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The knowledge of environmental maps (i.e., map-awareness) can appreciably improve the accuracy of optimalmethods for position
estimation in indoor scenarios. This improvement, however, is achieved at the price of a significant complexity increase with
respect to the case of map-unawareness, specially for large maps. This is mainly due to the fact that optimal map-aware estimation
algorithms require integrating highly nonlinear functions or solving nonlinear and nonconvex constrained optimization problems.
In this paper, various techniques for reducing the complexity of such estimators are developed. In particular, two novel strategies for
restricting the search domain of map-aware position estimators are developed and the exploitation of state-of-the-art numerical
integration and optimization methods is investigated; this leads to the development of a new family of suboptimal map-aware
localization algorithms. Our numerical and experimental results evidence that the accuracy of these algorithms is very close to that
offered by their optimal counterparts, despite their significantly lower computational complexity.

1. Introduction

Indoor localization systems have found widespread applica-
tion in a number of different areas, both military and civilian
[1]. In many cases, the maps of the environments where the
users are supposed to lie (e.g., the floor plans of a given
building or a spatial road network) are perfectly known and
this form of a priori knowledge (dubbed map-awareness in
the following) can be employed for improving localization
accuracy. In particular, in the technical literature about
localization systems map information is usually exploited to
(a) improve the quality of position estimates generated by
standard localization technologies; (b) set simple geometric
constraints in the search space of fingerprinting systems (e.g.,
see [2–4]); (c) acquire an accurate knowledge of propagation
of wireless signals on the basis of two-dimensional or three-
dimensional ray-tracing techniques [5, 6]; (d) develop map-
based statistical models for the measurements acquired by
multiple anchors in a given indoor environment. It is impor-
tant to point out the following:

(i) Point (a) refers to the wide family of map-matching
algorithms (see [7] and references therein), which
includes both simple search techniques exploiting
geometric and topological information provided by
maps, and more refined techniques based on sig-
nal processing algorithms, such as Kalman filtering
and particle filtering [8]. Distinct types of map-
matching algorithms may offer a substantially dif-
ferent complexity-performance trade-off, but the
improvement in localization accuracy is limited by
the fact that map information is not exploited in the
first stage of position estimation (i.e., in ranging).
Note also that these algorithms have been mainly
developed for transport applications (where they are
employed to refine the estimated position provided
by GPS or GPS integrated with dead-reckoning in
outdoor environments). In principle, they can be also
employed in indoor scenarios, provided that a proper
map (e.g., a schematic representation of the possible
user positions such as a Voronoi diagram) is available
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for the considered environment; for instance, map-
matching methods based on particle filtering have
been proposed in [9–13] for localization systems
operating in indoor scenarios.

(ii) Fingerprinting methods (see point (b)) make a limited
use of the geometrical properties of the propaga-
tion scenario, since they mainly rely on a training
database. In addition, the preliminary measurement
campaign necessary to generate such a database can
represent a formidable task in large buildings and/or
time-varying scenarios.

(iii) Ray-tracing techniques (see point (c)) can certainly
outperform the above-mentioned techniques in terms
of accuracy; however, real-time ray-tracing is often
unfeasible because of its large computational com-
plexity and the detailed knowledge it requires about
various physical properties (e.g., electrical permittiv-
ity of walls and boundary conditions) of localization
scenarios.

(iv) Point (d) refers to the so-called map-aware statistical
localization techniques, which have been developed
for time of arrival (TOA), time difference of arrival
(TDOA), and received signal strength- (RSS-) based
indoor localization systems [14, Sec. 4.11.5], [15, 16].
Such techniques rely on the availability of map-
aware statistical signal models and are characterized
by the following relevant features: (a) they are able
to compensate for the non-line-of-sight (NLOS) bias
(i.e., for the extra delay or extra attenuation due
to propagation through obstructions, mainly walls),
which represents a major source of error in indoor
localization; (b) their use requires measurement cam-
paigns substantially less time consuming than those
needed for fingerprinting techniques in the same
scenarios. In addition, previous work illustrated in
[15, 16] has evidenced that these models can be
easily combined with optimal estimation techniques
to derive novel localization algorithms.

This paper represents a follow-up to [15], where new map-
aware statistical models based on experimental measure-
ments have been exploited to develop optimal map-aware
minimum mean square error (MMSE) and maximum a
posteriori (MAP) estimators. Our previous work has evi-
denced that these estimators may substantially outperform
their map-unaware counterparts at the price, however, of a
significant complexity increase, specially for large maps. In
this paper, the problemof complexity reduction ofmap-aware
MMSE and MAP estimators is tackled and the following
novel contributions are developed:

(1) Two novel algorithms for restricting the domain over
which the agent position is searched for inmap-aware
estimation are devised. These algorithms, dubbed
distance-reduced domain (DRD) and probability-
reduced domain (PRD) in the following, can reduce
the rate at which the complexity of map-aware esti-
mators increases with map size without substantially
affecting localization accuracy.

(2) The application of specific mathematical tools
(namely, cubature rules for numerical integration
[17, 18] and direct-search methods [19, 20]), which
can be exploited to reduce the implementation
complexity of map-aware algorithms, is analysed.

(3) Novel suboptimal map-aware algorithms resulting
from the combination of the above-mentioned algo-
rithms and mathematical tools are proposed and
are compared, in terms of both root median square
error (RMSE) and computational complexity (namely,
overall number of floating point operations (FLOPs)),
to maximum likelihood (ML) estimators (note that
ML estimators are optimal formap-unaware localiza-
tion and have been widely adopted for their limited
computational complexity [21]).

The following is worth pointing out:

(i) Most of the performance results illustrated in this
papermainly rely on a set of data generated according
to the statistical model developed in [15], which,
in turn, is based on experimental measurements.
This approach, which is commonly adopted in the
technical literature (e.g., see [22, 23]), is motivated
by the fact that experimental databases referring to
localization systems have usually a limited size; this
is mainly due to the time consuming tasks required
by any measurement campaign in this field. However,
some performance results evaluated on the basis of
our experimental database are also shown.

(ii) In our work only RSS-based localization algorithms
are considered, even if the proposed approach can be
easily extended to TOA and TDOA based systems,
since all rely on similar statistical signal models [15].

(iii) Our contribution focuses on the role played by map-
awareness in the localization of still targets in static
environments (consequently, the potential improve-
ment deriving from the knowledge ofmobilitymodels
is not taken into consideration).

The remaining part of this paper is organized as follows. In
Section 2, some models for indoor maps and measurements
in map-aware RSS-based localization systems are illustrated.
In Section 3, optimal and suboptimal localization algorithms
based on the proposed models are developed, whereas in
Section 4 various problems arising from their implemen-
tation are analysed and some solutions are proposed. In
Section 5 various numerical results about the performance
and complexity of the devised algorithms are illustrated.
Finally, in Section 6, some conclusions are drawn.

Notations. The probability density function (pdf) of a random
vector R evaluated at the point r is denoted 𝑓(r); N(r;m,Σ)
denotes the pdf of a Gaussian random vector R having mean
m and covariance matrix Σ, evaluated at the point r; diag{⋅}
denotes a square matrix having the arguments on its main
diagonal and zeros elsewhere; |S| denotes the cardinality of
the set S; 𝑥

𝑖
denotes the 𝑖th element of the vector x and |x|

denotes its size; ⌊𝑥⌋ denotes the floor of 𝑥; proj{S, p} denotes
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the Euclidean projection of p over a domain S, that is, the
point q ∈ S which minimises the Euclidean distance with p;
centre{S} denotes the centre of the rectangleS; e

𝑥
(e

𝑦
) is the

unit vector along the 𝑥 (𝑦) axis.

2. Reference Scenario and Signal Model

In the following, we focus on a two-dimensional (2D) RSS-
based localization system employing 𝑁

𝑎
devices, called

anchors, and whose positions {p𝑎

𝑖
}
𝑁
𝑎

𝑖=1
are known, to estimate

the position p ≜ [𝑥, 𝑦]𝑇 of an agent (see Figure 1). The
mathematical models defined in [15] for themap, the wireless
connectivity between the agent and the anchors, and the
measurements acquired for position estimation are adopted;
their essential features are summarised below.

2.1. Map Model. A rectangular uniform map, having support
R and areaAR, is assumed in the following, since it provides
a good approximation of the floor plans of typical buildings
(see [15, eq. (1)]). This map consists of the union of 𝑁

𝑟

nonoverlapping rectangles {R
𝑘
⊂ R2}

𝑁
𝑟

𝑘=1
having their sides

parallel to the axes of the adopted reference frame and
representing the so-called rectangular covering of R, so that
R = ⋃

𝑁
𝑟

𝑘=1
R

𝑘
(see Figure 1). Note that, generally speaking,

the support R of a rectangular map can be approximated
by different coverings {R

𝑘
} and there is no one-to-one

mapping between the support R of a (rectangular) map and
its covering {R

𝑘
}. However, various algorithms are already

available in the technical literature to partition a generic
polygon into a set of rectangles (e.g., see [24]) and, in
particular, to generate a minimal nonoverlapping covering
(MNC) [25, 26] of R that is a partition consisting of a
minimal number of rectangles for the considered domain.
In the following, a MNC of R, which is a partition {RMNC

𝑘
}

consisting of aminimal number of rectangles for this domain,
or a dense nonoverlapping covering (DNC) {RDNC

𝑘
}, which

originates from splitting the MNC rectangles whose areas or
side lengths exceed a given threshold, is considered, so that

R =

𝑁
MNC
𝑟

⋃
𝑘=1

R
MNC
𝑘

=

𝑁
DNC
𝑟

⋃
𝑘=1

R
DNC
𝑘

; (1)

here 𝑁MNC
𝑟

(𝑁DNC
𝑟

) is the number of rectangles in the
selected MNC (DNC) of R. As it will become clearer later,
a MNC of R can be very useful to reduce the computa-
tional load of some map-aware localization algorithms; some
algorithms, however, perform better if a DNC is selected. In
localization systems, R is usually time invariant and such
coverings can be computed offline resorting to a number of
optimized (but complicated) algorithms (e.g., see [25, 26]
and references therein); in our work, however, the simpler
algorithm described in [27] is adopted, since it can handle
maps containing “holes” (e.g., inaccessible areas of a building
floor) and its input data can be easily extracted from the floor
plans of typical buildings.

Note that our approach to map-aware localization
requires not only the knowledge of aMNC (or, equivalently, a

ℛ

ℬ(ℛ)

z1

pa5pa6

pa4

pa3pa2

pa1

p

Figure 1: Localization system employing 𝑁
𝑎

= 6 anchors (green
squares) to localise a single agent (blue circle) and operating in a
bounded map (whose supportR is identified by the grey area). The
dashed line denotes the map bounding box B(R). LOS (NLOS)
links are evidenced by continuous (dashed) lines (note that𝑁obs = 4
in the considered case, since the agent is not connected to anchors
4 and 5). The dotted line represents the outer edge of a possible
rectangular covering, whereas the𝑁

𝑠
= 6 segments representing the

environmental obstructions are evidenced in red.

DNC) of themap supportR, but also that of the obstructions
(e.g., walls) the map contains; this knowledge is exploited to
evaluate the function 𝑁

𝑜
(p

1
, p

2
), which represents the num-

ber of obstructions interposed between two arbitrary points
p
1
and p

2
of R. On the contrary, map-unaware localization

systems, which are introduced later for comparison, rely on
the knowledge of the bounding boxB(R) of R only.

2.2. Connectivity Model. In our work, the coverage region
R(𝑖) of the 𝑖th anchor (with 𝑖 = 1, 2, . . . , 𝑁

𝑎
) is assumed

to consist of a circle centred at p𝑎

𝑖
whose radius 𝑑max,𝑖

depends on the transmitted power and signal propagation
conditions; inside this region, if the agent is connected with
the associated anchor, it acquires a single observation 𝑧

𝑖
(in

particular, a RSS measurement) for localization purposes
by exchanging wireless signals with the anchor itself [15,
Sec. II.B.] (if multiple measurements are acquired by the ith
anchor, they are averaged or filtered in order to generate a
single observation 𝑧

𝑖
). In practice, in the presence of harsh

propagation conditions, the shape of the coverage region is
likely to substantially differ from a circular shape, so that the
number 𝑁obs of observations available to the agent cannot
be predicted theoretically; for this reason, the parameter
𝑁obs ≜ |Z| is defined, where Z is the set of indices
associated with the anchors truly connected with the agent.
It is easy to show that if 𝑖 ∈ Z, then p ∈ R(𝑖) ⋂R;
consequently, in a map-aware localization system the agent
position has to be searched for inside the domain R(Z) ≜

(⋂
𝑖∈Z R(𝑖))⋂R. In our work, the regionR(Z) is assumed to

be well approximated by the rectangular region that consists
of all the covering rectangles intersectingwith the exactR(Z);
that is,

R
(Z) ≃ ⋃

𝑘∈K

R
𝑘
, (2)
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where

K ≜ {𝑘 = 1, . . . , 𝑁
𝑟
| R

𝑘
∩R

(𝑖) ̸= 0, ∀𝑖 ∈Z} (3)

and R
𝑘

belongs to a MNC or a DNC set (in the follow-
ing, unless explicitly stated, the symbol R

𝑘
(𝑁

𝑟
) denotes

RDNC
𝑘

(𝑁DNC
𝑟

) or RMNC
𝑘

(𝑁MNC
𝑟

)). Note that applying this
connectivity model to the considered localization problem
results in a preliminary domain reduction; in fact, instead
of considering the 𝑁MNC

𝑟
or 𝑁DNC

𝑟
rectangles covering the

whole map support, all the proposed localization algorithms
restrict their search domain to 𝑁SRC

𝑟
≜ |K| rectangles

approximating R(Z) (2). In a map-unaware system, instead,
the agent position is expected to belong to

P
(Z) ≜ (⋂

𝑖∈Z

R
(𝑖)) ∩B (R) . (4)

In this case, it is assumed that for any 𝑖 the domain R(𝑖) can
be approximated by a square region whose centre is p𝑎

𝑖
and

whose side is 2𝑑max,𝑖; this implies that P(Z) (4) consists of a
single rectangle.

Finally, we note that the sets Z and K in (3) and the
domains R(Z) (2) and P(Z) (4) are all available to the agent
localization algorithm immediately after all RSS observations
have been acquired.

2.3. Statistical Modelling of Observations. We consider a
wireless localization system inferring the agent position p
from a set of 𝑁obs RSS observations {𝑧

𝑖
, 𝑖 ∈ Z}, with 𝑁obs ≤

𝑁
𝑎
. In [15] it is shown that, given the trial agent position p̃ ∈

R(Z), the map-aware likelihood for the observation vector
z ≜ [𝑧

𝑖
, ∀𝑖 ∈ Z]𝑇 ∈ R𝑁obs can be expressed as (see [15, Eq.

(13)])

𝑓 (z | p̃)

= ∏
𝑖∈Z

N (𝑧
𝑖
; 𝑑

𝑖 (p̃) + 𝜇
𝑏,𝑖 (p̃) , 𝜎

2

𝑏,𝑖
(p̃) + 𝜎2

𝑛,𝑖
(p̃)) . (5)

Here 𝑑
𝑖
(p̃) ≜ ‖p̃ − p𝑎

𝑖
‖ is the Euclidean distance between the

trial position p̃ and the 𝑖th anchor and

𝜇
𝑏,𝑖 (p̃) ≜ (𝜇

𝑏,0
+ 𝜇

𝑏,𝑚
𝑁

𝑜
(p̃, p𝑎

𝑖
)) 𝑢

𝑁
𝑜

,

𝜎
𝑏,𝑖 (p̃) ≜ max {𝜎

𝑏,0
− 𝜎

𝑏,𝑚
𝑁

𝑜
(p̃, p𝑎

𝑖
) , 0}

(6)

denote the mean and the standard deviation, respectively,
of the bias 𝑏

𝑖
(p) ∼ N(𝜇

𝑏,𝑖
(p), 𝜎2

𝑏,𝑖
(p)) affecting the 𝑖th

observation 𝑧
𝑖
and originating from signal propagation inside

the obstructions, and

𝜎
𝑛,𝑖 (p̃) ≜ 𝜎

𝑛,0
(
𝑑
𝑖 (p̃)
𝑑
0

)
𝛽
𝑛

(7)

represents the standard deviation of the bias-unrelated and
position-dependent noise 𝑛

𝑖
(p) ∼ N(0, 𝜎2

𝑛,𝑖
(p)) affecting the

same observation. Note that the likelihood function 𝑓(z |
p̃) (5) is influenced by the structure of the map support R

through the parameters 𝜇
𝑏,𝑖
(p̃) and 𝜎

𝑏,𝑖
(p̃), since both these

quantities depend on 𝑁
𝑜
(p̃, p𝑎

𝑖
).

Map-unaware systems, instead, cannot rely on the knowl-
edge of the function 𝑁

𝑜
(⋅, ⋅) in bias modelling. More-

over, state-of-the-art map-unaware systems often employ a
LOS/NLOS detection stage before localization, whose output
ẐNLOS (ẐLOS) is the subset ofZ containing the indices of the
anchors detected to experience NLOS (LOS) conditions with
the agent. Given ẐNLOS and the trial agent position p̃ ∈ P(Z),
the map-unaware likelihood (see [15, Eq. (15)])

𝑓 (z; p̃) = ∏
𝑖∈Z

N (𝑧
𝑖
; 𝑑

𝑖 (p̃) + 𝜇MU
𝑏,𝑖

(p̃) , (𝜎MU
𝑏,𝑖

(p̃))
2

+ (𝜎MU
𝑛,𝑖

(p̃))
2

)

(8)

is adopted for the same observation vector z considered in
(5). Here 𝜇MU

𝑏,𝑖
≜ 𝜅

𝑏
and 𝜎MU

𝑏,𝑖
≜ 𝛾

𝑏
for 𝑖 ∈ ẐNLOS (both are

zero otherwise) and 𝜎MU
𝑛,𝑖

(p̃) = 𝜎MU
𝑛,0

(𝑑
𝑖
(p̃)/𝑑

0
)𝛽

MU
𝑛 .

2.4. Calibration. The parameters appearing in both the map-
aware andmap-unaware likelihood functions (see (5) and (8),
resp.) need to be extracted from a set of experimental mea-
surements, as illustrated in [15]. In ourwork, the performance
of the developed localization algorithms has been assessed on
the floors of 3 different buildings of the University ofModena
and Reggio Emilia (these buildings mainly host offices and
laboratories). In each scenario, 15–20measurement sites have
been identified in order to acquire RSS data referring to
almost 100 independent links.Then, themethod illustrated in
[15] has been exploited to extract the values of the unknown
parameters appearing in (5) and (8); this has produced the
following values: 𝜇

𝑏,0
= 12.6m, 𝜇

𝑏,𝑚
= 2.53m, 𝜎

𝑏,0
= 7.07m,

𝜎
𝑏,𝑚

= 3.0m, 𝜎
𝑛,0

= 2.47m, 𝛽
𝑛

= 0.21, and 𝑑
0
= 1m for

the map-aware model (5) and the parameters 𝜅
𝑏

= 21m,
𝛾
𝑏
= 2.81m, 𝜎MU

𝑛,0
= 4.47m, and 𝛽MU

𝑛
= 0.19 for the map-

unawaremodel (8) (please see [15, Table I] for further details).
It is important to note the following:

(i) In our experimental campaign, we have also found
that the same values of the considered parameters
can accurately describe the statistical models to be
adopted for RSS measurements in different scenarios;
this result is motivated by the fact that actually similar
propagation conditions are experienced in distinct
buildings (which can be classified as light commercial
in standard terminology), even if the areas of the
considered propagation scenarios (floor plans) are
significantly different (see Section 5).

(ii) In principle, a preliminary measurement campaign
is always required to adapt models (5) and (8) to
different propagation scenarios.This need is common
to various localization techniques, which may require
a time consuming training phase.

(iii) Map-aware solutions require a proper preprocessing
of the map to compute its MNC or DNC and to
evaluate the function 𝑁

𝑜
(p

1
, p

2
) (see Section 2.1);
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however, this step can be carried out offline and
does not appreciably affect the overall computational
complexity (see also Section 4.1).

3. Estimation Algorithms

In this Section, optimal map-aware (namely, MMSE and
MAP) and map-unaware (namely, ML) localization algo-
rithms are analysed first. Then, two novel heuristic (subopti-
mal) strategies are proposed to reduce the computational load
required by optimal estimation algorithms.

3.1. Optimal Map-Unaware Estimator. In a map-unaware
context (i.e., in the absence of prior information about the
position of the agent), the ML approach can be adopted to
generate the optimal estimate p̂ML(z) ≜ argmaxp̃ ln𝑓(z; p̃) of
p [28], where 𝑓(z; p̃) is given by (8). In practice, this estimate
can be evaluated as

p̂ML (z) = arg min
p̃∈P(Z)

{
{
{

∑
𝑖∈Z

(𝑧
𝑖
− 𝑑

𝑖 (p̃) − 𝜇MU
𝑏,𝑖

)
2

(𝜎MU
𝑛,𝑖

(p̃))
2

+ (𝜎MU
𝑏,𝑖

)
2

+ 2 ln∏
𝑖∈Z

√(𝜎MU
𝑛,𝑖

(p̃))
2

+ (𝜎MU
𝑏,𝑖

)
2}
}
}

,

(9)

where P(Z) is a single rectangle (see Section 2.2). The last
expression deserves the following comments:

(1) The cost function appearing in (9) exhibits a dis-
continuous behaviour, even if it does not contain
map-aware functions (e.g., 𝑁

𝑜
(⋅, ⋅)), since 𝜇MU

𝑏,𝑖
and

𝜎MU
𝑏,𝑖

are assigned a constant value or zero depending
on ẐNLOS. Consequently, in principle, optimization
methods involving gradients or Hessians cannot be
used, unless the cost function is, at least approxi-
mately, continuous.

(2) The evaluation of p̂ML(z) in (9) requires solving a con-
strained least squares problem with a quadratic regu-
larization term (represented by the product appear-
ing in the right-hand side of (9)) which penalizes
trial positions p̃ affected by large noise and bias.
Unluckily, standard optimization methods do not
necessarily achieve the global minimum; when this
occurs, large localization errors are found (note that
some methods developed to mitigate the problem
of local minima, like projection onto convex sets
(POCS) andmultidimensional scaling (MDS), cannot
be straightforwardly applied in this case because of
the significant complexity of our observation model).

(3) The complexity of the cost function in (9) can be
related to 𝑁obs as O(𝑁obs).

3.2. OptimalMap-Aware Estimators. In amap-aware context,
a MMSE or a MAP approach can be employed in position

estimation. In particular, it is not difficult to show that the
MMSE estimate p̂MMSE(z) of p is given by [28]

p̂MMSE (z) ≜ Ep {p | z} =
[

∬
R

𝑥𝑓(z|p)𝑑p
∬

R
𝑦𝑓(z|p)𝑑p

]

∬
R
𝑓 (z | p) 𝑑p

. (10)

Substituting (5) in (10) yields, after some manipulation,

p̂MMSE (z)

=

[
∬

R(Z)
(𝑥ℎ(z,p)/∏𝑖∈Z√𝜎

2

𝑛,𝑖
(p)+𝜎2

𝑏,𝑖
(p))𝑑p

∬
R(Z)

(𝑦ℎ(z,p)/∏𝑖∈Z√𝜎
2

𝑛,𝑖
(p)+𝜎2

𝑏,𝑖
(p))𝑑p

]

∬
R(Z)

(ℎ (z, p) /∏
𝑖∈Z√𝜎2

𝑛,𝑖
(p) + 𝜎2

𝑏,𝑖
(p)) 𝑑p

,

(11)

where

ℎ (z, p) ≜ exp[−
1

2
∑
𝑖∈Z

(
(𝑧

𝑖
− 𝑑

𝑖 (p) − 𝜇
𝑏,𝑖 (p))

𝜎
𝑛,𝑖 (p)

)

2

] . (12)

The last result deserves the following comments:

(1) TheMMSE estimation procedure, unlike itsMAP and
ML counterparts, does not involve an optimization
step and, consequently, does not suffer from problem
of local minima. However, it requires numerical
multidimensional integration.

(2) Our numerical results have evidenced that (a) the
product ∏

𝑖∈Z√𝜎2

𝑛,𝑖
(p) + 𝜎2

𝑏,𝑖
(p) appearing in (11)

exhibits small variations inside the considered map
if the anchor density is approximately constant and
(b) the accuracy of MMSE estimation is negligibly
influenced by the presence of this term for any p ∈ R
such that 𝑑

𝑖
(p) ≫ 1 ∀𝑖 ∈ Z (i.e., for any agent

position far from the anchors). Then, discarding this
term yields the approximate (and computationally
simpler) variant

p̂MMSE (z) ≃
[

∬
R(Z)

𝑥ℎ(z,p)𝑑p
∬

R(Z)
𝑦ℎ(z,p)𝑑p

]

∬
R(Z)

ℎ (z, p) 𝑑p
(13)

of the MMSE estimator.
(3) The computational load required by the evaluation

of 𝑁
𝑜
(⋅, ⋅) is O(𝑁

𝑠
) (see Section 2.1), where 𝑁

𝑠
is

the number of segment intersection tests accomplished
in processing a given observation; consequently, the
complexity required by ℎ(z, p) (12) is approximately
O(𝑁

𝑠
⋅ 𝑁obs), where 𝑁

𝑠
is the average of 𝑁

𝑠
evaluated

over the observations collected in z (note that 𝑁
𝑠
is

nonlinearly related to the shape of obstructions, the
trial agent position, and the anchor positions).

An alternative to the MMSE estimator is offered by the so-
called MAP estimator, which can be expressed as p̂MAP(z) ≜
argmaxp̃ ln𝑓(z | p̃) [28] or, if (5) and Bayes’ rule are
exploited, as

p̂MAP (z) = arg min
p̃∈R(Z)

𝑓
𝑐 (p̃) , (14)
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where
𝑓
𝑐 (p̃) ≜ −2 ln𝑓 (p̃ | z)

= ∑
𝑖∈Z

(𝑧
𝑖
− 𝑑

𝑖 (p̃) − 𝜇
𝑏,𝑖 (p̃))

2

𝜎2

𝑛,𝑖
(p̃) + 𝜎2

𝑏,𝑖
(p̃)

+ 2 ln∏
𝑖∈Z

√𝜎2

𝑛,𝑖
(p̃) + 𝜎2

𝑏,𝑖
(p̃)

(15)

is theMAP cost function.This function deserves the following
comments:

(1) It is not differentiable, since it depends on 𝑁
𝑜
(⋅, ⋅).

Consequently, its gradient/Hessian matrix cannot
be evaluated analytically and, in principle, steepest
descent methods cannot be used; in practice, such
methods can be exploited if it is assumed that the cost
function is approximately continuous.

(2) For large𝑁obs, it is characterized by a better numerical
stability than that of the function ℎ(z, p) (12). In
fact, for large 𝑁obs, the argument of the function
exp(⋅) appearing in ℎ(z, p) becomes small, so that the
resulting numerical values of ℎ(z,p) itselfmay quickly
drop below machine precision. On the contrary, this
problem is not experiencedwith𝑓

𝑐
(p̃) (15), because of

the presence of a natural logarithm in its expression.
(3) Its computational complexity is similar to that of

ℎ(z, p), which is O(𝑁
𝑠
⋅ 𝑁obs).

3.3. Distance-Reduced Domain Map-Aware Estimator. The
computational complexity of theMMSE andMAP estimators
described above becomes unacceptable when the considered
map is large. To mitigate this problem, a new technique
for restricting the domain over which the agent position is
searched for has been developed; it consists of the following
three steps:

(1) Map-Unaware Estimation. A raw estimate p̂raw(z) is
generated by the map-unaware estimator (9), without
performing any NLOS correction (this is equivalent
to assuming ẐLOS ≡ Z and ẐNLOS = 0 in (9)).

(2) Domain Reduction. A portion

R
(Z)

red ≜ ⋃

𝑘∈K̂

R
𝑘 (16)

of R close to p̂raw is extracted, where K̂ is a subset
of the values of the index 𝑘 associated with the set of
rectangles {R

𝑘
} forming R(Z) (2); in practice, K̂ is

generated according to the heuristic criterion

K̂ ≜ {𝑘 ∈K :
p̂raw − proj {R

𝑘
, p̂raw}

 < 𝑑th} , (17)

where 𝑑th ≜ median
𝑖∈Z{𝛾√𝜎2

𝑏,𝑖
(p̂raw) + 𝜎2

𝑛,𝑖
(p̂raw)} is

a threshold distance, 𝛾 is a fixed parameter, and K is
defined by (3). Note that the definition given above for
𝑑th entails that only the covering rectangles within 𝛾
standard deviations from p̂raw are selected.

(3) Map-Aware Estimation. The final estimate p̂DRD(z) is
generated using either the MMSE (13) or the MAP
estimator (14) under the constraint that p ∈ R

(Z)

red ;
intuitively, since the subsetR(Z)

red is smaller thanR(Z)

(2), the computational load required by this step is
lower than that required by (13) or (14).

Note that the proposed technique mitigates localization
complexity by restricting the search domain R(Z) on the
basis of a distance criterion, in the sense that only a subset
of rectangles, close to the raw estimate p̂raw(z), is taken
into consideration. For this reason, in the following, this
procedure is dubbed distance-reduced domainMMSE (DRD-
MMSE) or distance-reduced domain MAP (DRD-MAP), if
a MMSE or a MAP estimator is employed in the last step,
respectively. Note that DRD performance strongly depends
on (a) the accuracy of the p̂raw(z) estimate and (b) the
criterion adopted in generating the set K̂ (17) (if the proposed
criterion fails to select the map portion where the agent truly
lies, then a large error is made in step (3), where it is assumed
that p ∈ R

(Z)

red ). In principle, other heuristic criteria (e.g.,
based on selecting a fixed number of rectangles close to p̂raw)
could be adopted; however, (17) turned out to provide the best
accuracy/complexity trade-off among the “distance-based”
criteria we tested in our computer simulations.

3.4. Probability-Reduced Domain Map-Aware Estimator. An
alternative to the DRD approach is based on a sort of
probabilistic criterion and consists of the following two steps:

(1) Map-Aware Raw Estimation. Similarly to step (1)
of the DRD algorithm, a portion R

(Z)

red (16) of R
is extracted. However, in this case, the integer set
K̂ is generated by taking the values of the index 𝑘
associated with the 𝑁

𝑟,min largest elements of the set

F ≜ {ln𝑓 (z | p̃ = p𝑐

𝑘
) , ∀𝑘 ∈K ∩N} , (18)

where 𝑁
𝑟,min is a fixed parameter, p𝑐

𝑘
≜ centre{R

𝑘
},

𝑓(z | p̃) is given by (5), K is defined by (3), and N
is a proper integer set, whose target is reducing the
cardinality of F (and thus the overall computational
load of the estimation algorithm). In practice, N ≜
{𝑘 | ‖p𝑐

𝑘
− p𝑐

𝑖
‖ > 𝑑th, ∀𝑖 ∈ N \ {𝑘}} has been selected,

where 𝑑th is a fixed real and positive parameter, so
that only rectangles spaced by at least 𝑑th meters
are considered (instead of all rectangles forming the
search domain R(Z) (2)). The effect of the choice
expressed by (18) is to generate the reduced domain
R

(Z)

red (16) by selecting the 𝑁
𝑟,min rectangles that, on

the basis of their centers, exhibit the largest likelihood
values.

(2) Map-Aware Estimation. The final estimate p̂PRD(z)
is evaluated exploiting either the MMSE (13) or the
MAP estimator (14) under the constraint that p ∈

R
(Z)

red .
The resulting estimation technique is dubbed probability-
reduced domainMMSE (PRD-MMSE) or probability-reduced
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domain MAP (PRD-MAP), if a MMSE or a MAP estimator,
respectively, is employed in the last step of the procedure
illustrated above. It is important to point out that this
approach offers some advantages with respect to its DRD
counterpart, since (a) the criterion (18) is more closely related
to the optimal MAP criterion than (17) and (b) all the PRD
steps rely on map-awareness, that is, on the most accurate
modelling we propose. However, it should be also taken into
account the fact that the first step of the PRD approach may
entail a significant complexity, since the evaluation of a map-
aware likelihood is required.

4. Implementation of Estimation Algorithms

All the map-aware and map-unaware estimation algorithms
illustrated in Section 3 require numerical integration and/or
the application of optimization methods and involve nonlin-
ear and nondifferentiable cost functions. For these reasons,
their implementation raises various problems; some possible
solutions are illustrated below.

4.1. Map-Aware Implementations. In this section, two differ-
ent implementations for the evaluation of theMMSE estimate
on the basis of (13) are proposed and analysed in detail. The
first implementation, called MMSE

𝑐
, is based on the use of

the so-called cubature formulas (e.g., see [17, 29–31]), which
approximate anymultidimensional definite integral as a finite
sum of terms depending on its integrand. In particular, in the
following, any integration over the search domain R(Z) is
expressed as the sumof𝑁SRC

𝑟
distinct integrals, each referring

to a distinct rectangular domain (see (1)), and the cubature
formulas illustrated in [30] are exploited for the evaluation of
each of the 𝑁SRC

𝑟
integrals. Then, from (13) the approximate

expression

p̂MMSE
𝑐

(z) ≃
[

∑
𝑁

SRC
𝑟

𝑘=1
∑
𝑁
𝑛,𝑘

𝑗=1
𝑤
𝑘,𝑗

𝛼
(𝑥)

(𝑘,𝑗)
ℎ(z,𝛼(𝑘,𝑗))

∑
𝑁

SRC
𝑟

𝑘=1
∑
𝑁
𝑛,𝑘

𝑗=1
𝑤
𝑘,𝑗

𝛼
(𝑦)

(𝑘,𝑗)
ℎ(z,𝛼(𝑘,𝑗))

]

∑
𝑁

SRC
𝑟

𝑘=1
∑

𝑁
𝑛,𝑘

𝑗=1
𝑤

𝑘,𝑗
ℎ (z,𝛼(𝑘,𝑗))

(19)

is easily inferred, where 𝛼
(𝑘,𝑗)

= [𝛼(𝑥)

(𝑘,𝑗)
, 𝛼

(𝑦)

(𝑘,𝑗)
]𝑇 ≜ c

𝑘
+

L
𝑘
𝛼
(𝐹)

(𝑘,𝑗)
is the 𝑗th node referring to the 𝑘th rectangle R

𝑘
≜

[𝑙
𝑘
; 𝑟

𝑘
] × [𝑏

𝑘
; 𝑡

𝑘
] in R(Z) (2), 𝑤

𝑘,𝑗
≜ 𝑤(𝐹)

𝑘,𝑗
det(L

𝑘
) is the

corresponding weight, c
𝑘
≜ (1/2)[𝑙

𝑘
+ 𝑟

𝑘
; 𝑏

𝑘
+ 𝑡

𝑘
]𝑇, and L

𝑘
≜

(1/2)diag{𝑟
𝑘
−𝑙

𝑘
, 𝑡

𝑘
−𝑏

𝑘
}, whereas 𝛼(𝐹)

(𝑘,𝑗)
∈ [−1; 1]×[−1; 1] and

𝑤(𝐹)

𝑘,𝑗
denote the 𝑗th node and the 𝑗th weight, respectively, of

the cubature formula of order 𝑁
𝑛,𝑘

. It is worth mentioning
that, in principle, the larger the size of R

𝑘
is, the stronger

the fluctuations of the integrand function to be expected
over this domain are; consequently, high cubature orders (i.e.,
large values of {𝑁

𝑛,𝑘
}) should be selected for large rectangles,

at the price, however, of an increase in the computational
load. In our computer simulations, the heuristic formula
𝑁

𝑛,𝑘
= 𝑁

𝑛
(⌊𝑚AR

𝑘

+𝑑min⌋) has been adopted for selecting the
number of nodes; here,𝑁

𝑛
(⋅) denotes the function defined in

[30] to map the degree 𝑑 of a polynomial into the number of

integration nodes, ⌊𝑚AR
𝑘

+ 𝑑min⌋ is the polynomial degree
heuristically associated with the (nonpolynomial) integrand
functions appearing in (13), AR

𝑘

= det(L
𝑘
) is the area of

R
𝑘
, whereas𝑚 and 𝑑min are real parameters whose values are

listed in Table 1. It is also important to point out that (a) all
the sums appearing in (19) require the evaluation of the same
quantities {ℎ(z,𝛼(𝑘,𝑗))} and (b) MMSE

𝑐
is noniterative and its

approximate complexity is O(𝑁
𝑠
⋅ 𝑁obs ⋅ 𝑁eval), where 𝑁eval =

𝑁
𝑛
⋅ 𝑁SRC

𝑟
and 𝑁

𝑛
denotes the average number of nodes

selected for integrating over each of the 𝑁SRC
𝑟

rectangles.
Further details about our implementation of MMSE

𝑐
can be

found in [27, 32].
The second implementation, called MMSE

𝑟
, is based on

the well-known trapezoidal integration rule; then, from (13),
the approximate formula

p̂MMSE
𝑟

(z) ≃

[
∑
𝑁

SRC
𝑟

𝑘=1
∑
𝑁
𝑥

𝑛,𝑘

𝑖=1
∑

𝑁

𝑦

𝑛,𝑘

𝑗=1
𝑤
𝑘,𝑖,𝑗

𝛼
(𝑘,𝑖,𝑗)

𝑥
ℎ(z,𝛼(𝑘,𝑖,𝑗))

∑
𝑁

SRC
𝑟

𝑘=1
∑
𝑁
𝑥

𝑛,𝑘

𝑖=1
∑

𝑁

𝑦

𝑛,𝑘

𝑗=1
𝑤
𝑘,𝑖,𝑗

𝛼
(𝑘,𝑖,𝑗)

𝑦
ℎ(z,𝛼(𝑘,𝑖,𝑗))

]

∑
𝑁

SRC
𝑟

𝑘=1
∑

𝑁
𝑥

𝑛,𝑘

𝑖=1
∑

𝑁
𝑦

𝑛,𝑘

𝑗=1
𝑤

𝑘,𝑖,𝑗
ℎ (z,𝛼(𝑘,𝑖,𝑗))

(20)

is easily inferred. Here, the nodes {𝛼(𝑘,𝑖,𝑗) ≜ [𝑙
𝑘
+ (𝑖 − 1)Δ, 𝑏

𝑘
+

(𝑗 − 1)Δ]𝑇, 𝑖 = 1, 2, . . . , 𝑁𝑥

𝑛,𝑘
, 𝑗 = 1, 2, . . . , 𝑁

𝑦

𝑛,𝑘
} of the 𝑘th

integration formula correspond to the vertices of a regular
grid extending over R

𝑘
and characterized by a spacing Δ

(see Table 1), whereas the corresponding weights {𝑤
𝑘,𝑖,𝑗

} are
evaluated as

𝑤
𝑘,𝑖,𝑗

≜

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

Δ2

4
for 𝑖 ∈ {1,𝑁𝑥

𝑛,𝑘
} , 𝑗 ∈ {1,𝑁

𝑦

𝑛,𝑘
}

Δ2

2
for 𝑖 ∈ {1,𝑁𝑥

𝑛,𝑘
} , 𝑗 ∈ {2, . . . , 𝑁

𝑦

𝑛,𝑘
− 1}

Δ2

2
for 𝑖 ∈ {2, . . . , 𝑁𝑥

𝑛,𝑘
− 1} , 𝑗 ∈ {1,𝑁

𝑦

𝑛,𝑘
}

Δ2 for 𝑖 ∈ {2, . . . , 𝑁𝑥

𝑛,𝑘
− 1} , 𝑗 ∈ {2, . . . , 𝑁

𝑦

𝑛,𝑘
− 1}

(21)

with 𝑁𝑥

𝑛,𝑘
≜ ⌊(𝑟

𝑘
− 𝑙

𝑘
)/Δ⌋ + 1 and 𝑁

𝑦

𝑛,𝑘
≜ ⌊(𝑡

𝑘
− 𝑏

𝑘
)/Δ⌋ + 1. It

is important to point out the following: (a) similarly to (19),
the three sums in (20) require the evaluation of the same
quantities {ℎ(z,𝛼(𝑘,𝑖,𝑗))}; (b) MMSE

𝑟
is noniterative and its

approximate complexity is O(𝑁
𝑠
⋅ 𝑁obs ⋅ 𝑁eval), where 𝑁eval =

𝑁𝑥

𝑛
⋅ 𝑁

𝑦

𝑛 ⋅ 𝑁SRC
𝑟

and 𝑁𝑥

𝑛
(𝑁𝑦

𝑛 ) denotes the average number of
integration points selected along the 𝑥 (𝑦) direction.

In implementing the MAP estimator (14), the search over
the space R(Z) has been turned into 𝑁

𝑟
searches over the

distinct rectangles {R
𝑘
, 𝑘 = 1, 2, . . . , 𝑁

𝑟
} covering R(Z).

This choice is motivated by the fact that (a) the constraint
p̃ ∈ R(Z), unlike p̃ ∈ R

𝑘
, cannot be directly formulated as a

set of linear inequalities, as required by standard optimization
techniques; (b) solving 𝑁

𝑟
distinct optimization problems,

each involving a search domain much smaller than R(Z),
strongly reduces the probability of reaching local minima;
(c) when iterative optimization algorithms are adopted over
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Table 1: Covering and specific values selected for the implementations illustrated in Section 4.

Algorithm Cov. Parameters
MMSE

𝑐
MNC 𝑚 = 1.4m−2, 𝑑min = 5

MMSE
𝑟

MNC Δ = 0.3m
MAP

𝑓
MNC Algorithm = active-set, maxiter = 103, tolfun = tolx = 10−2

MAP
𝑔

MNC Δ
1
= 2m, Δ final = 0.3m, 𝑁

𝑟,min = 3

MAP
𝑐

MNC Δ
1
= 2m, Δ final = 0.3m

DRD-E
𝑐
, DRD-P

𝑔
MNC 𝛾 = 0.6, 𝑁

𝑟,min = 5

PRD-E
𝑐
, PRD-P

𝑔
MNC 𝑑th = 3.5m, 𝑁

𝑟,min = 5

PRD-P
𝑝

DNC 𝑑th = 3.5m, 𝑁
𝑟,min = 10

ML
𝑓

— The same as for MAP
𝑓

ML
𝑚

— Δ = 10m; others the same as for MAP
𝑓

ML
𝑐

— Δ
1
= 2m, Δ final = 0.3m

each of the rectangles {R
𝑘
}, fast convergence can be usually

achieved if their centres are selected as initial points. Note
that in this case direct-search methods [19, 20] should
be preferred to standard Newton-based or gradient-based
methods, since the first class of methods usually admits
simple implementations for constrained problems and does
not require smooth cost functions. These considerations
have led us to develop 3 different implementations, called
MAP

𝑓
, MAP

𝑔
, and MAP

𝑐
, of the MAP strategy (14). The

first one (namely, MAP
𝑓
) is summarised in Algorithm 1

and is based on the use of the MATLAB fmincon routine
to solve the optimization problem appearing in step (2).
This implementation is characterized by various adjustable
parameters; their values, which are listed in Table 1, have been
selected to minimise the overall computational complexity.

The second implementation (namely, MAP
𝑔
) is sum-

marised in Algorithm 2 and is based on discretisation of the
search space and on the use of iterative direct-searchmethods
(see [19, Sec. 3]). In practice, in its 𝑘th iteration, for each
rectangle of the selected covering, the cost function 𝑓

𝑐
(⋅) (15)

is evaluated at the vertices of a rectangular grid characterized
by spacing Δ

𝑘
(see lines (4)-(5)); then, on the basis of the

resulting values, only themost promising rectangles are saved
for the next iteration (see line (8)), in which a halved step size
is adopted (see line (9)). Note that both the computational
complexity and the accuracy of MAP

𝑔
depend on the initial

and the final values of the step size (denoted by Δ
1
and Δ final,

resp.), so that a proper trade-off has to be achieved in the
selection of these parameters (the values we adopted are listed
in Table 1).

The third implementation (namely,MAP
𝑐
) is summarised

in Algorithm 3 and is based on a different direct-search
method, known as the compass algorithm [20, Sec. 8.1].
Similarly to MAP

𝑔
, MAP

𝑐
exploits a discretisation of the

search space and an iterative reduction of the step size;
however, the grid it employs is not regular. In fact, in each
rectangle, the domain is explored moving from a “current
trial position” p̃ on the basis of given displacement vectors
±e

𝑥
or ±e

𝑦
(see line (6)) in order to identify the direction

along which the cost function decreases (see line (8)). Even
in this case, the overall computational complexity and the

Require: covering {R
𝑘
, 𝑘 ∈ K} of R(Z) (2); 𝑓

𝑐
(p) (15).

(1) for 𝑘 ∈ K do
(2) pmin,𝑘 ← argminp̃∈R

𝑘

𝑓
𝑐
(p̃)

(3) 𝑓min,𝑘 ← 𝑓
𝑐
(pmin,𝑘)

(4) end for
(5) �̂� ← argmin

𝑘
{𝑓min,𝑘}, p̂MAP

𝑓

← pmin,�̂�

Algorithm 1: Implementation of the MAP strategy (14) based on
the fmincon routine (MAP

𝑓
).

accuracy of this implementation depend on the initial and
final values of the step size (see Table 1), which need to be
carefully selected.

It is not difficult to show that the overall computational
complexity of each of the MAP implementations proposed
above is O(𝑁

𝑠
⋅ 𝑁obs ⋅ 𝑁eval), where 𝑁eval denotes the overall

number of times the cost function 𝑓
𝑐
(⋅) (15) is evaluated.

Unluckily, 𝑁eval cannot be easily related to the other param-
eters of the proposed MAP implementations because of its
nonlinear dependence on such parameters; consequently, a
more accurate estimate of the computational burden required
by the proposed implementations cannot be provided.

Let us focus now on the problem of combining the
implementation of the MMSE and MAP estimators illus-
trated above with the DRD and PRD techniques described
in Section 3.3. As far as the DRD technique is concerned, we
note that all the proposedMAP/MMSE implementations can
be employed in its last step. In the following, however, the
implementations of DRD-MMSE andDRD-MAP techniques
are always based on MMSE

𝑐
and MAP

𝑔
, respectively; for

this reason, they are denoted by DRD-E
𝑐

and DRD-P
𝑔
,

respectively. It is important to point out the following:

(1) The algorithms DRD-E
𝑐
and DRD-P

𝑔
are not intrin-

sically iterative. However, they can be easily modified
to include a mechanism for iteratively updating the
value of the parameter 𝛾 in order to improve their
robustness against inaccuracies in the initial setup
(see Algorithm 4).
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Require: covering {R
𝑘
= [𝑙

𝑘
; 𝑟

𝑘
] × [𝑏

𝑘
, 𝑡

𝑘
], 𝑘 ∈ K} of R(Z) (2); 𝑓

𝑐
(p) (15); Δ

1
, Δ final and 𝑁

𝑟,min (Table 1).
(1) Δ ← Δ

1
, K̃ ← K

(2) while Δ > Δ final do
(3) for 𝑘 ∈ K̃ do
(4) I ← {1, . . . , ⌊(𝑟

𝑘
− 𝑙

𝑘
)/Δ⌋}, J ← {1, . . . , ⌊(𝑡

𝑘
− 𝑏

𝑘
)/Δ⌋}

(5) (�̂�, 𝑗) ← argmin
𝑖∈I,𝑗∈J𝑓𝑐

((𝑙
𝑘
, 𝑏

𝑘
) + Δ(𝑖, 𝑗))

(6) pmin,𝑘 ← (𝑙
𝑘
, 𝑏

𝑘
) + Δ(�̂�, 𝑗), 𝑓min,𝑘 ← 𝑓

𝑐
(pmin,𝑘)

(7) end for
(8) K̃ ← indices of the 𝑁

𝑟,min smallest elements of {𝑓min,𝑘}

(9) Δ ← Δ/2

(10) end while
(11) �̂� ← argmin

𝑘∈K̃{𝑓min,𝑘}, p̂MAP
𝑔

← pmin,�̂�

Algorithm 2: Implementation of the MAP strategy (14) based on an iterative grid search (MAP
𝑔
).

Require: covering {R
𝑘
, 𝑘 ∈ K} of R(Z) (2); 𝑓

𝑐
(p) (15); Δ

1
and Δ final (Table 1).

(1) for 𝑘 ∈ K do
(2) Δ ← Δ

1

(3) pmin,𝑘 ← centre{R
𝑘
}, 𝑓min,𝑘 ← 𝑓

𝑐
(pmin,𝑘)

(4) while Δ > Δ final do
(5) bImproved ← False
(6) for d ∈ {e

𝑥
, e

𝑦
, −e

𝑥
, −e

𝑦
} do

(7) p̃ ← pmin,𝑘 + Δ ⋅ d
(8) if 𝑓

𝑐
(p̃) < 𝑓min,𝑘 and p̃ ∈ R

𝑘
then

(9) 𝑓min,𝑘 ← 𝑓
𝑐
(p̃), pmin,𝑘 ← p̃

(10) bImproved ← True, break
(11) end if
(12) end for
(13) Δ ← Δ/2 only if bImproved = False
(14) end while
(15) end for
(16) �̂� ← argmin

𝑘
{𝑓min,𝑘}, p̂MAP

𝑐

← pmin,�̂�

Algorithm 3: Implementation of the MAP strategy (14) based on an iterative compass search (MAP
𝑐
).

Require: covering {R
𝑘
, 𝑘 ∈ K} of R(Z) (2); p̂MMSE

𝑐

(p̂MAP
𝑔

) estimator; constants 𝛾 and 𝑁
𝑟,min (Table 1).

(1) p̂raw ← p̂ML
𝑚

, computed assuming ẐNLOS = Z

(2) 𝑑th ← median
𝑖∈Z{𝛾√𝜎2

𝑏,𝑖
(p̂raw(z)) + 𝜎2

𝑛,𝑖
(p̂raw(z))}

(3) 𝑑
𝑘
← ‖p̂raw − proj{R

𝑘
, p̂raw}‖ for 𝑘 ∈ K (see (17))

(4) while |K̂| < 𝑁
𝑟,min do

(5) K̂ ← {𝑘 | 𝑑
𝑘
< 𝑑th}, 𝑑th ← 1.5𝑑th

(6) end while
(7) p̂DRD-E

𝑐

← p̂MMSE
𝑐

(p̂DRD-P
𝑔

← p̂MAP
𝑔

) evaluated in the reduced mapR
(Z)

red = ⋃
𝑘∈K̂ R

𝑘

Algorithm 4: Implementation of the iterative DRD estimator (see Section 3.3) employed by DRD-E
𝑐
(DRD-P

𝑔
).
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(2) The complexity of DRD-E
𝑐
and DRD-P

𝑔
is approxi-

mately O(𝑁SRC
𝑟

+ 𝑁obs(𝑁𝑠
⋅ 𝑁eval + 𝑁eval,raw)), where

𝑁eval denotes the overall number of evaluations of the
MMSE integrand (for DRD-E

𝑐
) or that of the MAP

cost function (for DRD-P
𝑔
), and 𝑁eval,raw represents

the overall number of evaluations of the ML cost
function.

In our work, MMSE
𝑐
and MAP

𝑔
have been also selected

for the last step of the PRD technique; the resulting imple-
mentations are denoted by PRD-E

𝑐
and PRD-P

𝑔
, respectively,

in the following. It is worth mentioning that

(1) both PRD-E
𝑐
and PRD-P

𝑔
are not iterative;

(2) their complexity is O(𝑁
𝑠
⋅ 𝑁obs ⋅ (𝑁eval,1 + 𝑁eval,2)),

where 𝑁eval,1 and 𝑁eval,2 denote the overall number
of evaluations of the MMSE integrand (for PRD-E

𝑐
)

and that of the MAP cost function (for PRD-P
𝑔
) in

the first step and in the second step, respectively (see
Section 3.4);

(3) the values of parameters 𝑑th and 𝑁
𝑟,min need to be

carefully selected.

Our numerical results (see Section 5) have evidenced that
whatever option for map-aware estimation is selected, the
parameter 𝑁

𝑠
(i.e., the average number of intersection tests

accomplished in processing each observation) appearing in
the complexity estimate of all the implementations developed
in this paragraph plays a significant role in penalizing them
with respect to their map-unaware counterparts. To reduce
𝑁

𝑠
, the following two techniques have been devised:

(1) Segment Partitioning (SP). This consists of an offline
phase, where (a) R is partitioned in multiple cells
using a nonuniform rectangular grid (in a way that
each anchor lies on a vertex of the grid) and (b)
the obstruction segments falling inside each cell are
identified. Then, when 𝑁

𝑜
(p𝑎

𝑖
, p

2
) is evaluated, only

the segments of the cells intersecting with the (p𝑎

𝑖
, p

2
)

segment are taken into account, thus reducing 𝑁
𝑠
.

(2) Precomputing (PC). This is based on an offline
evaluation of the function 𝑁

𝑜
(⋅, ⋅) over 𝑁pt points

(uniformly) distributed inside each rectangle of the
available MNC or DNC; this requires storing 𝑁pt ⋅

𝑁
𝑎
⋅ 𝑁MNC

𝑟
or 𝑁pt ⋅ 𝑁𝑎

⋅ 𝑁DNC
𝑟

integers in a table,
where 𝑁

𝑎
denotes the average number of connected

anchors.This technique is “memory hungry” for large
maps; however, the precomputed table replaces that
memorising information about the position of 𝑁

𝑠

obstruction segments and can be stored efficiently
using a limited number of bits for the integer repre-
sentation of the precomputed values of𝑁

𝑜
(⋅, ⋅). More-

over, this memory requirement is often more than
counterbalanced by the reduction of computational
complexity (since 𝑁

𝑠
= 0 in this case).

In our computer simulations, the first technique has been
adopted for all the map-aware estimators. The second tech-
nique, instead, has been used in the first step of PRD-MAP

estimation only; the resulting implementation is dubbed
PRD-P

𝑝
. This choice is motivated by the fact that this

estimator can be easily adapted to the use of precomputed
quantities, since it evaluates the map-aware likelihood (8) at
a set of fixed points {p𝑐

𝑘
} (see Section 3.4).

4.2. Map-Unaware Implementations. Before illustrating our
implementations of the ML estimator in (9), it is important
to mention that if the constraint p̃ ∈ P(Z) was neglected,
standard algorithms (e.g., the Nelder-Mead simplex method
[33]) could be employed to solve the optimization problem
it involves. Unluckily, such a constraint plays an important
role, specially in large maps, since (a) minima different from
the global one are substantially less likely to be contained in
the domain P(Z) than in the whole R2 space and (b) the
map-unaware likelihood (8) is not defined for p̃ ∉ P(Z),
as already explained in [15, Sec. II.C.]. For these reasons,
in the 3 different implementations of the ML estimator
(9) proposed below, the constraint p̃ ∈ P(Z) is always
accounted for.The first implementation, calledML

𝑓
, relies on

the MATLAB fmincon routine, which is employed to solve
the optimisation problem of (9). The second one, dubbed
ML

𝑚
, is based on partitioning P(Z) into 𝑁sub subrectangles

(whose sides have a length not exceeding a threshold Δ) and
on running the MATLAB fmincon routine over each of the
subrectangles; in this case, the final estimate is selected among
𝑁sub candidates according to aminimum-cost criterion (note
that a similar approach has been adopted in Algorithm 1).
Finally, the third implementation, called ML

𝑐
, employs the

compass algorithm (see Algorithm 3) under the assumption
that 𝑁

𝑟
= 1 and R

1
≡ P(Z). Note that the complexity

of each of the proposed implementations is O(𝑁obs ⋅ 𝑁eval),
where 𝑁eval is the number of times the ML cost function is
evaluated. The values of the parameters selected for each of
them are listed in Table 1.

Finally, a diagram summarising all the implementations
developed in this section is provided in Figure 2.

5. Simulation Results

In this section, the implementations described in Section 4
are compared in terms of accuracy and complexity. In our
analysis, the three different maps, shown in Figure 3, are con-
sidered. Such maps are characterized by different sizes and
obstruction densities (see Table 2), by a specific deployment
of anchors (whose positions are identified by green squares
in Figure 3), and by a similar number of anchors per unit
area (1 anchor each ≃ 100m2), so that a fair comparison to
the data referring to different maps is ensured. In addition,
in all cases, the anchor coverage radius (see Section 2.2) is
𝑑max,𝑖 = 𝑑max = 30m (with 𝑖 = 1, 2, . . . , 𝑁

𝑎
).

The remaining part of this section is organized as follows.
In Section 5.1, the method employed to estimate the com-
putational complexity of the proposed implementations is
described. In Section 5.2, the structure of the software simula-
tor developed to assess both the accuracy and the complexity
of our implementations is illustrated. Finally, in Sections 5.3
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Figure 2: Implementations of optimal map-aware and map-unaware estimators proposed in this paper.
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40m
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64m

34m
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Figure 3: Support regions of map #1 (a), map #2 (b), and map #3 (c). Note that different scales have been used in the representation of these
maps.

Table 2: Values of some parameters characterizing the maps con-
sidered in Section 5 and their MNC/DNC coverings. The number
of anchors (𝑁

𝑎
) and intersection tests (𝑁

𝑠
) is also provided for each

map.

Map 𝑁MNC
𝑟

𝑁DNC
𝑟

𝑁
𝑠

AR 𝑁
𝑎

1 340 632 574 540m2 6
2 529 925 1029 800m2 8
3 773 1461 1375 1310m2 13

and 5.4, various numerical results based on statistical models
and experimental measurements, respectively, are analysed.

5.1. Evaluation of the Computational Complexity of Different
Implementations. Map-aware implementations are expected
to outperform their map-unaware counterparts at the price
of a larger computational complexity. However, in this case,
an accurate assessment of computational complexity is a
challenging task, mainly because of the adaptive and data-
dependent nature of the proposed algorithms; for instance,
the term 𝑁eval (appearing in all the formulas summarised
in Table 3) cannot be easily related to the size of the search
domain or other implementation-specific parameters. For
this reason, the computational complexity of each implemen-
tation has been assessed by estimating the average amount 𝐹
of FLOPs required in our computer simulations; this task has
been accomplished under the following assumptions:

Table 3: Computational complexity of the implementations pro-
posed in Section 4 for the ML, MAP, and MMSE estimators.

Algorithm Complexity
MMSE

𝑐
O(𝑁

𝑠
⋅ 𝑁obs ⋅ 𝑁eval)

MMSE
𝑟

O(𝑁
𝑠
⋅ 𝑁obs ⋅ 𝑁eval)

MAP
𝑓
, MAP

𝑔
,

MAP
𝑐

O(𝑁
𝑠
⋅ 𝑁obs ⋅ 𝑁eval)

DRD-E
𝑐
,

DRD-P
𝑔

O(𝑁SRC
𝑟

+ 𝑁obs(𝑁𝑠
⋅ 𝑁eval + 𝑁eval,raw))

PRD-E
𝑐
,

PRD-P
𝑔

O(𝑁
𝑠
⋅ 𝑁obs ⋅ (𝑁eval,1 + 𝑁eval,2))

ML
𝑓
, ML

𝑚
, ML

𝑐
O(𝑁obs ⋅ 𝑁eval)

(1) Basic algorithmic steps (e.g., basic checks and assign-
ments in Algorithms 1–4 for map-aware estimation
and LOS/NLOS detection in map-unaware estima-
tion) play a negligible role.

(2) The computational complexity of each implementa-
tion mainly depends on the average number 𝑁eval of
evaluations of integrands (in MMSE estimators) or
of cost functions (in MAP and ML estimators); as
already pointed out in Section 4, the complexity of
such evaluations depends, in turn, on 𝑁

𝑠
and 𝑁obs.

For this reason, in our simulations, counters for𝑁eval,
𝑁

𝑠
, and 𝑁obs have been used in order to estimate

𝑁eval, 𝑁𝑠
, and 𝑁obs, respectively (see Table 3).



12 International Journal of Navigation and Observation

(3) Since distinct types of operations are characterized
by different computational weights, the expression
𝐹 = 𝑁eval ∑𝑡

𝑤
𝑡
𝑛
𝑡
has been adopted, where 𝑛

𝑡
is

the number of FLOPs of type 𝑡 performed in each
evaluation of integrands or cost function and 𝑤

𝑡

is the associated computational weight. In particu-
lar, in our simulations, the weights {3, 3, 3, 2, 2, 1, 0}
have been assigned to square roots, exponentials,
logarithms, divisions, multiplications, additions, and
comparisons, respectively.

Our approach is expected to provide statistically meaningful
results about 𝐹 only if a large number (in practice, at least
104) of statistically independent measurements are available.
Acquiring such a large number of experimental data would
require a burdensome experimental campaign involving at
least 150 measurement sites (so that ( 150

2
) ≃ 104 independent

links would be available). To circumvent this problem, the
computational complexity of the devised algorithms has been
assessed mainly through computer simulations, following
the approach always adopted in related work (e.g., see [22,
23]). However, some numerical results based on the available
measurements are also shown (see Section 5.4) to support our
conclusions.

5.2. Description of the Developed Simulator. A software simu-
lator has been developed (theMATLAB code used to generate
the numerical results is publicly available (together with
other results not included in this paper for space limita-
tions) at http://frm.users.sourceforge.net/publications.html,
in accordance with the philosophy of reproducible research
standard [34]) to test the proposed implementations in the
harsh propagation conditions characterizing typical indoor
environments [15]. In each simulation run, the following steps
are accomplished sequentially:

(1) Generation of the Agent Position. The true agent
position p is drawn from the selected map according
to the rule p ∼ 𝑓(p), where 𝑓(p) = 1/AR for p ∈ R
and 𝑓(p) = 0 elsewhere (in other words, the uniform
statistical map model of [15] has been adopted).

(2) Selection of the Connected Anchors. The 𝑖th anchor
is deemed to be “connected” with the agent only
if the following conditions are jointly satisfied: (a)
𝑁

𝑜
(p, p𝑎

𝑖
) < 𝑁

𝑤,max ≜ 8, (b) 𝜎2

𝑛,𝑖
(p) + 𝜎2

𝑏,𝑖
(p) <

𝜎2

max ≜ 30m2, and (c) 𝑑
𝑖
(p) < 𝑑max ≜ 27m. In

addition, it is assumed that each agent-anchor link
is characterized by a “failure probability” 𝑃

𝑓
≜ 0.1

(due, e.g., to synchronization or connection problems
between the agent and the anchor itself).

(3) Generation of the Noisy Observations. The noisy
observation vector z is drawn from the map-aware
likelihood (5) according to rule z ∼ 𝑓(z | p̃ = p); the
associated sets ẐLOS and ẐNLOS are randomly gener-
ated assuming the presence of errors with probability
𝑃NLOS
𝑒

= 0.1 (to account for the presence of a nonideal
LOS/NLOS detector).

(4) Position Estimation. All the estimator implementa-
tions discussed in Section 4 are run sequentially; they
are all fed by z andR(Z) (2) (map-aware estimators )
or P(Z) (4) (for map-unaware ones). Their output is
either a position estimate p̂(z) or a failure indication
(occurring, e.g., when optimization routines do not
converge).

In our simulations, steps (1)–(4) have been repeated for at
least𝑁runs = 104 times in order to generate accurate estimates
of the RMSE 𝜖 (which is more robust to outliers than root
mean square error) and of the mean number of FLOPs 𝐹 for
each implementation.

5.3. Accuracy and Complexity Comparison. Figure 4 shows
the accuracy (in terms of RMSE 𝜖) of the implementations
discussed in Section 4 for the 3 consideredmaps.These results
show the following:

(1) The accuracy achieved by the DRD-MMSE (DRD-
MAP) and PRD-MMSE (DRD-MAP) estimator is
similar to that of MMSE (MAP) estimators (e.g.,
𝜖PRD-E

𝑐

≃ 𝜖DRD-E
𝑐

≃ 1.06𝜖MMSE
𝑐

for map #3).
(2) The implementations MMSE

𝑐
and MMSE

𝑟
provide a

10%–15% performance improvement with respect to
MAP

𝑓
, MAP

𝑔
, and MAP

𝑐
(e.g., 𝜖MAP

𝑔

≃ 1.16𝜖MMSE
𝑐

and 𝜖MAP
𝑔

≃ 1.15𝜖MMSE
𝑟

for map #3).

(3) Map-awareness significantly improves estimation
accuracy (up to 250%), as already evidenced in [15]
(e.g., 𝜖ML

𝑚

≃ 2.46𝜖MMSE
𝑐

and 𝜖ML
𝑚

≃ 2.12𝜖MAP
𝑔

for
map #3).

It is important to point out that the estimation accuracy of
the proposed estimators is mainly related to (a) the average
spatial density of obstruction segments (i.e., to the ratio
𝑁

𝑠
/AR) and (b) the average spatial density of anchors (i.e.,

to the ratio 𝑁
𝑎
/AR). Since the propagation scenario is

similar in the three maps (light commercial buildings) and
a similar anchor density has been adopted for the sake of a
fair comparison (see Table 2), the RMSEs provided by the
considered estimators are similar over the three maps and do
not necessarily increase with AR (e.g., map #3 is larger than
map #2, but a lower RMSE is achieved for map #3).

Note also that Figure 4 does not unveil some impor-
tant aspects of the considered estimation algorithms, which
emerge, instead, from the related box plot of Figure 5
describing the distribution of theRMSEoutcomes formap #3.
Here, the box represents the 75th percentile, the line within
the box denotes the median, the black dashed whiskers are
upper adjacents, and the cross markers represent the outliers.
From Figure 5, the following can be easily inferred:

(1) The behaviour of all the estimators is characterized
by the presence of multiple RMSE outliers associated
with 𝜖 > 8m as well as of upper adjacents and
values of 75th percentiles extending well beyond their
median values. This is due to the statistical model
of Section 2, which reproduces harsh propagation
conditions degrading RSS measurements in practical
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Figure 5: Box plot of the RMSE 𝜖 provided by various ML, MAP,
and MMSE estimation algorithms. Only map #3 is considered.

systems. Note that nonlinear filtering (e.g., particle
filtering) could be employed to reject, at least in part,
outliers when tracking moving agents.

(2) The implementations MMSE
𝑐
and MMSE

𝑟
are char-

acterized by the smallest dispersion of estimation
errors (in fact, upper adjacents are at 7.3m for both).

Some numerical results about the complexity of the esti-
mators implementations are shown in Figure 6 (note that a
logarithmic scale is adopted for 𝐹 since complexities range
roughly from 103 to 109 FLOPs). These results lead to the
following conclusions:

(1) The MAP and MMSE estimators based on the DRD
and PRD techniques are characterized by a computa-
tional complexity 4–11 times lower than that of their
counterparts not employing such domain reduction
techniques, especially for large maps (e.g., 𝐹MAP

𝑔

≃

3.9𝐹DRD-P
𝑔

and 𝐹MAP
𝑔

≃ 11𝐹PRD-P
𝑝

for map #3). This
result can be related to the mean ratio between the
areas R(Z)

red (16) and R(Z) (2), that is, to the amount
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Figure 6: FLOP count 𝐹 referring to various ML, MAP, and MMSE
estimation algorithms.

of “domain reduction.” In fact, our simulations have
evidenced that, in the case of map #3, on average,
the DRD and PRD-based estimators restrict their
search domain to 13% and 4% only, respectively, of
the whole domainR(Z). This makes the complexities
of DRD and PRD estimators much closer to that of
map-unaware estimators (at the price of a negligible
sacrifice in accuracy).

(2) Even if all map-aware implementations exhibit simi-
lar accuracy, they may require significantly different
complexities. In fact, the parameter 𝐹 ranges from
𝐹MMSE

𝑟

≃ 1.6 ⋅ 108 (for the most demanding map-
aware algorithm) to 𝐹PRD-P

𝑝

≃ 1.1 ⋅ 106 (for the most
computationally efficient map-aware algorithm), if
map #3 is considered. Moreover, there is a significant
gap between the FLOP counts of map-aware estima-
tors and those of their map-unaware counterparts
(e.g., 𝐹MMSE

𝑐

≃ 4.1 ⋅ 103𝐹ML
𝑚

for map #3).

(3) Similarly to theRMSE, the parameter𝐹 is significantly
influenced by the size of R(Z) (2) and gets larger as
the average spatial density of obstruction segments
increases.

(4) PRD-based estimators are less computationally
demanding than their DRD counterparts, specially
in their MMSE variants (e.g., 𝐹DRD-E

𝑐

≃ 3.1𝐹PRD-E
𝑐

for map #3).

Additional numerical results about the complexity of such
algorithms (not shown here for space limitations) can be
found in [27, 32].

5.4. Experimental Results. Theconclusions inferred fromFig-
ures 4–6 have been also supported by additional numerical
results based on a set of experimentalmeasurements referring
to map #2. In fact, in the last part of our work, the simulator
described in Section 5.2 has beenmodified in order to replace
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the computer-based generation of the noisy observation
vector z (see step (3) of the simulator) with a random
selection of observations stored in the experimental database
described in [15]. Note that such a database, like other
experimental databases publicly available, contains a limited
set of statistically independent measurements (referring to
116 distinct wireless links) and this unavoidably reduces the
overall number of independent simulations that can be run
in processing such measurements; for this reason, from a
statistical point of view, the results analysed in the previous
Sections 5.2 and 5.3 are characterized by a higher level of
confidence than those based on experimental measurements
(see our comments at the end of Section 5.1). In practice, in
this case, the number of simulation runs has been reduced to
𝑁runs = 103. The results shown in Figures 7 and 8 lead to the
following conclusions:

(1) The RMSE achieved by map-aware estimators on the
basis of experimental measurements is on the order
of 2m and is about 30% smaller than that of the
simulated counterpart; these results can be related to
the harsh propagation environment reproduced by
the statistical model (5).

(2) The RMSE provided by map-unaware estimators on
the basis of experimental measurements is close to
that of its simulated counterpart; the good agreement
between experimental and simulated results can be
related to the availability of an ideal LOS/NLOS
detector (actually, a small probability of error𝑃NLOS

𝑒
=

0.1 was assumed in Section 5.2).

(3) The computational complexity involved by the
considered algorithms (both map-aware and map-
unaware) is substantially the same in the case of
simulated and experimental data; this means that the
shape of the likelihood functions (5) and (8) does not
significantly change substituting the experimental
data with the observations generated through the
statistical simulator.

Finally, the possibility of generalising the proposed approach
to other environments deserves some comments. In fact, in
this study, three distinct scenarios, characterized by different
maps and areas, but by similar propagation conditions, have
been taken into consideration. Our measurements have led
us to the conclusion that all the measurements acquired
in these scenarios can be described by the same statistical
model, which is that the same parameters can be exploited
by map-aware and map-unaware estimators for each of
the three considered environments. This suggests that the
methodology adopted in this work can be easily adapted
to other buildings characterized by offices, laboratories, and
open spaces, like those encountered in light commercial
buildings. Nonetheless, it is important to stress that, in
principle, indoor environments characterized by different
propagation conditions require a dedicated calibration phase
for extracting a statisticalmodel formeasurements, as already
mentioned in Section 2.4. Given such a model, the proposed
techniques can be easily applied.
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Figure 7: RMSE performance provided by various ML, MAP, and
MMSE estimation algorithms.These results, referring tomap #2, are
based on measurements.
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6. Conclusions

In this paper, specific solutions to the problem of imple-
menting optimal map-aware and map-unaware estimators
for indoor localization have been developed. These solutions
are based on state-of-the-art numerical integration and opti-
mization methods as well as novel techniques for reducing
the size of search domains. Their accuracy and complexity in
terms of RMSE and FLOP count, respectively, have been anal-
ysed through computer simulations relying on both statistical
models (validated with measurements) and experimental
databases. Numerical results have evidenced that (a) map-
awareness can appreciably improve RMSE performance of
RSS-based localization algorithms; (b) the proposed domain
reduction techniques significantly reduce the computational
complexity of map-aware algorithms; (c) the best accuracy-
complexity trade-off is achieved by the PRD-E

𝑝
implementa-

tion, since it achieves nearly optimal RMSE performance and
entails a computational burden much smaller than that of all
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the other map-aware algorithms in the considered scenarios;
(d) experimental results substantially confirm the simulation
results in terms of computational complexity, whereas the
RMSE achieved over the experimental database is about 30%
smaller than that expected by simulations because of the
harsh propagation environment reproduced by the adopted
statistical model.
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