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Time-dependent Simulation and Analytical Modelling of Electronic

Mach-Zehnder Interferometry with Edge-states wave packets

Andrea Beggi,1, ∗ Paolo Bordone,1, 2 Fabrizio Buscemi,1 and Andrea Bertoni2, †

1Dipartimento di Scienze Fisiche, Informatiche e Matematiche,
Università degli Studi di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy

2S3, Istituto Nanoscienze-CNR, Via Campi 213/A, 41125 Modena, Italy

We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder inter-
ferometers based on Landau edge-states transport, and assess the e�ect of the spatial localization of
carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically
the time-dependent Schrödinger equation with a suitable 2D potential pro�le reproducing the inter-
ferometer design. An external magnetic �eld, driving the system to the quantum Hall regime with
�lling factor one, is included. The injected carriers are represented by a superposition of edge states,
and their interference pattern � controlled via magnetic �eld and/or area variation � reproduces the
one of [Y. Ji et al., Nature 422, 415 (2003)]. By tuning the system towards di�erent regimes, we
�nd two additional features in the transmission spectra, both related to carrier localization, namely
a damping of the Aharonov�Bohm oscillations with increasing di�erence in the arms length, and an
increased mean transmission that we trace to the energy-dependent transmittance of quantum point
contacts. Finally, we present an analytical model, also accounting for the �nite spatial dispersion of
the carriers, able to reproduce the above e�ects.

PACS numbers: 73.43.-f, 85.35.Ds, 73.23.-b

Keywords: Edge states; Time-dependent simulation; Mach-Zehnder interferometer; Aharonov-Bohm oscilla-

tions.

I. INTRODUCTION

Edge states (ESs) are chiral one-dimensional conduc-
tive channels which arise in a 2D electron gas (2DEG)
in the Integer Quantum Hall regime (IQHE)1,2. They
are essentially immune to backscattering and are char-
acterized by very long coherence lengths3. Besides
their remarkable interest for basic solid-state physics
and coherent electronic devices, they are ideal candi-
dates for both the so-called �electron quantum optics�4

and ��ying qubit� implementations of quantum com-
puting architectures5,6.

Indeed, several attempts to demonstrate single-qubit
gate operations and electronic interference in coupled
quantum wires were hampered by scattering and de-
coherence processes7�9. On the other hand, experi-
mental realizations of electronic interferometry based
on edge-channel transport seem more mature, to the
point of demonstrating not only single-electron10,11

but also two-electron interference12. Also, �which-
path� detectors or quantum erasers13�17 have been
implemented and the formation of quantum entan-
glement between indistinguishable particles has been
demonstrated12,18�21.

While speci�c features of electronic Mach-Zehnder In-
terferometers (MZIs)22 are still under investigation
and involve possibly many-particle e�ects21,23,24, their
basic functioning can be explained in terms of station-
ary electron waves interference, like their more com-
mon optical counterpart. However, contrary to pho-
tons, the time that a conduction electron takes to cross
the interferometer can be comparable to switching
times of typical microelectronic devices, and its spatial
localization can be much less than the dimensions of a
single arm of the interferometer. Thus, understanding
the detailed quantum dynamics of the carriers, beyond
the simple plane wave model is critical for the design
of novel devices based on ES transport. This is even

more relevant if the device is intended to process the
information encoded in a single particle at a time, a
task which requires a high resolution both in time and
space.
In fact, the injection of single-electron excita-
tions that propagate along ESs has been recently
demonstrated11,25,26: with a proper time modulation
of the injecting pulse, they consists of Lorentzian-
shaped excitations above the Fermi sea, termed levi-

tons27�29. However, leviton-based MZI has not been
realized experimentally so far. The majority of the
literature on electron MZIs in ESs deals with elec-
tronic currents10,12,13,17,22, and the prevalent theoret-
ical models for the transport are based upon delo-
calized scattering states14�16,18,30,31, with few notable
exceptions32,33.
In this work we address, both from numerical and an-
alytical points of view, the interference properties of
a Mach-Zehnder device based on ES channels tuned
to �lling factor ν=1 and quantum point contacts used
as splitting elements, when the electron travelling in-
side it is strongly localized. We �rst use a numeri-
cal approach, which, unlike other recent works34,35, is
based upon the direct solution of the e�ective-mass
time-dependent Schrödinger equation, in presence of
an external magnetic �eld. The electrons travelling
inside the device are localized wave packets of ESs,
and are propagated by a generalized split-step Fourier
method36�38. The e�ects of the wave packet size on
the transport process is analyzed. Then, we develop
an analytical model also accounting for the �nite spa-
tial dispersion of the carriers. The transmission coef-
�cient of the device subject to Aharonov-Bohm (AB)
oscillations39 is obtained as a function of the magnetic
�eld and of the geometrical parameters of the inter-
fering paths, and the results are compared with the
numerical simulations. Speci�cally, in Section II, we
describe the initial electronic wave function and the
physical device used in our simulations. In Section
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III we give some details on the numerical algorithm
that we adopt and we describe the results of the nu-
merical simulations. Section IV is devoted to the de-
velopment of an analytical model for the transport,
which takes into account the energy dispersion of the
wave packet. A comparison between the predictions
of the latter model and the numerical simulations is
then presented in Section V. Finally, the conclusions
are drawn in Section VI.

II. PHYSICAL SYSTEM

We consider a conduction-band electron in a 2DEG
on the x-y plane, with charge −e and e�ective mass

m∗. A uniform magnetic �eld ~B = (0, 0, B) is ap-
plied along the z direction and a non-uniform electric
�eld induces a local potential energy V (x, y). The
latter will represent the �eld generated by a polarized
metallic gate pattern above the 2DEG that will de�ne
energetically forbidden regions. The generic Hamilto-

nian Ĥ = (−i~~∇+ e ~A)2/(2m∗) + V can be rewritten
in a more explicit form by substituting the magnetic

vector potential ~A with its expression in the Landau

gauge ~A = (0, Bx, 0). The 2D Hamiltonian for the
electron in the 2DEG then reads

Ĥ = − ~2

2m∗
∂2

∂x2
− ~2

2m∗
∂2

∂y2
− i~eBx

m∗
∂

∂y

+
e2B2

2m∗
x2 + V (x, y). (1)

We adopt a single-particle approach, thus neglecting
the interaction with other free electrons of the de-
vice. Our time-dependent numerical simulations and
analytical model are based on Eq. (1), as we explain
in the following. Before that, we must recall brie�y
the derivation of Landau states and of corresponding
ESs40.
Let us consider a region where the electric potential is
invariant along y, i.e. V (x, y) = V (x). In the Landau
gauge, the Hamiltonian (1) shows an explicit transla-
tional symmetry along the y direction, and the quan-
tum evolution of the particle can be factorized along
the two axes. In this case, the eigenstates of Ĥ have
the form Ψ(x, y) = ϕ(x)eiky. In fact, the y-dependent
part of the wave function is a plane wave, while the
x-dependent part (which depends also on the wavevec-

tor k) is a solution of Ĥeff
L ϕn,k(x) = En(k)ϕn,k(x),

with the following 1D e�ective Hamiltonian

Ĥeff
L =

−~2

2m∗
∂2

∂x2
+

1

2
m∗ω2

c (x− x0)
2

+ V (x), (2)

where

x0(k) = − ~k
eB

, (3)

and where ωc = −eB
m∗ is the cyclotron frequency. Note

that the parameter x0 representing the center of the
e�ective parabolic con�nement along x depends on k,
i.e. the wavevector in the y direction. The discrete

energy levels En(k) associated with Ĥeff
L are the so-

called Landau levels (LLs).

If V (x) = 0, the system eigenfunctions are the well-
known localised Landau states. However, if V (x) is
a step-like function, de�ning a sub-region in which
the electrons are con�ned, the Landau states with x0

close to the edge have higher energy, and show a �-
nite dispersion in k. They become edge states, which
are delocalized wave functions associated with a net
probability density �ux, and which can act as 1D con-
ductive channels.
Since we want to model a carrier as a propagating
wave packet, beyond the delocalized scattering state
model, we need to construct such wave function as a
proper combination of ESs, rather than considering a
single ES. This is similar to representing a free electron
by a minimum uncertainty wave packet rather than a
plane wave, thus including a �nite uncertainty in both
its position and its kinetic energy. However, in our
case the magnetic �eld couples the two directions and
some care has to be taken, since the position along x
and the velocity along y are not independent.
We suppose that the injected electron lies in the �rst
LL and we represent it as a linear combination of ESs
with n = 1, with Gaussian weights. We choose a
Gaussian shape for our initial WP since it represents
a quantum particle with the minimum quantum un-
certainty in both its position and momentum, and be-
cause its longitudinal spreading with the time is lim-
ited. This allows us to follow clearly the dynamics
of the localized WP without substantial high-energy
components forerunning the center of the WP and
leading to numerical instabilities. This choice also
allows the derivation of the approximated analytical
model presented in Sect. IV. However, the qualita-
tive results of our simulations do not depend on the
speci�c shape of the initial WP. In fact, although we
address the experimental regime of Ref. 10 and not
the propagation of levitons, as in Ref. 29, we tested
di�erent shapes for the initial electron wave function:
due to the superposition principle the �nal state will
be the composition of the di�erent scattering states
taken with their initial weight.41 Speci�cally, the wave
function at the initial time will be

Ψ0(x, y) =

ˆ
dk F (k)ϕ1,k(x)eiky, (4)

where F (k) is the Fourier transform of a 1D Gaussian
function along the y axis:

F (k) =
1

2π

ˆ
dy e−iky

e−
(y−y0)2

4σ2 e+ik0y

4
√

2πσ2
(5)

=
4

√
σ2

2π3
e−σ

2(k−k0)2

e−iky0 .

This leads to a localized wave function along both di-
rections: in y, the Gaussian envelope gives a �nite ex-
tension around the central position y0, in x, the func-
tions ϕ1,k(x) are always localized around x0(k), and
the wave vector k is, in turn, localized around k0 by
our choice of F (k). With the initial condition Eq. (4),
our simulations will be able to take into account the
e�ects of the size σ of the wave packet (WP) on the in-
terference phenomena. In order to use Eq. (4), we will
be careful to initialize the WP Ψ0 where the potential
V (x, y) does not depend on y.
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Figure 1. (Color online) Device geometry and square mod-
ulus of the wave function at t = 0 (initial state, with
σ = 40 nm), t = 2.5 ps (at the �rst QPC), t = 7 ps (along
the two arms), t = 12.5 ps (at the second QPC). The QPCs
are the openings at the positions (x, y) = (0nm,±300 nm).
In this example B = 5 T and aL = −65 nm. The resulting
transmission is T = 0.599.

The speci�c form of the ESs depends on the the shape
of the potential barrier V (x), and in general there
is no closed-form expression for them. In order to
have a realistic model of the smooth edges between the
allowed 2DEG region and the depleted one, de�ned
e.g. with the split-gate technique, we take

V (x) = V0Fτ (x), (6)

where Fτ (x) = (exp(τx)+1)−1 is a Fermi distribution
with a �broadening� parameter τ , and we compute
numerically the corresponding ϕn,k(x) states.
The shape of the depleted regions of our 2DEG is
chosen in order to mimic, with the ES channels, the
Mach-Zehnder interferometer (MZI) of Ref. 10. This
is depicted in Fig. 1, where the light and dark regions
represent V (x, y) = 0 and V (x, y) = V0, respectively.
Two narrowings, where two areas with high potential
are close to each other, form two quantum point con-
tacts (QPCs), both with a square area42 of δ2: their
dimension δ is tuned in order to give a transmissiv-
ity of 50% in the two output channels. The localized
electron is injected from the top of Fig. 1 (where the
initial wave function is centered around x = −20 nm
and y = 700 nm), in the �rst LL, whose ESs follow
the boundary between the high- and low-potential re-
gions. After the �rst QPC, each ES is split into two
parts that constitute the two arms (�left� and �right�)
of the interferometer. They are rejoined at the second
QPC. As a consequence, the two components of the
WP that follow the two arms, interfere at the second
QPC. Indeed, two outputs are available there to the
electron: one part is re�ected inside the MZI, and then
absorbed by a contact (modeled as an absorbing imag-

inary potential Vabs, as detailed later), the other part
is transmitted towards the bottom of the device. The
norm of the latter part gives a measure of the trans-
mission coe�cient T of the device. In our simulations
we do not include explicitly a source-drain bias, rather
we assume an unbalance between the Fermi levels of
the source and drain contacts, leading to the occu-
pation of the �rst edge channel at the source, while
leaving empty the same state at the drain.
The geometrical parameters of the MZI are indicated
in Fig. 1. Speci�cally, the �right� arm and the �left�
arm have two horizontal sections each, of length L0

and L0 +aL, respectively. The vertical sections of the
two arms have obviously the same length, H0. By
changing the parameters of the device, such as aL
(which controls the relative length of the two arms
and the area) or the magnetic �eld B, we observe AB
oscillations in the transmission coe�cient T .
The absorbing lead is modeled by a purely imaginary
potential38,43

Vabs(x, y) = iV 0
abs

Fτ (−x+ xc)Fτ (x− xc − δc)
cosh2 ((y − yc)2/d2)

, (7)

where xc and yc are the coordinates of the contact,
while δc and d are, respectively, the contact exten-
sion along the x and y axes. With the introduction
of the absorbing lead Vabs the evolution becomes non-
unitary, and when the re�ected part of the WP reaches
the contact Vabs, it is removed from the device: in this
way, the calculation of T is straightforward, since it
coincides with the norm of the �nal wave function af-
ter the absorption process. This also prevents the re-
�ected current from reaching again the �rst QPC, and
therefore it avoids multiple-scattering events, which
would alter the estimation of T . The lead mimics
the �air bridge� contact that drains out the re�ected
current from inside the device3,10,12,22. Di�erently to
other works44 focusing on the dynamics of carriers
moving along Hall ESs, our con�ning potential V does
not depend on time.
The �center� x0(k0) of the initial WP (t = 0) is �xed at
a distance ∆ from the in�ection point of the potential
barrier V (x), and consequently k0 can be calculated
by Eq. (3). The resulting local bandstructure of the
1st LL around k = k0 can be determined numerically,
and from a parabolic �t we get the values of the pa-
rameters E0, m

∗
B and k1 in its expression:

E1(k) =
~2

2m∗B
(k − k1)2 + E0. (8)

The parameters k0 and k1 are gauge-dependent quan-
tities, since they depend by the origin of the coordi-
nate system: however, with a proper choice of this
degree of freedom and of the energy zero, we can set
k1 = 0 and E0 = 0 without any physical change in the
description of the system, in order to get a simpler de-
scription of the system. Now k0 is directly related to
the group velocity vg = ~k0/m

∗
B of the WP, which

behaves like a free particle of mass m∗B in 1D.
In the simulations we use for the electron the e�ective
mass of GaAs m∗ = 0.067me. The parameters
of the potential and of the absorbing contact are
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V0 = 10 eV, τ−1 = 3 nm, δc = 100 nm, d = 30 nm,
V 0
abs = −98.7 eV; the constructive parameters of

the device are δ = 32.2 nm, L0 = 350 nm and
H0 = 600 nm; the parameters of the WP are
∆ = 20 nm and σ = 20, 40, 60 nm45, while the
magnetic �eld is kept around the value of B = 5 T.

III. NUMERICAL SIMULATIONS

The time evolution of the WP is realized with the
split-step Fourier method38,43,46. In summary, the

evolution operator Û(δt) = e−
i
~ δt·Ĥ is appliedN times

to the initial wave function Ψ(x, y; 0), each leading to

the evolution of a short time step δt:

Ψ(x, y; t)|t=Nδt = [Û(δt)]NΨ(x, y; 0). (9)

The Hamiltonian of Eq. (1) can be written as Ĥ =

T̂1(x, py) + T̂2(px) + V̂ (x, y), with

T̂1(x, py) = − ~2

2m∗
∂2

∂y2
− i~eBx

m∗
∂

∂y
+
e2B2

2m∗
x2, (10)

T̂2(px) = − ~2

2m∗
∂2

∂x2
. (11)

By applying the Trotter-Suzuky factorization and the
split-step Fourier method, the operator Û(δt) can be
approximated with

[Û(δt)]N = e+ i
~ δt·

V̂
2

[
e−

i
~ δt·(V̂+V̂abs)F−1

y e−
i
~ δt·T̂1FyF

−1
x e−

i
~ δt·T̂2Fx

]N
e−

i
~ δt·

V̂
2 , (12)

where Fx(y) and F−1
x(y) denote, respectively, the di-

rect and inverse Fourier transform with respect to the
variable x(y). By using the above expression, the nu-
merical solution of Eq. (9) is reduced to an alternating
application of discrete Fourier transforms and array
multiplications, since each operator acts only in its
diagonal representation.

This numerical approach o�ers new interesting per-
spectives in the study of nanodevices, arising from
the possibility of including time-dependent potentials
and magnetic �elds: they could be used to model,
e.g., the electron injection processes or the e�ects of
AC biases on devices, or for modelling the dynamics of
�ying qubits47. These applications become even more
relevant when exploring frequency regimes that are
comparable to the characteristic times of electron dy-
namics or close to the dwell time of carriers inside the
devices: a situation in which new interesting quanto-
mechanical features can appear33,44,48. However, all
these e�ects go beyond the scope of the present work,
in which we focus on the fundamental phenomena that
stand behind the transmission interference pattern of
the device. The strong advantage of the Split-Step
Fourier method is that it does not require to explic-
itly compute the eigenstates of the device to study its
transport properties � which is a very demanding com-
putational task. Moreover, within this scheme, we can
reproduce the exact dynamics of the electronic wave
function inside the device: these are the reasons for
which we implement it, even though our hamiltonian
is time-independent. As an example, the evolution of
the WP at four di�erent times is shown in Fig. 1 for
the speci�c case described in the caption. The simula-
tions have been performed with a time-step δt = 0.1 fs.

As expected10,12,17, we obtain AB oscillations of the
transmission T (see Figure 2) with respect to both
the variation of the area (which is controlled through
aL) and the variation of the magnetic �eld B. This is
consistent with the results of Refs. 10 and 12, where
the tailoring of the length of one of the two paths is

achieved through a modulation gate.
However, we observe two extra features, namely (a)
a damping of the AB oscillations with aL and (b) an
increase of the average T as the initial spatial local-
ization σ of the WP is increased, with a consequent
decrease of the visibility10,12,13,22

vMZI =
Imax − Imin
Imax + Imin

=
Tmax − 〈T 〉
〈T 〉

(13)

of the AB oscillations (of the transmitted current I),
which is always smaller with respect to the ideal case
vMZI = 1. The two issues above are addressed in the
following.
(a) The AB oscillations as a function of aL are mod-
ulated by a Gaussian envelope, whose extension is di-
rectly correlated with the size σ of the initial WP. A

Figure 2. (Color online) Aharonov-Bohm oscillations in
the transmission coe�cient T as a function of the asym-
metry parameter of the left arm aL and of the magnetic
�eld B (numerical simulations for a wave packet with
σ = 40 nm).
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Figure 3. (Color online) Transmission coe�cient T as a
function of the asymmetry parameter of the left arm aL
(top curve: σ = 20 nm, middle curve: σ = 40 nm, bottom
curve: σ = 60 nm). The curves are the �ts of the numerical
simulation data. It turns out that the best �t is obtained
with the function T (aL) = c1 + c2 · exp[−c3(aL − c4)2] ·
cos(c5aL + c6), where the ci are the �t parameters. Inset:
Detail of the curve σ = 40 nm with numerical simulation
data-points. All the simulations are performed at B = 5 T.

�tting of T vs aL is reported in Fig. 3, for three values
of σ (see caption). This e�ect has a simple physical ex-
planation, already advanced by Haack et al. in Ref. 32
for a Lorentzian WP. Indeed, when the asymmetry be-
tween the two arms is large with respect to the size
of the WP, the two parts of the wave function arrive
at the second QPC at di�erent times, and do not in-
terfere. In this case, each part is transmitted with a
probability of 50%, ending up with a total transmis-
sion of T ' 0.5. In general, the larger the time o�set
at which the centers of the two WPs reach the second
QPC, the less e�ective is the quantum interference.
Therefore, we expect a saturation value of ∼ 0.5 for
T (aL), and a maximum oscillation amplitude of ∼ 0.5
(when the two wavepackets arrive at the same time at
the second QPC). However, our numerical simulations
show a di�erent trend, i.e. issue (b).

(b) For smaller values of σ, the average (or saturation
value with aL) of the transmission T is higher and the
amplitude of the oscillations is lower (Fig. 3). These
e�ects are due to the energy-dependent features of the
scattering process at the QPCs, which are included
automatically in the numerical simulations based on
the direct solution of the Schrödinger equation. In
fact, contrary to a delocalized scattering-state model,
where the particle is represented by a single-energy
state, our WP is composed by di�erent ESs, as given
in Eq. (4), each with a slightly di�erent energy. As
a consequence, the two parts of the WP, transmit-
ted and re�ected by the QPC, have di�erent spec-
tral weights, which depend on σ. Only in the limit
of σ → ∞, the WP is split into two identical parts
that give an ideal 50% splitting with T = 0.5. This
e�ect should be detectable in noise spectra of two-
particle scattering, as proposed in Ref. 49. In order
to have a better physical insight and to give a quan-

Figure 4. Scattering states inside the device. Regions I, II
and III are separated with dashed lines.

titative assessment of this e�ect, we will include the
energy-dependent transmissivity of the QPCs in the
analytical model presented in the following section.

IV. THEORETICAL MODEL FOR THE

INTERFERENCE

Following Weisz et al17, we will represent a single ES
as a 1D plane wave, and we will describe the scattering
process and the transport inside the MZI with the
scattering matrix formalism2. Of course, the e�ects of
the scattering on the WP can be determined from the
linear superposition of the scattering of single plane
waves.
The device can be divided into three regions � I, II
and III � as indicated in Fig. 4, where the plane-wave
states are given by:

I. |D1(k)〉 =

(
1
0

)
|U1(k)〉 =

(
0
1

)
, (14)

II. |L(k)〉 =

(
1
0

)
|R(k)〉 =

(
0
1

)
, (15)

III. |D2(k)〉 =

(
1
0

)
|U2(k)〉 =

(
0
1

)
. (16)

The initial wave packet is prepared in the state

|ΨI〉 =

ˆ
dk F (k) |D1(k)〉 , (17)

and the scatterings at the two QPCs are described by
the scattering matrices

Sj =

(
rj itj
itj rj

)
, (18)

with j = 1 (j = 2) labeling the �rst (second) QPC,
and where rj and tj are the transmission and re�ection
amplitudes. After the �rst QPC, the wave function is
given by:

|ΨII〉 = S1 |ΨI〉

=

ˆ
dk (FL(k) |L(k)〉+ FR(k) |R(k)〉) , (19)
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where FL(k) = r1(k)F (k) and FR(k) = i t1(k)F (k).
While travelling in the two arms of the MZI inside
region II, the wave function acquires a di�erent phase
in each arm, which is given by2,50,51:

ϕh =
1

~

ˆ
h

(~p− q ~A) · ds = ξh + φh, (20)

where h = L (h = R) labels the left (right) arm and
the integral is a line integral along the arm h. The
�rst contribution, the dynamic phase ξh, is due to the
canonical momentum ~p, while the second contribu-
tion, the magnetic phase φh, accounts for the vector

potential ~A. The matrix describing the phase acquired
is given by

P =

(
eiϕL 0

0 eiϕR

)
, (21)

and therefore the �nal wave function in region III is
given by

|ΨIII〉 = S2P |ΨII〉

=

ˆ
dk F (k)

(
t̃ |D2(k)〉+ r̃ |U2(k)〉

)
, (22)

where t̃ = r1r2e
iϕL − t1t2e

iϕR and r̃ = ir1t2e
iϕL −

it1r2e
iϕR . It is easy to see that the transmitted part

of the WP is given by∣∣ΨT
III

〉
=

(
1

2π

ˆ
dk′ |D2(k′)〉 〈D2(k′)|

)
|ΨIII〉 , (23)

where 〈D2(k′)|D2(k)〉 = 2πδ(k − k′), and therefore

T̃ =
〈
ΨT
III

∣∣ΨT
III

〉
,

= 2π

ˆ
dk |F (k)|2|t̃(k)|2. (24)

If the scattering amplitudes rj and tj are energy-
independent, Eq. (24) can be integrated analytically,
to give:

T̃ = T0 − T1e
−∆l2

8σ2 cos(∆φ− k0∆l), (25)

where T0 = |r1r2|2 + |t1t2|2 and T1 = 2r1r2t1t2. T0

is the mean value of the oscillations, while T1 is their
maximum amplitude. In the previous formula, ∆l '
2aL is the length di�erence between the two arms of
the interferometer, while ∆φ ' e

~BH0(aL0 + 2L) =

πΦB
Φ0

is the well-known Aharonov-Bohm phase2,40,50

(ΦB is the �ux of the magnetic �eld through the area
of the MZI and Φ0 = h

2e is the magnetic �ux quan-

tum). Notice that this result is exact up to some ge-
ometrical corrections, stemming from the di�erence
between the nominal path mismatch 2aL and its ef-
fective value, as explained in note52. This discrepancy
is responsible for the fact that the maximum of T (aL)
is shifted from aL = 0.

V. DISCUSSION

As one can see, Eq. (25) provides the correct trend for
the results of the simulations, with a sinusoidal oscil-
lation enveloped by a Gaussian and with a �xed o�set

in the transmission. Indeed, by substituting the ex-
pressions for ∆φ and ∆l into Eq. (25), we see that the
transmission coe�cient should oscillate as a function
of aL like cos(keaL + ϕ0), where ke = e

~BH − 2k0 '
4.80 · 109m−1, which is consistent within 2% with the
values of ke obtained by �tting the simulation data
(see Table I). For what concerns the amplitude and
the saturation value of T , if we suppose that the QPCs
have a perfect half-re�ecting behavior for all incoming
energies � that is tj = rj = 1√

2
for all k � then our

model predicts a saturation value T0 = 0.5 and an os-
cillation amplitude T1 = 0.5, as we previously stated.
This prediction, however, does not match with the
numerical simulations, where we observe higher values
for T0 and lower values for T1 (see Table I). The model
also predicts that the oscillations of T (aL) should be
modulated by a Gaussian with a standard deviation
Σ = σ, i.e. with the same spatial dispersion of the
initial wave packet. However, the actual values of Σ
obtained from numerical �tting the data of Fig. 3 are
bigger than σ by more than a factor of two in the case
with smaller σ. As σ increases, the values of Σ (always
obtained by �tting the results of the simulations) get
closer to σ (see Table I). Indeed, a better agreement
can be obtained by enhancing our model.

This simpli�ed model is valid under certain approx-
imations, that are: (i) the scattering process can be
treated as a quasi-1D problem; (ii) all the edge chan-
nels involved in the transmission follow the same path,
i.e. we can consider the area enclosed by the interfer-
ing paths and the di�erence in length ∆l as they were
independent on k; (iii) the re�ection and transmis-
sion amplitudes rj and tj of the QPCs are energy-
independent (that means also k-independent). While
assumptions (i) and (ii) are in general veri�ed, the ap-
proximation (iii) must be dropped in order to repro-
duce the results of the simulations. Indeed, our re-
sults can be explained considering that the scattering
amplitudes of the QPCs are not energy-independent,
as it has been already pointed out in the literature19.
From a physical point of view, the edge states of higher
energy are closer to the barrier, and therefore they
should tunnel easier through the QPCs. This predic-
tion can be easily veri�ed, since the energy-dependent
scattering process should produce di�erent values in
the weights FL(k) and FR(k) of the WP after the �rst
QPC. This can be linked directly to the di�erences
in the values of T0 and T1 with respect to the ideal
case, as we will see brie�y (a model for the correct
estimation of Σ, T0 and T1 is given in Appendix A).

Initial WP T (aL) (�t)

σ (nm) T0 T1 Σ (nm) ke (nm−1)

20.0 0.7371 0.2403 40.98 4.86

40.0 0.6330 0.3650 54.54 4.86

60.0 0.5778 0.4215 70.99 4.86

Table I. Data of the initial WP (σ is the standard devi-
ation of Eq. (5)) and the corresponding parameters for
the transmission coe�cient T (aL) pro�le. Data were �t-
ted with the expression T (aL) = T0 − T1 exp(− 1

2
(aL −

c)2/Σ2) cos(keaL + ϕ0), taken from Eq. (25).
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Figure 5. (Color online) Weights |FR(k)|2 and |FL(k)|2
for the transmitted and re�ected part of |ΨII〉 obtained
from numerical simulations (σ = 40nm); the continuous
lines are the �ts with the functions fR(k) and fL(k), the
dashed line is |F (k)|2 (which is peaked on k = k0). In-
set: Squared modulus of transmission and re�ection am-
plitudes t(k) and r(k) for a single QPC calculated from
numerical �ts. Notice the energy scale at the top of the
�gures.

The amplitudes t(k) and r(k) (which are equal for
both QPCs, due to their identical shape) can be calcu-
lated numerically from |ΨII〉. In Eq. (19), the squared
modulus of the weights |FL(k)|2 and |FR(k)|2 has been
calculated from a simulation on the wave packet with
σ = 40 nm by projecting |ΨII〉 over the local eigen-
states |L(k)〉 and |R(k)〉53. Then, using a phenomeno-
logical approach, the corresponding data have been
�tted with the functions fL(k) = Fαr (k − kr) |F (k)|2
and fR(k) = Fαt(k− kt) |F (k)|2, thus giving a Fermi-
distribution expression54 for |r(k)|2 and |t(k)|2. The
results of the �ts shown in Fig. 5 are in good agree-
ment with the numerical simulations and are also con-
sistent with the constraint |r(k)|2 + |t(k)|2 = 1. From
the same �gure, we also deduce that the QPCs are
more transparent at higher energies (i.e., lower values
of k), as we predicted.

With the hypothesis that t(k) and r(k) are real17, we
can insert the transmission and re�ection amplitudes
calculated numerically into Eq. (24) and �nd the ex-

act transmission coe�cient T̃ . The results for a WP
of σ = 20 nm are shown in Fig. 6: here, the simpli�ed
transmission coe�cient of Eq. (25) (where t and r are

energy-independent and both equal to 1/
√

2) is com-
pared with the exact energy-dependent calculation of
Eq. (24), which reproduces the result of numerical
simulations (see Fig. 3 for comparison). Then, as we
see, the energy dependence of the scattering ampli-
tudes t(k) and r(k) is able to account for the values
of T0 and T1 and also for the broadening of Σ (the re-
gion in which we observe interference) with respect to
the original spatial extension σ of the WP. Therefore,
taking into account these corrections, it is still possi-
ble to use the simpli�ed model of Eq. (25) to describe
the interference, provided that one uses the energy-

Figure 6. (Color online) Transmission coe�cient T̃ cal-
culated from the theoretical model for σ = 20 nm, when
scattering amplitudes t = r = 1√

2
are energy-independent

(Eq. (25), bottom curve) and when scattering ampli-
tudes are energy-dependent (Eq. (24), top curve). The

energy-dependent curve has ke = 4.80 nm−1, T̃0 = 0.757,
T̃1 = 0.245 and Σ̃ = 40.4 nm, which are very close to the
results of numerical simulations (see Table I). Note how
the energy-dependent analytical model is able to repro-
duce the numerical results of Fig. 3 (top curve)

dependent values for T0, T1 and Σ, that we name T̃0,
T̃1 and Σ̃. They can be calculated from our model as:

T̃0 = 2π

ˆ
dk |F (k)|2

(
|r1r2|2 + |t1t2|2

)
, (26)

T̃1 ' 2π

ˆ
dk |F (k)|22r1r2t1t2, (27)

(see Appendix A for Σ̃ and for the details of the deriva-

tion of T̃0 and T̃1). In summary, we obtained an an-
alytical formula for the visibility vMZI of the device,
which is

vMZI =
T̃1

T̃0

. (28)

Indeed, we see that the device has a reduced visibil-
ity with respect to the expected ideal value vMZI =
T1/T0 = 1, due to phase-averaging e�ects between dif-
ferent energies involved in the WP (and not because of
decoherence e�ects), as some experimental works al-
ready pointed out10. Interestingly, these remarkable
e�ects, which are comparable with experimental ob-
servations, are not explicitly related to �uctuations of
the area enclosed by the two paths of the interferom-
eter, because we used the same values of ∆l and ∆φ
for all edge states composing the WP.
Notice that in Fig. 6 the transmission curves are cen-
tered around aL = 0 since the analytical model does
not include the geometrical corrections (described in
note52) which are responsible for the shift of the max-
imum in Fig. 3. Also notice that the energy selectivity
produces a di�erent dwell time of the wavepackets in
the two arms of the device, whose main consequence is
the suppression of the fully destructive interference at
∆l ' 0 (see the two curves in Fig. 6 for comparison).
As we can see from the model, in the mono-energetic
plane-wave limit (σ → ∞) the energy-dependent ef-
fects become less important, and we recover the ideal
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behavior with T0 = T1 = 1
2 (notice that r(k0) =

t(k0) ≈ 1√
2
) and unitary visibility. The Gaussian

modulation of the AB oscillations of the transmission
coe�cient disappears, since |F (k)|2 → (2π)−1δ(k −
k0): This is consistent with scattering-states models
used in the literature10,12,17.

VI. CONCLUSIONS

In conclusion, our time-dependent simulations al-
low us to reproduce the interference pattern of elec-
trons transmitted through Landau edge-states de�n-
ing a MZI. Speci�cally, we �rst used the split-step
Fourier method to solve exactly the time-dependent
Schrödinger equation, and then we calculated the
single-particle dynamics and the transmission coe�-
cient of the interferometer, which shows Aharonov-
Bohm oscillations. We exposed the e�ects of the �-
nite size of the electronic WP. In fact, the longitudi-
nal extension (i.e. along the edge state) of the WP is
connected to its energy uncertainty which, in turn, is
determined by the injection process of the carriers: the
larger the energy uncertainty, the more localized the
WP. In Ref. 10, for example, the carrier injection in
the device is achieved by an ohmic contact operating
as the source terminal. However, the speci�c dynam-
ics of the electrons moving from the Fermi sea of the
metallic contact to the semiconductor edge state is un-
known, in general. Indeed it is strongly a�ected by the
atomistic details of the junction, by the temperature
(i.e. the broadening of the Fermi level) and, in the
case of Schottky contact, by the metal-semiconductor
barrier. Furthermore, if the injection of the single
carrier is realized via cyclic voltage pulses25,55,56, its
wave function can be partially tailored by the pulses
timing and shape, and the correlation of several car-
riers, possibly levitons, can be estimated as reported
in Ref. 57, thus assessing the transition from single-
particle to multi-particle regimes. With our approach,
that includes the energy selectivity of the QPCs, the
real-space spreading of the carriers can be estimated
a posteriori from the interference pattern32,58.
In addition to simulating the exact dynamics, we de-
veloped an analytical model that incorporates the
physics needed to reproduce the main features of the
transport spectrum. Such a model must go beyond the
standard delocalized scattering-state approach. In-
deed, we derived Eqs. (24) and (25) by including the
e�ects of the �nite size of the electronic WP. Fur-
thermore, the values of T0 and T1 in Eq. (25) must
depend on the di�erent wave vectors k composing the
WP, in order to account for the energy-dependence of
the scattering at the QPCs and, �nally, to reproduce
the o�set value of the transmission, as a function of
the spatial dispersion σ. Also, the model leading to
Eq. (24) can justify the reduction of the visibility of
the interferometer with respect to the ideal case.
Finally, we stress that the understanding of the dy-
namics of single electrons in Landau ESs, possibly in-
cluding 4-way splittings in QPCs and a non-trivial ge-
ometry, is of utmost importance for several proposals
of quantum computing architectures based on edge-

channel transport. Usually, in these proposals, the
quantum bits are encoded into two ESs of the same LL
that are physically separated in space. However, some
recent studies also focused on the possibility of cou-
pling ESs belonging to di�erent LLs59�62, between ESs
belonging to two di�erent 2DEGs through tunneling63

or between spin-resolved ESs of the same LL, which
could also be used in the future to realize a di�erent
type of MZI64,65 or scalable quantum gates. Also in
the above systems, the e�ects of the spatial localiza-
tion of the WP are pivotal for a realistic modeling of
the devices.
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Appendix A: Calculation of Σ̃, T̃0 and T̃1

In order to give an estimate for the energy-dependent
value of Σ̃, we will use a perfectly symmetrical form
for r(k) and t(k), since the QPCs are half-re�ecting
for k = k0 and r(k)2 + t(k)2 must be 1 for any k;
furthermore, we do not distinguish between QPC 1
and 2:

r(k) = [exp(−α(k − k0)) + 1]
− 1

2 (A1)

t(k) = [exp(+α(k − k0)) + 1]
− 1

2 (A2)

(where α = 1.13 ·10−7m is obtained by �tting the nu-
merical simulations). We now replace these functions
with Gaussian pro�les, since near the turning point
k0 and in the decaying tail of the Fermi distribution
it holds:

1

exp(α(k − k0)) + 1
' exp

[
− (α(k − k0) + γ)2

4e

]
(A3)

(here γ = 4 ln(2)). Therefore, since Eq. (24) for r1 =
r2 = r and t1 = t2 = t can be written as

T̃ = 2π

ˆ
dk |F (k)|2 × (A4)

×
[
r(k)4 + t(k)4 + 2r(k)2t(k)2 cos(−k∆l + ∆φ)

]
,

we deduce that, from each term in the square brack-

ets, we can factor out exp(−2α
2

4γ (k− k0)2), which can

be multiplied with |F (k)|2 ∝ exp(−2σ2(k − k0)2) to
give an �e�ective� Gaussian weight with an increased
standard deviation. We conclude that the energy-
dependent value for Σ is given by:

Σ̃2 ' σ2 +
α2

4γ
. (A5)

With this approximated model we obtain, for σ =
20 nm, Σ̃ = 39.4 nm, which is in excellent agreement
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with the value Σ = 40.98 nm obtained from the nu-
merical �tting of the exact simulations (see Table I).
A similar good agreement is obtained for σ = 40 nm
and σ = 60 nm.
Concerning the calculation of T̃0 and T̃1, we see from
Eq. (A4) that the oscillating part of T̃ and the Gaus-
sian damping are given by the third term in the square
brackets. Therefore, for large values of ∆l = 2aL, the
rapid oscillations of the cosine cancel out, and only the
�rst two terms survive, to give the saturation value of
the transmission. Then

T̃0 = lim
aL→∞

T̃ (A6)

= 2π

ˆ
dk |F (k)|2

[
r(k)4 + t(k)4

]
.

As we did for T̃0, we can estimate T̃1 by comparing
Eq. (A4) with Eq. (25). As a �rst approximation, T̃1 is

the maximum amplitude of the oscillating part, which
is obtained when all the oscillating functions are max-
imized and the Gaussian damping is zero, i.e. when
the argument ∆ϕ of all the cosines in the integral van-
ishes (and also ∆l = 0). Therefore, in this limit, we

can subtract the background T̃0 from T̃ to get T̃1:

T̃1 = lim
∆ϕ→0

T̃ − T̃0 (A7)

= 2π

ˆ
dk |F (k)|2

[
2r(k)2t(k)2

]
.

For example, by using the above formulas, we obtain
T̃0 = 0.760 and T̃1 = 0.240 for the WP with σ =
20 nm, that are in good agreement wit the values of
Table I. It is straightforward to generalize these results
to the cases when r1 6= r2 and t1 6= t2, to get the
expressions of Eqs. (26) and (27).
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SUPPLEMENTARY DATA

Filling factor ν = 2

In the present work, we limit ourselves to spin-degenerate n = 1 Landau level for reasons of simplicity. However,

in real systems the spin-orbit coupling is of the order of ∆E ' g′ · µB · ~S · ~B/~ ' 64µeV, where g′ = 0.44 is
the Landè factor in GaAs64. This correction remains well below 4% of the level interspacing ~ωc = ~eB/m∗ '
8.60 eV even if we used the Landè factor for vacuum (g = 2), so it can be neglected. A similar discussion can be
carried out when SO-coupling is compared to the average energy of our wavepacket, which is E(k0) = 11 meV.
This is even more true when we consider the large spin-�ip equilibration lengths (greater than 100µm)66, that
are two order of magnitude bigger than our device.
For what concerns the �lling factor, we did not consider a situation with ν > 1 for simplicity, since ν = 1
was used in many works (see Refs. 10, 12, and 22), and the results we �nd are equivalent. Of course, using
ν = 2 is possible in our approach, but very similar results have been found in both �lling factors (see e.g.
Refs. 10, 12, and 22), and the improvements in the visibility that are sometimes observed in literature17,22 for
ν = 2 are ascribed to a many-body e�ect due to inter-channel interactions67: a phenomenon which cannot be
observed in our single-particle simulations. Therefore, the choice ν = 2 would not change our results (except for
the necessary changes in the QPC amplitude, needed to maintain a half-re�ecting behaviour), provided that we
avoid very sharp potentials, that can induce elastic inter-channel scattering. Indeed, if our wavepacket was in a
superposition of states belonging to the 1st and the 2nd Landau levels, some unwanted e�ects could take place in
our simulations, such as a larger spreading in space (due to di�erent group velocities of the two subbands n = 1
and n = 2) and a non-ideal splitting at the QPCs (since, as it is well-known, they favour the transmission of
the outer channels with respect to the inner ones). Although the reference experiments and our device are not
in the �sharp potentials� regime, modelling the dynamics of an electron at �lling factor ν = 2 in one of the two
edge states without including other carriers in the other co-propagating state would be not fully appropriate,
and inhibiting numerically such transitions would introduce unnecessary complications.

Supplementary Figure 1. Square modulus of the Gaussian WP of Eq. (4) at the initial time and at t = 7.2 ps, when it has
been split by the QPC (δ = 41.5 nm, τ−1 = 2 nm). Here ∆ = 26.4 nm and the corresponding energy of the wavepacket is
E(k0) ' 17.75 eV. The other parameters are the same as in Fig. 1 of the main text. Inset: Band-structure represented
in real space x0 (see Eq. (3)) and weights |F (k)|2 (see Eq. (5)) for the initial wavepacket. The black horizontal line is
the energy of the wavepacket (which can be interpreted as the Fermi level) and corresponds to a �lling factor ν = 2.

In Supplementary Figure 1 we represent the dynamics of a Gaussian wavepacket composed by states of the �rst
Landau level (n = 1) with an energy of E(k0) ' 17.75 eV, that is at a �lling factor ν = 2. As it can be noticed,
the dynamics is the same that we observe for ν = 1 in Fig. 1 of the main text.
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Lorentzian Wavepacket Dynamics

In this Supplementary text we show, as an example, the dynamics of a Lorentzian wave packet crossing a QPC
of the kind described into Sec. II of the main text, and compare it with the corresponding result for a Gaussian
wave packet, as used in the simulations of our work. We used in both cases a �lling factor ν = 1.
We consider a 1D Lorentzian wave function

ψL1D(y, t) =
1√
π

√
Γ
2

(y − y0)− v t+ i sgn(kF )Γ
2

eikF (y+v t),

where Γ is the full-width at middle height of the probability density |ψL1D(y, t)|2, y0 is the position of the
maximum at the initial time t = 0. For a system with a linear dispersion E(k) = v · k, this corresponds to the
wave function of a leviton28, but it describes also an electron emitted by a single-electron source quantum dot
when subject to a suitable bias pulse68. The imaginary exponential kinetic factor exp(ikF (y + v t)) provides
the group velocity 〈vg〉 corresponding to the Fermi wave vector kF , which is given below. The factor sgn(kF )
is inserted to select only the wavevectors k associated with an energy E(k) > EF , as required by the leviton
energy pro�le.
As in Eq. (5) of the main text, we Fourier transform in the k domain in order to obtain proper weights for the
ESs ϕ(x, k)eiky

FL(k) =
1

2π

ˆ
dy e−ikyψL1D(y, 0) (S1)

= −

√
Γ√
2π
ie−

1
2 (k−kF )(2iy0+Γsgn(kF ))Θ[(k − kF )sgn(kF )]sgn(kF ),

where we used the Heaviside function Θ[k]. Therefore, the expectation value for the group velocity is:

〈vg〉 = ~ 〈k〉 = kF + sgn(kF )
1

Γ
,

from which we can de�ne the central wavevector k0 = m 〈vg〉 /~ of the wavepacket. With the approximation
that all the involved edge states have the same transverse pro�le (which we used also in Sect. V to derive the
analytical expression for the transmission coe�cient), that is ϕ(x, k) ≈ ϕ(x, kF ), the 2D wavepacket becomes
(see also Eq. (4) of the main text)

ψL(x, y) =

ˆ
dk FL(k)ϕ1,k(x)eiky (S2)

≈ ϕ(x, kF )
eikF y√
π

√
Γ
2

(y − y0) + i sgn(kF )Γ
2

,

thus showing that our linear superposition of ESs has the required Lorentzian shape. The above expression (S2)
is taken as the initial Lorentzian wave packet and is propagated with the numerical approach described in the
main text for the Gaussian case. Supplementary Figures 2 and 3 report the square modulus of the Lorentzian
and Gaussian wave functions, respectively, at the initial time and at a following time step, after the action of
the QPC. The wavepackets have been initialized to have the same group velocity (numerical parameters are
given in the captions). Furthermore, Supplementary Figure 4 shows the e�ect of the QPC energy selectivity
on the Lorentzian wave function. Although the time evolution in the latter case is more noisy than in the
Gaussian case described in the main text, and the spatial spreading is clearly larger, the QPC is able to split
the wave packet in two parts with essentially the same integrated probability of 0.5 but with di�erent spectral
components, as for the Gaussian case described in the main text.
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Supplementary Figure 2. Square modulus of the Lorentzian wave function of Eq. (S2) at the initial time (a) and at
t = 6 ps, when the WP has been split in a re�ected (b) and a transmitted (c) component by the QPC. Here Γ = 40 nm
and the wavevector k0 associated with the group velocity is ∼ 1.2 nm−1, while the other parameters are the same as in
Fig. 1 of the main text.

Supplementary Figure 3. Square modulus of the Gaussian wave function of Eq. 4 of the main text at the initial time (a)
and at t = 5ps, when the WP has been split in a re�ected (b) and a transmitted (c) component by the QPC. We used
the same other parameters as in Fig. 1 of the main text (i.e., σ = 40 nm and k0 ' 1.2nm−1).

Supplementary Figure 4. Reciprocal-space weights, as in Eq. (S1), of the Lorentzian wave function at the initial time
(yellow) and for the transmitted (blue) and re�ected (red) components after the split at the QPC. Their real-space
evolution is shown in Supplementary Figure 2.


