. In this respect,

according to the definition of tightness reported in the introduction, the closer the

minimum tightness index of a bound B is to one for at least one of the groups of task

sets generated for a given number of processors, the closer the bound is to being tight

for that number of processors. In view of these facts, given two bounds B1 and B2

with minimum tightness indexes IB1 and IB2 for a group of task sets G, we measure

how tighter B1 is than B2 as a function of how closer IB1 is to one, and not to zero,

with respect to IB2. In formulas, and assuming that IB2 > 1 holds (otherwise it is

enough to swap B1 and B2 and reverse the statement), we say that B1 is x% tighter or

x% looser than B2 for G, if x = 100∗ |IB2 − IB1|/(IB2 −1), and IB2 < IB1 (tighter) or

IB1 < IB2 (looser).

9.1 Results

Full total utilization and non-light per-task utilizations. First we focus on task sets

with a total utilization equal to M, and on all distributions of utilizations except for
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light uniform distributions. Figures 6, 7, 8 and 9 show the minimum and the average

tightness indexes of the four bounds for four representative cases in this first subset

of groups of tasks. Specifically, these figures show the performance of the bounds

for four different combinations of medium or heavy utilizations, and of short or long

periods. The figures highlight the following general results, which hold not only for

the combinations of parameters considered in the figures, but, actually, for all the

groups of tasks in this subset (full results can be found in (Valente (2014)):

– The relative order among both the minimum and the average tightness indexes

of the bounds is the same for every value of M, apart from M = 3, for which

the average tightness index of HARM is slightly higher than that of CVA2. This

happens also with some other groups of task sets (see (Valente (2014))).

– In accordance with the experimental results available in the literature (Ward et al

(2013)), the minimum and average tightness indexes of DA are substantially

larger than those of CVA and CVA2. In particular, DA is up to 40% looser than

CVA2 (Figure 6).

– In all cases, both the minimum and the average tightness indexes of HARM are

significantly lower than the corresponding tightness indexes of DA. In particular,

HARM is up to 50% tighter than DA (Figure 6). This gap highlights the effective-

ness of the lag-balance property, and is the reason behind the following positive

results.

– Both the minimum and the average tightness indexes of HARM are always at

least as low as those of the second best-performing bound, namely CVA2, apart

from the above-mentioned cases, with M = 3, where the average tightness index

of HARM is slightly higher than that of CVA2.

– HARM outperforms CVA2 from M = 4 on. In particular, the minimum and aver-

age tightness indexes of HARM become lower and lower than those of CVA2 as

M increases, apart from some occasional fluctuation (i.e., the slope of HARM is

smaller than the slope of CVA2).

– With M = 8, HARM is from 18% (Figure 6) to 29% (Figure 7) tighter than CVA2.

As a general consideration, both average and minimum tightness indexes do not

always grow with M (Figure 6). In contrast, occasional fluctuations affect a few

groups of task sets, as can be seen in the extended version of this paper (Valente

(2014)). The reason is apparently just that luckier scenarios occur occasionally for

some bounds (this issue may deserve further, non-trivial investigations).

Light per-task utilizations. Things change dramatically with uniform light uti-

lizations. Fortunately, the tightness of tardiness bounds may not be very relevant in

these cases, as we discuss after showing the performance of the bounds. Figure 10.a

reports the minimum tightness index for a representative case for uniform light uti-

lizations and total utilization equal to M (we comment on the average tightness index

and Figure 10.b in a moment). First, with uniform light utilizations, the generated

task sets quickly become very large as the number of processors increases. Because

of this fact, the figure reports results only for M ≤ 6, as with higher values of M it was

unfeasible to compute the value of the harmonic bound for all the tasks. Regardless

of this limitation, the figure clearly shows that all bounds become very loose if all

task utilizations are light. Fluctuations become very large too.
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Fig. 6: Minimum and average tightness index with bimodal medium utilizations, short

periods and total utilization equal to M (lower is better, the ideal value is 1).
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Fig. 7: Minimum and average tightness index with uniform heavy utilizations, long

periods and total utilization equal to M (lower is better, the ideal value is 1).
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Fig. 8: Minimum and average tightness index with bimodal medium utilizations, long

periods and total utilization equal to M (lower is better, the ideal value is 1).
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Fig. 9: Minimum and average tightness index with uniform heavy utilizations, short

periods and total utilization equal to M (lower is better, the ideal value is 1).
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Fig. 10: Minimum tightness index and average normalized error with uniform light

utilizations, long periods and total utilization equal to M (lower is better, the ideal

value is 1 for the tightness index and 0 for the normalized error). The maximum

number of processors is limited to 6 for feasibility issues.

We cannot show the average tightness index because it is infinite for all bounds

and values of M. In fact, in all runs, almost every task experiences a null tardiness,

whereas, for every task, all bounds happen to be at least in the order of the overall

maximum execution time for the task set. This result differs substantially with respect

to the previous cases, where in all runs every task happens to experience a non-null

tardiness. To show the average performance of the bounds also with uniform light

utilizations, we resort to the average normalized error in Figure 10.b. The bounds are

quite loose also on average: as M increases, the average error ranges from 1/4 to

almost 1/2 of the period.

Fortunately, the case of light utilizations is exactly one of those for which tardi-

ness bounds may not be very relevant, for the following two reasons. First, defining

Umax ≡ maxτi∈τ Ui, Goossens et al (2003) proved that G-EDF meets all deadlines

for every implicit-deadline task set for which the total utilization Usum satisfies the
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following inequality:

Usum ≤ M−Umax · (M−1). (111)

This implies that, if Umax is very small, as it is the case with uniform light utiliza-

tions, then it is enough to keep the total utilization slightly below M to make sure that

all deadlines are met with G-EDF.

Secondly, if partitioned EDF can be used instead of G-EDF (and if all utilizations

are light), then all deadlines can be met at the price of an even lower loss of total uti-

lization than with G-EDF. In more detail, the scenario in question is when there is no

hindrance to partitioning tasks among processors, and scheduling each per-processor

subset of tasks with EDF. In fact, given a generic task set with Usum ≤ M, consider

the sum, say S, of the utilizations of the tasks that may fail to be accommodated in a

feasible partitioning. If all task utilizations are very low, then the sum S can be equal

at most to a very low fraction of the total utilization of the task set (as for the worst

possible case, S ≤Umax · (M−1) holds).

In addition, a partitioned scheme has a reduced overhead with respect to a global

one. This increases the actual total utilization achievable. Since all tasks have a very

low utilization, this increase may easily offset the above loss S. In the end, when all

task utilizations are low, it may be possible to meet all deadlines with no or negligible

loss in terms of total utilization.

Total utilization lower than M. Similar tightness problems occur, with all distri-

butions of utilizations, if the total utilization Usum is lower than M. Figure 11.a shows,

e.g., the minimum tightness index for the same distributions of utilizations and peri-

ods as in Figure 7, but with Usum = 0.9 ·M. As can be seen, after decreasing Usum by

just 0.1 ·M, the minimum tightness index becomes much higher than with Usum = M.

In particular, all the bounds are quite loose for M > 5. As with uniform light utiliza-

tions, the average tightness index is infinite for all groups of task sets, bounds, and

values of M. Then, also in this case, we show the average performance of the bounds

through the average normalized error in Figure 11.b. Now the situation is much worse

than with uniform light utilization, because the average normalized error ranges from

about 0.7 to more than 3.

Although all bounds quickly become remarkably loose as M grows, it is worth

noting that the harmonic bound outperforms the other bounds more and more, in

terms of both minimum tightness index and average normalized error, as M increases

beyond 5. In particular, the harmonic bound is the only one to preserve a minimum

tightness index at most equal to 2.5, and an average normalized error at most equal

to 2.1.

Going down to Usum = 0.8 ·M, both the minimum tightness index and the average

normalized error have again high values, as shown in Figure 12 (the average tightness

index is of course again infinite). They also fluctuate more with M. Before comment-

ing on the relative performance of the harmonic bound, we highlight that the situation

becomes quite critical with M = 2, because the actual tardiness experienced by the

tasks tends to be very small.

In this respect, if we further reduce the total utilization to 0.7 ·M, then even the

minimum tightness index becomes infinite for all bounds and groups of task sets with

M = 2, except for CVA. As a consequence, to show the performance of the bounds
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Fig. 11: Minimum tightness index and average normalized error with uniform heavy

utilizations, long periods and total utilization equal to 0.9 ·M (lower is better, the ideal

value is 1 for the tightness index and 0 for the normalized error).
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Fig. 12: Minimum tightness index and average normalized error with uniform heavy

utilizations, long periods and total utilization equal to 0.8 ·M (lower is better, the ideal

value is 1 for the tightness index and 0 for the normalized error).
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Fig. 13: Minimum and average normalized error with uniform heavy utilizations, long

periods and total utilization equal to 0.7 ·M (lower is better, the ideal value is 0).
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for Usum = 0.7, in Figure 13.a we report the minimum normalized error instead of the

minimum tightness index. The index is negative for CVA with M = 2, because CVA

is actually a lateness bound, and does take negative values for some task for M = 2.

Finally, Figure 13.b reports the average normalized error for Usum = 0.7, and high-

lights that also in this case, as expected, the bounds are definitely loose. Regarding the

trend of the average normalized errors, the latter decrease moving from Figure 11.b

to Figure 13.b. The reason is simply that the values of all the bounds do decrease as

Usum decreases, while the tardiness of the tasks remains unchanged, i.e., equal to 0.

Although the actual problem is that all bounds are very loose, we can also point

out that the performance of the harmonic bound degrades slightly more than that of

the other bounds as Usum decreases, and that the harmonic bound is no longer the

best-performing one with Usum ≤ 0.8. This result complies with the fact that, as we

already highlighted in the comments after the proof of Lemma 10 in Section 7.2, we

computed the harmonic bound in a simplified way. On the flip side, this simplification

lets the bound become explicitly looser as the ratio Usum/M decreases.

With Usum = 0.6 · M, the performance of the bounds is about the same as for

the case Usum = 0.7 ·M. We do not show results also for Usum = 0.6 ·M and below,

for similar reasons as for the above case of light utilizations. First, the probability

that a generic task set meets (111) is not negligible with Usum = 0.6 ·M (unless the

task set contains tasks with a very high utilization), and this probability increases as

Usum decreases. In addition, and probably even more relevant, there are partitioned

scheduling algorithms, including variants of EDF itself, with which a task set with

Usum = 0.6 ·M is very likely to be schedulable, while all task sets with Usum ≤ 0.5 ·M
are schedulable (Davis and Burns (2011)).

To sum up, tardiness bounds, and thus their tightness, may be little relevant for

Usum ≤ 0.6 ·M. In contrast, there is a band of total utilizations of interest, ranging from

about 0.7 ·M to about 0.9 ·M, for which all bounds happen to be remarkably loose.

Fortunately, the harmonic bound has room for improvement for this band of total

utilizations, because, as we already pointed out above, it is currently computed in a

simplified way that lets it become looser and looser and the ratio Usum/M decreases.

10 Conclusion and future work

In this paper we showed how to compute a new tardiness bound for preemptive global

EDF and implicit-deadline tasks, by integrating a lag-balance property, enjoyed by

any work-conserving scheduling algorithm, with the approach used to compute one

of the first tardiness bounds for G-EDF (Devi and Anderson (2008)). According to our

experiments, the new bound, which we tagged as harmonic, is up to 50% tighter than

the original bound obtained through the same approach (the maximum improvement

is reached with M = 8 and a total utilization equal to M). As a consequence of this

improvement, in spite of the fact that the original bound results to be, in the worst-

case, 40% looser than the bounds proposed in the intervening years, the harmonic

bound is up to 29% tighter than the best available bound.

Such a result may open new ways for obtaining tighter response-time or utiliza-

tion bounds, with existing or new scheduling algorithms. As next steps, we plan to
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generalize the harmonic bound to consider also non-preemptive global EDF and task

sets with a lower total utilization than the system capacity. We also want to investigate

more efficient algorithms for computing, or at least approximating the bound. In fact,

the brute-force algorithm reported in this paper has an exponential running time, al-

though it has proved to be feasible for all the task sets considered in the experiments,

except for some of the cases where tardiness bounds are probably not very relevant.

Finally, in this paper we also highlighted a general negative result: with light

distributions, as well as with total utilizations lower than the total system capacity, all

bounds proved to be quite loose.
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A Proof of Lemma 28

For the reader’s convenience, we repeat here the statement of Lemma 28. The follow-

ing inequality holds:

∀Q ∈ {0,1, . . . ,G}
Q−1

∑
g=1

lagg(sg,sQ)−MQ+1

Q

∑
g=1

Ug
∑

g−1
v=1 lagv(sv,sg)

MgMg+1
≤ 0. (112)

Proof (Lemma 28) Computing the difference between the two terms in the LHS

of (112) is not straightforward, because only few pairs of lag variations happen to

regard the same task and time interval. We can however note that every lag variation

is with respect to a time interval that does range between two chain start times for

the tasks in τ̂ . Any such time interval can be further decomposed into a sequence

of consecutive sub-intervals, each ranging between two consecutive chain start times

for the tasks in τ̂ . That is, by (2), the argument of the first sum in the LHS of (112)

can be rewritten as lagg(sg,sg+1)+ lagg(sg+1,sg+2)+ . . .+ lagg(sQ−1,sQ), whereas

the argument of the sum in the numerator of the second term can be rewritten as

lagv(sv,sv+1)+ lagv(sv+1,sv+2)+ . . .+ lagv(sg−1,sg). To take advantage of this simi-

lar decomposition, first we expand the sum ∑
Q−1
g=1 lagg(sg,sQ) as follows:

Q−1

∑
g=1

lagg(sg,sQ)
(2)
= lag1(s1,sQ)+ lag2(s2,sQ)+ . . .+ lagQ−1(sQ−1,sQ). (113)

Then we decompose each term in the RHS of (113) into a sum of basic lag variations,

and finally we sum all the lag variations across the same time interval among each

other:

lag1(s1,s2) + lag1(s2,s3) + . . . + lag1(sQ−1,sQ) +
lag2(s2,s3) + . . . + lag2(sQ−1,sQ) +

... +
...

+ lagQ−1(sQ−1,sQ) =

lag1(s1,s2) + ∑2
p=1 lagp(s2,s3) + . . . + ∑

Q−1
p=1 lagp(sQ−1,sQ).

(114)

Combining the terms in the last line into a summation, and substituting the result

in (113), we get
Q−1

∑
g=1

lagg(sg,sQ) =
Q

∑
g=2

g−1

∑
p=1

lagp(sg−1,sg). (115)
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We decompose now the sum ∑
g−1
v=1 lagv(sv,sg) in (112). Replacing, syntactically,

g with v and Q with g in (115), we get

g−1

∑
v=1

lagv(sv,sg) =
g

∑
v=2

v−1

∑
p=1

lagp(sv−1,sv). (116)

This equality allows us to decompose the factor ∑
Q
g=1 Ug

∑
g−1
v=1 lagv(sv,sg)

MgMg+1
in the sec-

ond term of the LHS of (112). In particular, in the following equalities, first we ap-

ply (116), and then we expand the external sum (the first term resulting from the

expansion is equal to 0, because ∑1
2 x = 0 for any expression x):

Q

∑
g=1

Ug
∑

g−1
v=1 lagv(sv,sg)

MgMg+1

(116)
=

Q

∑
g=1

Ug

∑
g
v=2 ∑v−1

p=1 lagp(sv−1,sv)

MgMg+1
=

0+U2

∑2
v=2 ∑v−1

p=1 lagp(sv−1,sv)

M2M3
+ . . .+UQ

∑
Q
v=2 ∑v−1

p=1 lagp(sv−1,sv)

MQMQ+1

.

(117)

We expand now the external sum for each term of the last line, and, similarly to

what we did in (114), sum all the lag variations across the same time interval with

each other:

U2
lag1(s1,s2)

M2M3
+

U3
lag1(s1,s2)

M3M4
+ U3

∑2
p=1 lagp(s2,s3)

M3M4
+

... +
... +

...

UQ
lag1(s1,s2)
MQMQ+1

+ UQ
∑2

p=1 lagp(s2,s3)

MQMQ+1
+ . . . + UQ

∑
Q−1
p=1 lagp(sQ−1,sQ)

MQMQ+1
=

∑
Q
v=2 Uv

lag1(s1,s2)
MvMv+1

+ ∑
Q
v=3 Uv

∑2
p=1 lagp(s2,s3)

MvMv+1
+ . . . + UQ

∑
Q−1
p=1 lagp(sQ−1,sQ)

MQMQ+1
.

(118)

Taking out the factors that do not depend on the indexes of the outer summations,

and replacing the result in (117), we get

∑
Q
g=1 Ug

∑
g−1
v=1 lagv(sv,sg)

MgMg+1
=

lag1(s1,s2)∑
Q
v=2

Uv
MvMv+1

+
(

∑2
p=1 lagp(s2,s3)

)

∑
Q
v=3

Uv
MvMv+1

+ . . .+

+
(

∑
Q−1
p=1 lagp(sQ−1,sQ)

)

UQ

MQMQ+1
=

∑
Q
g=2

[(

∑
g−1
p=1 lagp(sg−1,sg)

)

∑Q
v=g

Uv
MvMv+1

]

.

(119)

Substituting (119) and (115) in the LHS of (112), we get

∑
Q−1
g=1 lagg(sg,sQ)−MQ+1 ∑

Q
g=1 Ug

∑
g−1
v=1 lagv(sv,sg)

MgMg+1

(119)+(115)
=

∑
Q
g=2 ∑

g−1
p=1 lagp(sg−1,sg)−MQ+1 ∑

Q
g=2

[(

∑
g−1
p=1 lagp(sg−1,sg)

)

∑Q
v=g

Uv
MvMv+1

]

=

∑
Q
g=2

{

∑
g−1
p=1 lagp(sg−1,sg)−MQ+1

(

∑
g−1
p=1 lagp(sg−1,sg)

)

∑Q
v=g

Uv
MvMv+1

}

=

∑
Q
g=2

[(

∑
g−1
p=1 lagp(sg−1,sg)

)(

1−MQ+1 ∑Q
v=g

Uv
MvMv+1

)]

(87)
=

∑
Q
g=2

[(

∑
g−1
p=1 lagp(sg−1,sg)

)

MQ+1

Mg

]

≤ 0,

(120)
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where the last inequality follows from that all the factors ∑
g−1
p=1 lagp(sg−1,sg) are

lower than or equal to 0 by Lemma 21 with v = p, tp = sg−1 and t = sg, and that

all the factors MQ+1/Mg are positive by (86). ⊓⊔


