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Abstract. We simulate the time-resolved dynamics of localized electrons in a 2DEG system,
where an external magnetic �eld creates quantum Hall edge states, and properly polarized split
gates de�ne a Mach-Zehnder electron interferometer. The carriers travelling inside the Hall
channels consist of localized wave packets of edge states: they are propagated numerically by
means of a Fourier split-step approach. We �nd that the energy-dependent scattering process at
the quantum point contacts, together with the �nite energy distribution of the carriers, have a
remarkable e�ect on the transmission coe�cient T of the device. We provide an analytical model
to justify the characteristics of T which is in good agreement with the numerical simulations.

1. Introduction
Many recent theoretical and experimental works [1, 2, 3, 4] in the �eld of electron interferometry
rely on edge states (ESs) in the integer quantum Hall regime as perfect 1D channels for coherent
carrier transport. Indeed, these channels are highly immune to scattering and decoherence, thus
being a good candidate as semiconductor quantum bits. The long-term aim of our work is
devising solid-state �ying qubits consisting of carriers travelling in ESs, and quantum logic gates
based on quantum point contacts (QPCs) and a suitable pattern of surface split-gate designing
a network of Hall edge channels. Here, we simulate the coherent propagation in time of electrons
in a modulation-doped 2D device, where an applied orthogonal magnetic �eld creates ESs, and
properly polarized split gates de�ne a Mach-Zehnder electron interferometer (MZI). The electrons
travelling inside the device are described by localized wave packets (WPs) of ESs. This, as already
proposed in the literature [5, 6], is in contrast with the time-independent approach that deals
with a single-energy delocalized edge state, thus losing the possibility to describe the explicit
dynamics and the single-carrier evolution of the system.
In particular, our study is focused on the energy dependence of the transmission of the QPCs:
since our carriers have a �nite distribution of energies, this dependence has a remarkable
impact on the total transmission coe�cient T of the mesoscopic MZI. The results of numerical
simulations are supported by a simpli�ed exactly solvable analytical model.

2. Numerical Simulations
The Hall ESs of a 2DEG are chiral delocalized states that follow the boundary between a
low-potential and a high-potential region of the device (respectively, allowed and forbidden for
electrons). Their wave function has the form Ψn(x, y, k) = ϕn,k(x)eiky, with travelling direction
y and where the localized wave function ϕn,k(x) depends on the details of the con�ning potential
pro�le in the x direction. As a �rst step, we compute numerically ϕn,k(x) by solving the e�ective
Hall 1D Hamiltonian (with n and k being the index of the Landau level and the k-vector of
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the ES, respectively) in the initialization region, where the split-gates potential is independent
on y. Since the state Ψn(x, y, k) can not represent localized particles, in order to describe a
single-carrier travelling inside the MZI of Fig. 1, we consider a superposition of di�erent ESs
(belonging to the �rst Landau level, i.e. n = 1) with gaussian weights, that is:

Ψ0(x, y) =

ˆ
dk Fσ(k)ϕ1,k(x)eiky, (1)

where Fσ(k) =
√
σ (2π)−

3/4 e−σ
2(k−k0)2

e−iky0 . This wave function is indeed the ES equivalent of
a minimum uncertainty WP of plane waves. Therefore, it represents a carrier which is initially
localized around x0 = −~k0/eB and y0. It is composed by ES with di�erent momenta around
k = k0, and its group velocity is vg = ~k0/m

∗
B.

Figure 1. The MZI (in blue) used in our
simulations, with snapshots of the electronic
wavepacket (in red) at di�erent times t.
Dashed lines represent delocalized scattering
states. The dimension d is changed in order to
control ∆l.

Figure 2. Transmission coe�cient T obtained
by �tting the results of time-dependent
simulations: a) at a constant magnetic �eld
B = 5 T and variable length mismatch ; b)
at a constant length mismatch and variable
magnetic �eld (∆l = -75 nm).

Our MZI device operates at �lling factor ν = 1. In detail, we model the edges of the split-gate
pattern through smooth potential barriers (i.e. Fermi functions), and we tune the gap of both
QPCs (the constrictions of the potential V in Fig. 1) in order to have a perfectly half-re�ecting
behaviour in terms of transmitted and re�ected electron density (see Ref.[7] for other details on
the device). In our simulations, the electron WP is split by the �rst QCP into two parts, that
travel along the two arms of the device; then they are recollected and interfere at the second
QPC, giving a transmitted and a re�ected component. The latter is absorbed by a metallic lead,
which is modeled with an imaginary potential Vabs (yellow rectangle in the center of Fig. 1).
Therefore, the norm of the �nal WF is the transmission coe�cient T of the device.
To solve the time-dependent Schrödinger equation including the external magnetic �eld B, we use
a parallel Trotter-Suzuki scheme and the split-step Fourier method[8]. Simulations are performed
for WPs of di�erent initial extension, namely σ = 20 nm, 40 nm, and 60 nm (to obtain an optimal
proportion between σ and the dimension of the device).
By changing the value of B or the area of the device (the latter is achieved by tailoring the length
of one of the MZI arms), the transmission coe�cient T shows Aharonov-Bohm oscillations, as
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Initial WP a) Fit of simulations b) Analytical model c) Numerical model
σ (nm) T0 T1 Σ (nm) T0 T1 Σ (nm) T0 T1 Σ (nm)

20.0 0.737 0.240 41.0 0.710 0.254 39.4 0.760 0.240 39.7
40.0 0.633 0.365 54.5 0.681 0.381 52.5 0.636 0.364 52.7
60.0 0.578 0.422 71.0 0.609 0.435 68.9 0.579 0.421 69.1

Table 1. Parameters for the transmission coe�cient T (∆l): a) from a �t of numerical
simulations; b) from the analytical model; c) from numerical integration of Eq. (3).

reported in Fig. 2, in agreement with Ref[3]. However, when the lengths of the two paths become
very di�erent, we observe that the oscillations of the transmission are modulated by a gaussian
envelope (see Fig. 2a), which is clearly a direct consequence of the �nite-size of the electron WP.

Figure 3. a) Transmission coe�cient |t(k)|2 for
the �rst QPC: numerical calculations (points),
Fermi �t (continuous line) and Gaussian approx-
imation (dashed line). b) Gaussian weight dis-
tribution |Fσ(k)|2 for the simulated WPs.

This has been already noted in literature[5]:
once the length mismatch ∆l between the two
arms is substantially larger than σ, the two
parts of the WF arrive at the second QPC at
di�erent times, and cannot interfere.
From a phenomenological point of view,
the pro�le of T (∆l) can be �tted with
the following expression: T (∆l) = T0 +
T1 exp(−1

8(∆l + c)2/Σ2) cos(ke∆l + ϕ0). The
�t parameters for our simulation are reported
in columns a) of Table 1, for di�erent
dispersions of the initial WP. The visibility[1]
vMZI = T1/T0 is never ideal (i.e. unitary),
but it increases as σ grows. Moreover, the
amplitude of the gaussian damping of T ,
which is described by the standard deviation
Σ, increases with σ. These e�ects can be
understood by considering that the scattering
process at the QPCs is k-dependent.
In order to evaluate these e�ects, we focus
on the scattering process at the �rst QPC
and analyze the re�ected and the transmitted
components of the WP by projecting them
on the local set of ESs to get their spectral
composition. Then, by comparing them with
the initial WP, the numerical calculation of
re�ection and transmission probabilities at
di�erent k is straightforward: if the re�ected WP contains the ES of momentum k with a
probability |F rσ(k)|2, then the re�ection probability is |r(k)|2 = |F rσ(k)|2/|Fσ(k)|2. A similar
calculation can be made for |t(k)|2.
The results of this calculation are shown in Fig. 3a, where the energy-dependence of the scattering
amplitude t is evident. We found out that this behaviour is well described by a Fermi function

t(k) = (exp(+α(k−k0))+1)−
1
2 (and r(k) = (exp(−α(k−k0))+1)−

1
2 for the re�ection coe�cient,

not shown in the �gure). We used the same �tting parameters for r and t in order to satisfy the
constraint |r(k)|2 + |t(k)|2 = 1, and to get a perfect half-re�ecting behaviour for k = k0, namely
the central wave vector of our WP.

3. Analytical Model
In order to develop an analytical model for the transmission of our MZI, able to take into account
the energy dependence of the 2D scattering process in the QPCs, we note that the Fermi function
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�tting the simulation data of Fig. 3a can be approximated by a Gaussian in the region around the
turning point k0, (exp(α(k − k0)) + 1)−1 ' exp

(
−(α(k − k0) + γ)2/4γ

)
, with γ = 4 ln(2). This

approximation is acceptable in the range of k-components of our WPs, at least for σ = 40 nm
and σ = 60 nm (see Fig. 3b).
We describe the dynamics of the wavepacket inside the MZI with the scattering matrix
formalism[1]. The scattering states are represented in Fig. 1. The initial state is described
by |Ψ0〉 =

´
dk Fσ(k) |D1(k)〉, while the scattering matrices of the QPCs, which are identical,

are given by:

S =

(
r(k) it(k)
it(k) r(k)

)
. (2)

While travelling along the arms of the device, the phase acquired by the wavefunction is
described by the matrix P = diag

(
ei∆ϕ, 1

)
, where ∆ϕ(k) = eΦm/~ − k · ∆l. Here, Φm is the

magnetic �ux of B through the device. The wavefunction after the scattering process is given by
|Ψf 〉 = SPS |Ψ0〉, and the norm of the transmitted part |ΨT 〉 =

(
1

2π

´
dk |D2(k)〉 〈D2(k)|

)
|Ψf 〉

gives the transmission coe�cient T :

T =
1

2π

ˆ
dk |Fσ(k)|2 |r2(k)ei∆ϕ(k) − t2(k)|2. (3)

Using the Gaussian approximation for the transmission and re�ection amplitudes, we can
integrate analytically the previous expression, to get:

T = T0 − T1e
−∆l2

8Σ2 cos
( e
~

Φm − k0∆l
)
, (4)

where T0 and T1 � which represent, respectively, the average value of T and the maximum

amplitude of its oscillations � are given by T0 = 2 σΣ exp
(
− γσ2

2Σ2

)
and T1 = 1

2
σ
Σ , while the standard

deviation Σ is given by Σ =
√
σ2 + α2/4γ.

As a consequence, the visibility is given by vMZI = 1
4 exp

(
γσ2/2Σ2

)
, and we recover the ideal

behaviour in the limit for σ → ∞. Equation (4) predicts the same trend found in numerical
simulations for T . If we used the energy-independent approximation, that is r(k) = t(k) = 1/

√
2,

we would have obtained an expression for T which is formally identical to Eq. (4), but with
T0 = T1 = 1/2 and Σ = σ: a result which is not consistent with our numerical simulations.
Indeed, the gaussian damping Σ is not proportional to σ, as we observed in the numerical
simulations, since there is a correction due to the scattering properties of the QPCs. Therefore,
it is su�cient to include the localized nature of the carrier to recover the simulation results.
However, in order to quantify the exact extension of this damping, as well as to justify the
observed reduction in visibility with respect to the ideal case, we have to take into account
the energy-dependent scattering at the QPCs. With this correction, the results of the numerical
simulations are well reproduced by the analytical model (see Table I, columns a) and b)). Finally,
we mention that a better agreement can be obtained with a direct numerical integration of Eq.
(3), at the expense of an exact analytical solution. This result is reported in column c) of Table
1 and detailed in Ref.[7].
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