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D using

image charges. We present here an improved version of this formalism which allows us to

write down non-recursive master formulas for the n-point contribution to the heat kernel

trace of a scalar field on the half-space with Dirichlet or Neumann boundary conditions.

These master formulas are suitable to computerization. We demonstrate the efficiency of

the formalism by a calculation of two new heat-kernel coefficients for the half-space, a4 and

a9/2.
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1. Introduction

The “string-inspired” worldline formalism, originally developed in the context of QCD

scattering amplitudes [1, 2], has during the last fifteen years evolved also into a powerful

tool for the calculation of effective actions and heat kernels. One may recall that, generally,

one-loop effective actions can be written in terms of determinants of certain differentials

operators depending on given background fields. For the simplest and prototypical case, a

(real) scalar field with self-interaction U(φ), this operator is1

H = −� + U ′′(φ) (1.1)

and the one-loop effective action can be written as

Γ[Φ] =
1

2
ln Det H = −1

2

∫ ∞

0

dT

T
Tr e−TH

= −1

2

∫ ∞

0

dT

T

∫

dDxK(T ;x, x) (1.2)

where K(T ;x, x) is the diagonal of the heat kernel of the operator H,

K(T ;x, y) = 〈x|e−TH |y〉 (1.3)

1We use euclidean conventions throughout this paper.
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A standard way of calculating the effective action is given by the (diagonal) heat kernel

expansion,

K(T ;x, x) = (4πT )−
D
2

∞
∑

n=0

an(x, x)T n (1.4)

See [3 – 5] for reviews on the results which have been obtained for the heat kernel coefficients

an in various field theories, as well as for their applications in quantum field theory.

In the worldline formalism, the starting point is the following worldline path integral

representation of the effective action (1.2) (see, e.g., [6])

Γ[φ] = −1

2

∫ ∞

0

dT

T

∫

Dx exp

[

−
∫ T

0
dτ

(

1

4
ẋ2 + V (x(τ))

)

]

(1.5)

where we now denote U ′′(φ(x)) =: V (x). Here the path integral in (1.5) is over the space

of all closed loops x(τ) in spacetime with periodicity x(T ) = x(0). It will be convenient to

rescale the worldline action to the circle of unit length,

∫ T

0
dτ

(

1

4
ẋ2 + V (x(τ))

)

=
1

4T

∫ 1

0
dτ ẋ2 + T

∫ 1

0
dτ V (x(τ)) (1.6)

In the application of (1.5) to the calculation of the effective action, the most straightfor-

ward approach is to expand the interaction exponential, Taylor expand V , and evaluate

the resulting Gaussian integrals using a worldline Green’s function adapted to the peri-

odic boundary conditions. Since for periodic boundary conditions the path integral has

perturbatively a zero mode, before doing so one has to split

x(τ) = x + y(τ)
∫

Dx =

∫

dDx

∫

Dy (1.7)

This leaves a dependence of the worldline Green’s function on the boundary conditions

chosen for y(τ). The main two choices are

1. (Worldline) Dirichlet boundary conditions (DBC), y(0) = y(1) = 0. This leads to a

worldline correlator 〈yµ(τ)yν(σ)〉 = −Tδµν GD(τ, σ), where

GD(τ, σ) = 2τ(σ − 1)θ(σ − τ) + 2σ(τ − 1)θ(τ − σ)

= |τ − σ| + 1

2
(1 − 2τ)(1 − 2σ) − 1

2
(1.8)

2. “String-inspired” boundary conditions (SI),
∫ 1
0 dτ y(τ) = 0. This yields a correlator

〈yµ(τ)yν(σ)〉 = −Tδµν GS(τ, σ) with

GS(τ, σ) = |τ − σ| − (τ − σ)2 (1.9)

where the coincidence limit has been subtracted; see discussion in [7, 6].
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After this zero mode fixing, it is natural to Taylor expand V at the point x,

V (x + y) = ey·∂V (x) (1.10)

Combining (1.10) with the expansion of the interaction exponential renders the path inte-

gral Gaussian. Formal Gaussian integration using either of the worldline correlators (1.8)

or (1.9) then leads to the following master formula for the effective action,

Γ[Φ] = −1

2

∫ ∞

0

dT

T

∫

dDxKD,S(T, x) (1.11)

where

KD,S(T, x) = (4πT )−
D
2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

×exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)∂i · ∂j

]

V (1)(x) · · · V (n)(x) (1.12)

Here it is understood that the derivative ∂i acts on V (i). The prefactor (4πT )−
D
2 represents

the free path integral determinant. As discussed in [7] (see also [6]), using the Dirichlet

Green’s function (1.8) in (1.11) reproduces precisely the heat kernel diagonal,

KD(T, x) = K(T ;x, x) (1.13)

On the other hand, KS(T, x) differs from K(T ;x, x) by terms which are total derivatives.

As it turns out, these total derivative terms have a simplifying effect in the sense that they

lead to a more compact form of the effective action at higher orders of the heat kernel

expansion [8, 9]. The master formula (1.11) with the string-inspired Green’s function

has been used in [9] for a calculation of Γ[Φ] to order O(T 8). Both approaches have

been extended to the effective action for quantum electrodynamics [10], nonabelian gauge

theory [7, 11] and gravity [12, 13]. It must be mentioned, though, that the issue of the zero

mode fixing becomes a much more nontrivial one in the curved space case [14].

All the work cited above pertains to the standard heat kernel, derived from operators

defined on R
D or on a manifold without boundary. However, many important physics ap-

plications of effective actions involve nontrivial boundary conditions. The prime example is

Casimir energies, for whose calculation there is presently still no sufficiently general method

available in standard QFT, while there is increasing motivation not only from QED (see [15]

for a review) but also from the physics of branes and field theories with extra dimensions.

In particular, for a non supersymmetric brane configuration the Casimir force is an impor-

tant ingredient for the analysis of the stability of the configuration [16]. During the last few

years a variant of the worldline formalism based on a direct numerical calculation of the

path integral [17] has been applied very successfully to the calculation of Casimir energies

with Dirichlet boundary conditions [18]. This strongly suggests that one should study how

to implement boundary conditions also in analytic versions of this formalism. Similarly,

an important ingredient in the discovery of Hořava-Witten duality [19], a cornerstone of
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string theory, was the cancellation of Einstein anomalies in the ten-dimensional boundary

of R
10 × S1/Z2. Worldline models have so far been quite successfully used in the compu-

tation of anomalies in boundaryless manifolds [20, 12], so that a generalization to spaces

with boundary seems in order.

For manifolds with a boundary, the expansion formula for the heat kernel trace

Tr e−TH = (4πT )−
D
2

∑

n

anT n (1.14)

remains valid but now the integrated coefficients an include boundary contributions, and

also half-integer values of n appear [21]. Various methods for computing the heat kernel

trace on manifolds with boundary can be found in the literature [21 – 27]; see also [4, 5] for

reviews oriented towards physical applications.

As a first step in the direction of a generalization of worldline techniques to spaces

with boundary, in [28] three of the present authors considered the heat kernel for a scalar

field propagating on the half-space R+×R
D−1 and used the image charge method to write

the heat kernel trace on the half space as a combination of heat kernels on the whole space.

For the simple half-line R+ (that already captures the main features of the method) with

Dirichlet/Neumann boundary conditions this yields the following combination of whole line

heat kernels

Tr e−TH =

∫ ∞

0
dx 〈x | e−TH | x〉 ∓

∫ ∞

0
dx 〈−x | e−TH | x〉 (1.15)

Here the upper (lower) sign corresponds to the Dirichlet (Neumann) case. In the following

the first term will be called the “direct” contribution, the second one the “indirect” one.

In the path integral picture the second term represents the contribution to the heat kernel

due to paths which involve a reflection at the boundary. The calculation of these whole

line heat kernels involves the “doubled” potential

V (x) → Ṽ (x) = θ(x)V (x) + θ(−x)V (−x)

= V+(x) + ǫ(x)V−(x) (1.16)

where ǫ(x) is the “sign” function and V± indicates the even/odd part of the potential.

In [28] this formalism was used to reproduce the known heat kernel coefficients for the

half-space, as well as obtain two new ones, a3 and a7/2.

In the present paper, we present a more efficient and systematic approach along the

same lines. The main improvements over [28] are the following:

1. We represent the sign function appearing in the doubled potential Ṽ (1.16) through

its Fourier transform,

ǫ(x) =

∫ ∞

−∞

dp

πp
sin(px) (1.17)

2. We use a path integral with antiperiodic boundary conditions for the calculation of

the indirect contribution.
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The organization of this paper is as follows. In section 2 we explain a general method

for calculating the indirect contribution to the half-line heat kernel,

K ind
∂M (T ) :=

∫ ∞

0
dx 〈−x | e−TH | x〉 (1.18)

We use the path integral formulation to derive a master formula for this indirect part which

generalizes (1.12). We elaborate this master formula for the one and two point functions,

i.e. the terms in K ind
∂M involving one or two V ’s, and outline a procedure which allows one

to obtain, recursively in the number of V ’s, a more explicit integral representation for this

indirect part. Section 3 presents the more intricate procedure for calculating the direct part,

Kdir(T ) :=

∫ ∞

0
dx 〈x | e−TH | x〉 =

∫ ∞

0
dxKdir

M (T, x) + Kdir
∂M (T ) (1.19)

While the indirect part of the heat kernel contains only boundary terms, and will therefore

be denoted by K ind
∂M , the direct one yields both a bulk contribution Kdir

M and a boundary

one Kdir
∂M . Again we demonstrate the efficiency of the method by an explicit treatment

of the one and two point cases. We summarize our results in section 4. In appendix A

we use our formalism for obtaining two more coefficients for the half-line heat kernel than

were known before, a4 and a9/2. The generalization of the method from the half-line to a

half-space is straightforward, and is presented in appendix B.

2. Heat kernel on the half-line: indirect contribution

Let us thus reconsider the calculation of the heat kernel for the half-line (1.15). We will

start with the indirect term, since, as will be seen, in the present approach it is easier to

obtain than the direct one (this was different in the approach of [28]).

We first rewrite, using the symmetry x ↔ −x,

K ind
∂M (T ) =

∫ ∞

0
dx 〈−x | e−TH | x〉 =

1

2

∫ ∞

−∞

dx 〈−x | e−TH | x〉

=
1

2

∫

ABC
Dx exp

[

− 1

4T

∫ 1

0
dτẋ2 − T

∫ 1

0
dτ Ṽ (x(τ))

]

=
1

4

〈

e−T
R

1

0
dτ Ṽ (x(τ))

〉

ABC
(2.1)

where now the path integral is to be evaluated with antiperiodic boundary conditions,

x(1) = −x(0). Here in the last equation we have used the free antiperiodic path integral

determinant which is easily obtained by, e.g., ζ - function regularization. One finds
∫

ABC
Dx e−

1

4T

R

1

0
dτ ẋ2

=
1

2
(2.2)

We also note that in the antiperiodic case there is no zero mode, no residual integration and

therefore also no ambiguity in the Green’s function. The appropriate worldline correlator is

〈yµ(τ)yν(σ)〉 = −Tδµν GA(τ, σ),

GA(τ, σ) = |τ − σ| − 1

2
(2.3)
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Note that GA is antiperiodic in both arguments.

We expand out the interaction exponential in (2.1). Using (1.16), (1.17), and Taylor

expanding each Ṽ (i)(x(τi)) at the boundary x = 0, we can write

Ṽ (i)(xi) = V
(i)
+ (xi) +

1

π

∫ ∞

−∞

dpi

pi
sin(pixi)V

(i)
− (xi)

= exi∂iV
(i)
+ (0) +

1

πi

∫

ev

dpi

pi
exi(ipi+∂i)V

(i)
− (0) (2.4)

Here we denoted x(τi) =: xi, and we have introduced the abbreviation
∫

ev dpi for the

integral
∫∞

−∞
dpi with the understanding that only even powers of pi are to be kept in the

integrand. Applying this procedure to the correlator (2.1), we obtain the following master

formula for the indirect term,

K ind
∂M =

1

4

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn exp

[

−T

2

n
∑

i,j=1

GA(τi, τj)Di(p)Dj(p)

]

×
[

V
(1)
+ (0) +

1

πi

∫

ev

dp1

p1
V

(1)
− (0)

]

· · ·
[

V
(n)
+ (0) +

1

πi

∫

ev

dpn

pn
V

(n)
− (0)

]

(2.5)

Here and in the following we define Di(p) := ∂i + ipi, and it is understood that a Di(p) in

the exponent acts as such on V
(i)
− , but reduces to ∂i when acting on V

(i)
+ .

Although this master formula could be used as it stands to compute individual terms

in the heat kernel expansion, it turns out to be advantageous to trade the parameters pi

for parameters si, defined in the following way: first, we note that for the terms involving

both V+ and V− we can take the ordering to be V
(1)
− , . . . , V

(m)
− and V

(m+1)
+ , . . . , V

(n)
+ . We

then use the elementary identity

1

2πi

∫ ∞

−∞

dp

p
e−ap2

(eibp − e−ibp) =
b√
πa

∫ 1

0
ds e−

b2

4a
s2

(2.6)

(valid for a > 0) recursively with p = p1, . . . , p = pm to eliminate all the p integrals and

replace them by integrals
∫ 1
0 ds1 · · ·

∫ 1
0 dsm.

We will now apply this formalism to the case of the one and two point functions.

2.1 The one-point function

The term with n = 1 in the right hand side of the master formula (2.5) reads

K
ind(1)
∂M = −T

4

∫ 1

0
dτ exp

[

−T

2
GA(τ, τ)(∂ + ip)2

]

×
[

V+(0) +
1

πi

∫

ev

dp

p
V−(0)

]

=: K ind
∂M+ + K ind

∂M− (2.7)

Since GA(τ, τ) = −1
2 there is no τ dependence in the one-point case, so that the V+ term

becomes trivial,

K ind
∂M+ = −T

4
e

T
4

∂2

V+(0) (2.8)

– 6 –
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In the second term, we use (2.6) to transform it into

K ind
∂M− = −T

4
e

T
4

∂2 1

2πi

∫

ev

dp

p
e−

T
4

p2
(

eiT∂p/2 − e−iT∂p/2
)

V−(0)

= − T
3

2

4
√

π

∫ 1

0
ds e(1−s2)T

4
∂2

∂V−(0) (2.9)

Using (1.16) in reverse, and noting that even (odd) derivatives of V− (V+) vanish when

evaluated at the boundary, the two terms can be recombined, and our final result for the

indirect part of the one-point function becomes

K
ind(1)
∂M (T ) = −T

4

(

e
T
4

∂2

+

√

T

π

∫ 1

0
ds e(1−s2)T

4
∂2

∂

)

V (0) (2.10)

It is straightforward to expand the functional (2.10) and check that the coefficients of the

expansions match those of the literature (see, e.g., [28]).

2.2 The two-point function

Proceeding to the terms quadratic in V , the simplest one in (2.5) is the one involving two

V+. It reads

K ind
∂M++ =

T 2

8

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

[

T

4

(

∂2
1 + ∂2

2 − 4GA12∂1∂2

)

]

×V
(1)
+ (0)V

(2)
+ (0) (2.11)

where we have abbreviated GAij := GA(τi, τj). The terms involving both V+ and V−

become, using again (2.6),

K ind
∂M+− =

T 2

8

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

[

T

4

(

∂2
1 + ∂2

2 − 4GA12∂1∂2

)

]

× 1

πi

∫

ev

dp1

p1
exp

[

−T

4
p2
1 + iT

(

1

2
∂1 − GA12∂2

)

p1

]

V
(1)
− (0)V

(2)
+ (0)

=
T

5

2

8
√

π

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

[

T

4

(

∂2
1 + ∂2

2 − 4GA12∂1∂2

)

]

×
(

∂1 − 2GA12∂2

)

∫ 1

0
ds1 exp

[

−T

4

(

∂1 − 2GA12∂2

)2
s2
1

]

×V
(1)
− (0)V

(2)
+ (0) (2.12)

= K ind
∂M−+

For the term with two V−, we apply (2.6) first to p1 and then to p2. This yields

K ind
∂M−− =

T 2

8

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

[

T

4

(

∂2
1 + ∂2

2 − 4GA12∂1∂2

)

]

×
(

1

πi

)2 ∫

ev

dp1

p1

∫

ev

dp2

p2
exp

{

T

[

−1

4
(p2

1 + p2
2) + GA12p1p2

– 7 –
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+i

(

1

2
∂1 − GA12∂2

)

p1 + i

(

1

2
∂2 − GA12∂1

)

p2

]}

×V
(1)
− (0)V

(2)
− (0)

= −T 2

8π

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

[

T

4

(

∂2
1 + ∂2

2 − 4GA12∂1∂2

)

]

×
∫ 1

0
ds1

1
√

1 − 4G2
A12s

2
1

exp

[

−T

4
s2
1

(

∂1 − 2GA12∂2

)2]

×
{

4GA12 exp

[

−T

4

(

2(1 − s2
1)GA12∂1 − (1 − 4G2

A12s
2
1)∂2

)2

1 − 4G2
A12s

2
1

]

+T
(

∂1 − 2GA12∂2

)(

2(1 − s2
1)GA12∂1 − (1 − 4G2

A12s
2
1)∂2

)

×
∫ 1

0
ds2 exp

[

−s2
2

T

4

(

2(1 − s2
1)GA12∂1 − (1 − 4G2

A12s
2
1)∂2

)2

1 − 4G2
A12s

2
1

]}

×V
(1)
− (0)V

(2)
− (0) (2.13)

It is now easy to obtain from (2.11), (2.12), (2.13) any desired term in the derivative

expansion of the two-point function. We give two examples. First, let us consider K ind
∂M++.

Here the τ1,2 integrals can be done, for example, by expanding the exponential factor

involving GA12, and using

∫ 1

0
dτ1

∫ 1

0
dτ2 Gn

A12 =
1

2n(n + 1)
(2.14)

for n even (remembering that odd powers of derivatives on V+(0) vanish). Resummation

yields

K ind
∂M++ =

T

4
e

T
4

(∂2

1
+∂2

2
)
sinh

(

T
2 ∂1∂2

)

∂1∂2
V

(1)
+ V

(2)
+ (2.15)

Second, let us extract the leading contribution (as a power in T ) from (2.13); such a contri-

bution is proportional to (∂V (0))2. It is easy to see that the first term in braces in (2.13)

does not contribute. The second one does, and yields

T 3

8π

(

∂V (0)
)2
∫ 1

0
dτ1

∫ 1

0
dτ2

∫ 1

0
ds1

1 − 4s2
1G

2
A12 + 4(1 − s2

1)G
2
A12

√

1 − 4s2
1G

2
A12

=
T 3

8π

(

∂V (0)
)2
∫ 1

0
dτ1

∫ 1

0
dτ2

(

√

1 − 4G2
A12 + 2GA12 arcsin(2GA12)

)

= T 3 3

64

(

∂V (0)
)2

(2.16)

This is one of the coefficients that in [28] needed to be fixed by means of a toy model.
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3. Heat kernel on the half-line: direct contribution

We proceed to the more involved calculation of the first (“direct”) term of the heat kernel

for the half-line (1.15). As in (2.1), we use the symmetry x ↔ −x to make the x integral

run over the whole line,

Kdir(T ) =

∫ ∞

0
dxKdir(T, x) =

1

2

∫ ∞

−∞

dxKdir(T, x)

=
1

2

∫

PBC
Dx exp

[

− 1

4T

∫ 1

0
dτ ẋ2 − T

∫ 1

0
dτ Ṽ (x(τ))

]

(3.1)

This integral is formally identical to the one without a boundary, eq. (1.5). Thus its

calculation proceeds as in the whole line case, leading to the standard master formula (1.12)

with V (x) replaced by Ṽ (x):

Kdir(T, x) = (4πT )−
1

2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

×exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)∂i∂j

]

n
∏

i=1

[

V
(i)
+ (x) + (ǫ(x)V−(x))(i)

]

(3.2)

In the case of an even potential Ṽ (x) = V+(x) the further evaluation of this master formula

would then also proceed as in the whole line case. Things get much more involved in the

presence of V−(x), since the derivatives in (3.2) can also act on the ǫ(x) contained in Ṽ (x),

and produce δ functions and derivatives thereof. However such terms are boundary terms,

therefore the complete bulk part of the heat kernel gets produced by the terms where all

derivatives hit V ’s:

Kdir
M (T, x) = (4πT )−

1

2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

×exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)∂i∂j

]

n
∏

i=1

[

V
(i)
+ (x) + ǫ(x)V

(i)
− (x)

]

(3.3)

Here our notation is meant to convey that the derivative ∂i acts only on V (i), not on ǫ(x).

In this bulk part one is now free to take x positive and to replace V
(i)
+ (x) + ǫ(x)V

(i)
− (x) by

V (i)(x).

For the explicit evaluation of the boundary part, we use again the Fourier representa-

tion of the ǫ function (1.17). This allows us to rewrite (3.2) as

Kdir(T, x) = (4πT )−
1

2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

×exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)Di(p)Dj(p)

]

×
n
∏

k=1

[

V
(k)
+ (x) +

1

πi

∫

ev

dpk

pk
eipkxV

(k)
− (x)

]

(3.4)

– 9 –
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Now (3.4) and (3.3) differ only in the exponential prefactor. Rewriting this difference as

the integral of a total derivative in a new variable w, and integrating over x, we obtain the

following master formula for Kdir
∂M :

Kdir
∂M (T ) =

1

2

∫ ∞

−∞

dx
(

Kdir(T, x) − Kdir
M (T, x)

)

=
1

2
(4πT )−

1

2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

∫ ∞

−∞

dx

×
∫ 1

0
dw

∂

∂w
exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)Di(wp)Dj(wp)

]

×
n
∏

k=1

[

V
(k)
+ (x) +

1

πi

∫

ev

dpk

pk
eipkxV

(k)
− (x)

]

(3.5)

Since this difference contains only boundary terms, it is justified to Taylor expand V±(x)

with respect to the boundary, V±(x) = ex∂V±(0). The x integral can then be done, and

yields a δ function involving the various pk’s and ∂k’s. The w-derivative always cancels one

of the (spurious) poles in the pk’s, after which one can use the δ function to eliminate the

corresponding pk integral. After this one first does the remaining pk integrals, then the w

integral, and finally the τi integrals. The latter ones will be of Selberg type. Here it should

also be mentioned that, due to the fact that the string-inspired Green’s function preserves

the worldline translation invariance, in the SI scheme it is always possible to eliminate one

of the τ - integrals trivially, i.e. by setting τn = 0. This is generally not the case for the

DBC scheme.

As for the indirect contribution, we will demonstrate the procedure by an explicit

calculation of the one and two point contributions.

3.1 The one-point function

At the one-point level, the bulk master formula (3.3) gives

K
dir(1)
M (T, x) = −T (4πT )−

1

2

∫ 1

0
dτ e−

T
2

G(τ,τ)∂2

V (x) (3.6)

where G(τ, σ) stands for either Green’s function. For the boundary term we get from (3.5),

after expanding V−(x) at x = 0,

K
dir(1)
∂M (T ) = −T

2
(4πT )−

1

2

∫ 1

0
dτ

∫

ev

dp

iπp

∫ ∞

−∞

dx e(ip+∂)x

×
∫ 1

0
dw ∂w e−

T
2

G(τ,τ)(∂+iwp)2V−(0)

= −T

2
(4πT )−

1

2

∫ 1

0
dτ

∫

ev

dp

iπp
2πδ(p − i∂)

×(−TG(τ, τ))ip

∫ 1

0
dw (∂ + iwp) e−

T
2

G(τ,τ)(∂+iwp)2V−(0)

– 10 –
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= T 2(4πT )−
1

2

∫ 1

0
dτ G(τ, τ)

∫ 1

0
dw (1 − w)

× e−
T
2

G(τ,τ)(1−w)2∂2

∂V−(0)

= T (4πT )−
1

2

∫ 1

0
dτ ∂−1

(

1 − e−
T
2

G(τ,τ)∂2
)

V−(0) (3.7)

The essential point to be noted is that the total derivative in w has led to the appearance

of a factor of p in the numerator which cancels the one in the denominator, making it

possible to apply the δ function coming from the x integral.

Note also that, except the leading order, all terms in the expansion of both the bound-

ary part and the bulk part of the one-point function are dependent upon the choice of

worldline Green’s function. However, let us verify that the complete (integrated) one-point

function is scheme-independent. Combining (3.6) and (3.7) we can write this as

Kdir(1)(T ) = −T (4πT )−1/2

∫ 1

0
dτ

[

∫ ∞

0
dx e−

T
2

G(τ,τ)∂2

V (x)

+∂−1
(

e−
T
2

G(τ,τ)∂2 − 1
)

V (0)

]

(3.8)

Using partial integration it is thus easy to see that the latter reduces to

Kdir(1)(T ) = −T (4πT )−1/2

∫ ∞

0
dx V (x) (3.9)

which is manifestly independent of the choice of Green’s function.

3.2 The two-point function

At two points, the bulk master formula (3.3) yields

K
dir(2)
M (T, x) = (4πT )−

1

2

T 2

2!

∫ 1

0
dτ1

∫ 1

0
dτ2

×exp

[

−T

2

2
∑

i,j=1

Gij∂i∂j

]

V (1)(x)V (2)(x) (3.10)

The boundary master formula (3.5) now gives three contributions,

K
dir(2)
∂M = Kdir

∂M +− + Kdir
∂M −+ + Kdir

∂M −− (3.11)

where Kdir
∂M +− = Kdir

∂M −+. The mixed term is the simpler one to calculate:

Kdir
∂M −+ =

T 2

4
(4πT )−1/2

∫ ∞

−∞

dx

∫ 1

0
dτ1

∫ 1

0
dτ2 e−

T
2

G22∂2

2

×
[

e−
T
2

(

G11(∂1+ip1)2+2G12(∂1+ip1)∂2

)

− e−
T
2

(

G11∂2

1
+2G12∂1∂2

)

]

×
∫

ev

dp1

iπp1
eip1x V

(1)
− (x)V

(2)
+ (x)

– 11 –
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=
T 2

4
(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2 e−

T
2

G22∂2

2

×
∫ 1

0
dw∂w e−

T
2

(

G11(∂1+iwp1)2+2G12(∂1+iwp1)∂2

)

×
∫

ev

dp1

iπp1

∫ ∞

−∞

dx e(ip1+∂1+∂2)x V
(1)
− (0)V

(2)
+ (0)

=
T 2

4
(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2 e−

T
2

G22∂2

2

×
∫ 1

0
dw(−iTp1)(G11(∂1 + iwp1) + G12∂2)

× e−
T
2

(

G11(∂1+iwp1)2+2G12(∂1+iwp1)∂2

)

×
∫

ev

dp1

iπp1
2πδ(p1 − i∂1 − i∂2) V

(1)
− (0)V

(2)
+ (0)

= −T 3

2
(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2 e−

T
2

G22∂2

2

×
∫ 1

0
dw
(

G11

[

(1 − w)∂1 − w∂2

]

+ G12∂2

)

× e−
T
2

(

G11

[

(1−w)∂1−w∂2

]2

+2G12

[

(1−w)∂1−w∂2

]

∂2

)

V
(1)
− (0)V

(2)
+ (0) (3.12)

The case of Kdir
∂M −− is somewhat more laborious:

Kdir
∂M −− =

T 2

4
(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2

×
∫ 1

0
dw∂w e−

T
2

P

2

i,j=1
Gij(∂i+iwpi)(∂j+iwpj)

×
∫

ev

dp1

iπp1

∫

ev

dp2

iπp2
2πδ(p1 + p2 − i∂1 − i∂2) V

(1)
− (0)V

(2)
− (0)

= (−iT )
T 2

4
(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2

∫ 1

0
dw

×
[

G11p1(∂1 + iwp1) + G22p2(∂2 + iwp2)

+G12(p1∂2 + p2∂1 + 2iwp1p2)
]

e−
T
2

P

2

i,j=1
Gij(∂i+iwpi)(∂j+iwpj)

×
∫

ev

dp1

iπp1

∫

ev

dp2

iπp2
2πδ(p1 + p2 − i∂1 − i∂2) V

(1)
− (0)V

(2)
− (0) (3.13)

Using the symmetry 1 ↔ 2, the expression in square brackets can be simplified to

2p2

[

G22∂2 + G22iwp2 + G12∂1 + iG12wp1

]

(3.14)

so that the p2 pole cancels and we may use the δ function to eliminate p2 altogether. This

leads to

Kdir
∂M −− = −T 3(4πT )−1/2

∫ 1

0
dτ1

∫ 1

0
dτ2

∫ 1

0
dw

∫

ev

dp1

iπp1
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×
[

G22

(

∂2 − w(ip1 + ∂1 + ∂2)
)

+ G12(∂1 + iwp1)
]

× exp

{

−T

2

[

G11(∂1 + iwp1)
2 + G22

(

∂2 − w(ip1 + ∂1 + ∂2)
)2

+2G12(∂1 + iwp1)
(

∂2 − w(ip1 + ∂1 + ∂2)
)]

}

×V
(1)
− (0)V

(2)
− (0) (3.15)

Individual terms in the derivative expansion of this two-point function are now obtained

by expanding out the exponential factors in eqs. (3.10), (3.12), (3.15). Note that in the

case of (3.12) this immediately leads to a polynomial w integral. For (3.15) we have to

remember the fact that ∂nV−(0) = 0 for even n; it is then easily seen that all surviving

terms in this expansion carry a factor of p1. The p1 integral then becomes a simple Gaus-

sian one, and doing it one gets a w integral which is polynomial. It is only for the final τ1,2

integrals that one has to specify the Green’s function G(τ1, τ2). As we have seen already

in the one-point case, the coefficients of a given term will generally depend on the choice

of the worldline Green’s function; the equivalence of the results obtained with different

worldline Greens’ functions can only be seen after adding up bulk and boundary terms,

and performing certain integration by parts. However, since bulk terms generally have an

even number of derivatives, the boundary terms involved in integration by parts have an

odd one. It is therefore clear that those terms in Kdir
∂M with an even number of derivatives

are always independent of the choice of the worldline Green’s function.

Let us exemplify all this by extracting the lowest order term in the two-point function,

i.e. the coefficient of ∂V−(0)∂V−(0). In the indirect sector only (3.15) contributes to it.

Collecting from (3.15) all the terms involving ∂1V
(1)
− (0)∂2V

(2)
− (0), performing the integral

over p1, which is now Gaussian, and integrating out the auxiliary variable w one obtains

T 7/2(4πT )−1/2
(

∂V (0)
)2 1

3
√

2π

∫ 1

0
dτ1

∫ 1

0
dτ2

(

2G12 − G11 − G22

)3/2
(3.16)

Written in this form it is easy to see that the integrand does not depend on the choice of

worldline Green’s functions.2 Translation invariance of the SI propagator allows one to set

τ2 = 0, leaving a single integral

∫ 1

0
dτ1

∫ 1

0
dτ2

(

2G12 − G11 − G22

)3/2
= 23/2

∫ 1

0
dτ
[

τ(1 − τ)
]3/2

=
3
√

2π

26

2Worldline Green’s functions are usually defined using a linear constraint
R

1

0
dτρ(τ )y(τ ) = 0, with

R

1

0
dτρ(τ )y(τ ) = 1 (see [7, 6]). This definition includes as special cases the “string inspired” method (with

nonvanishing coincidence limit) identified by ρ = 1, for which G̃S(τ − σ) = |τ − σ| − (τ − σ)2 − 1

6
, and

the DBC one identified by ρ(τ ) = δ(τ ). The Green’s function corresponding to a generic ρ is thus related

to the string inspired Green’s function given in (1.9) by the relation G(τ, σ) = GS(τ − σ) −
R

1

0
dλGS(τ −

λ)ρ(λ)−
R

1

0
dλ GS(σ − λ)ρ(λ)+

R

1

0
dλ

R

1

0
dµGS(λ−µ)ρ(λ)ρ(µ). Using this relation it is simple to show the

scheme-independence of (3.16). Also, it is clear that the coincidence limit can be dropped from the string

inspired propagator; in general, dropping such a limit just amounts to dropping total derivative terms from

the heat kernel coefficients.
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The indirect contribution of this term to a7/2 becomes

T 7/2

(4πT )1/2

√
π

2

1

25

(

∂V (0)
)2

(3.17)

that is in accordance with [28].

4. Conclusions

This work should be seen as a further step towards making the worldline formalism useful

for analytic calculations of effective actions in the presence of nontrivial boundary con-

ditions. The case of a scalar field on a half-space with Dirichlet or Neumann conditions

is the natural starting point for such a program. While in [28] the problem of applying

the worldline formalism to this case had been solved in principle, the solution was not

yet optimized from a technical point of view. The various improvements which we have

implemented in the present work lead to a much simpler algorithm, which we consider very

promising for future generalizations of the analytic worldline approach to the calculation

of effective actions involving more general fields, as well as more general boundaries and

types of boundary conditions. For example, in the case of general boundaries in curved

spaces, although it is reasonable to think that the image charges could increase in number

and even become a continuous distribution, it is also plausible that, for points sufficiently

close to a smooth boundary and in suitable coordinates, the main contributions arise from

a single image charge. On the other hand for specific geometries, for example a suitable

curved boundary in flat space, one might find a neat set up of image charges that could

solve the problem exactly.

For the case of the half-line, prior to the work of [28] the heat kernel for an arbitrary

potential V (x) was known only up to a5/2, to our knowledge. In [28] the coefficients a3,

a7/2 were obtained, although this required already a substantial computational effort. As

we show in appendix A, our improved formalism makes it relatively easy to push this

calculation to a9/2. Moreover, the algorithms developed in section 2 for the indirect and

in section 3 for the direct contributions to the heat kernel with Dirichlet or Neumann

boundary conditions can be easily computerized. This should allow one to obtain many

more coefficients beyond the known ones. In addition, one may also include more general

types of boundary conditions in the present formalism [29].

It must be emphasized that the results for the local heat kernel, i.e. the heat ker-

nel diagonal K(T ;x, x), generally depend on the worldline Green’s function used in the

calculation of the direct part. Only when used with the ‘DBC’ Green’s function GD our al-

gorithm yields the standard heat kernel. The use of the ‘string-inspired’ or other worldline

Green’s functions will yield a result which is different locally, and agrees with the standard

heat kernel one only after integration over the bulk, and summation of bulk and boundary

contributions,
∫ ∞

0
dxKM (T, x) + K∂M (T )

On the other hand, the calculation of Kdir becomes simpler with the string-inspired

Green’s function, which is therefore preferable for effective action calculations where usually

only the total effective action is relevant.
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grateful to the Instituto de F́ısica y Matemáticas of the UMSNH at Morelia for hospitality

and partial support. P.P. and C.S. are grateful to INFN and Dipartimento di Fisica of the
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A. Half-line heat kernel coefficients a4 and a9/2

The indirect contributions to the a4 and a9/2 coefficients can be obtained with the method

described in section 2 and read

aind
4 = −1

4
V 2∂V (0) +

1

6
∂V ∂2V (0) +

1

12
V ∂3V (0) − 1

5!
∂5V (0) (A.1)

aind
9/2 =

√
π

2

[

− 1

3! 26
∂6V (0) +

1

4!
V 4(0) − 3

24
(∂V )2 V (0) − 1

23
V 2∂2V (0)

+
1

25
V ∂4V (0) +

5

3 · 25

(

∂2V (0)
)2

+
5

26
∂3V ∂V (0)

]

(A.2)

The direct contributions to the same coefficients are obtained with the method of section (3)

and their boundary contributions read

adir
4

∣

∣

∂M
= α1 V 2∂V (0) + α2 ∂V ∂2V (0) + α3 V ∂3V (0) + α4 ∂5V (0) (A.3)

adir
9/2 =

√
π

2

[

β1 (∂V )2 V (0) + β2 ∂3V ∂V (0)

]

(A.4)

where

α1 =
1

4

∫ 1

0
dτ1G11 =







0 (SI)

− 1

22 · 3 (DBC)

α2 =
1

2

∫ 1

0
dτ1

∫ 1

0
dτ2

[

1

2
G11G22 +

1

4
G2

11 + G2
12 − G11G12

]

=











2

5!
(SI)

4

5!
(DBC)

α3 =
1

8

∫ 1

0
dτ1G

2
11 =







0 (SI)
2

5!
(DBC)

α4 =
1

3! 23

∫ 1

0
dτ1G

3
11 =







0 (SI)

−3!

7!
(DBC)
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and

β1 = −
√

2

3π

∫ 1

0
dτ1

∫ 1

0
dτ2

(

2G12 − G11 − G22

)3/2
= − 1

25

β2 =
2
√

2

15π

∫ 1

0
dτ1

∫ 1

0
dτ2

(

2G12 − G11 − G22

)5/2
=

1

26 · 3

that are scheme-independent. We have checked that the complete a4 coefficient is indepen-

dent of the propagator chosen (SI or DBC), as expected.

B. Heat kernel on the half-space

Let us consider the flat space M = R+ ×R
D−1 with coordinates Xβ := (x0, xb) := (x0, ~x),

where 0 ≤ x0 < ∞ and ~x ∈ R
D−1. The generalization of our algorithm from the half-line

to the half-space is straightforward, starting with the generalization of Ṽ ,

Ṽ (X) := θ(x0)V (x0, ~x) + θ(−x0)V (−x0, ~x)

= V+(X) + ǫ(x0)V−(X) (B.1)

We will therefore give the final master formulas generalizing eqs. (2.5) and (3.4), (3.3), (3.5)

and list the short-time expansion of the heat kernel in the half space. In the following it

should now be understood that Di(p) · Dj(p) =
∑D−1

β=0 Dβ
i (p)Dβ

j (p), and that only the ze-

roeth component of Di(p) has a p - part (when acting on V−), i.e. Dβ
i (p) = ∂β

i + δβ0ipi.

Hence,

K ind
∂M =

1

4
(4πT )−

D−1

2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

∫

dD−1x

× exp

[

−T

2

n
∑

i,j=1

(

GD,S(τi, τj)~∂i · ~∂j + GA(τi, τj)D
0
i (p)D0

j (p)
)

]

×
n
∏

k=1

[

V
(k)
+ (0, ~x) +

1

πi

∫

ev

dpk

pk
V

(k)
− (0, ~x)

]

(B.2)

is the master formula for the indirect term, whereas

Kdir(T,X) = (4πT )−
D
2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

× exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)Di(p) · Dj(p)

]

×
n
∏

k=1

[

V
(k)
+ (X) +

1

πi

∫

ev

dpk

pk
eipkx0

V
(k)
− (X)

]

(B.3)

Kdir
M (T,X) = (4πT )−

D
2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn
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×exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)∂i · ∂j

]

n
∏

i=1

V (i)(X) , (x0 > 0) (B.4)

Kdir
∂M (T ) =

1

2
(4πT )−

D
2

∞
∑

n=0

(−T )n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

∫ ∞

−∞

dx0

∫

dD−1x

×
∫ 1

0
dw

∂

∂w
exp

[

−T

2

n
∑

i,j=1

GD,S(τi, τj)Di(wp) · Dj(wp)

]

×
n
∏

k=1

[

V
(k)
+ (X) +

1

πi

∫

ev

dpk

pk
eipkx0

V
(k)
− (X)

]

(B.5)

are respectively the master formulas for the complete local direct term, its bulk part, and

its integrated boundary part.

Finally we report the coefficients, up to order 9/2, of the short-time expansion for the

heat-kernel trace, computed using the above formulas with the SI Green’s function

KS(T ) = (4πT )−
D
2

∑

n∈N/2

anT n (B.6)

with

a0 =

∫

M
1

a1/2 =

√
π

2

∫

∂M
(∓1)

a1 =

∫

M
(−V )

a3/2 =

√
π

2

∫

∂M
(±V )

a2 =

∫

M

1

2!
V 2 +

∫

∂M

1

2!
(±∂0V )

a5/2 =

√
π

2

∫

∂M

1

2!
(∓)

(

V 2 − 1

2
∂2

0V

)

a3 =

∫

M

1

3!

(

−V 3 − 1

2
(∂βV )2

)

+

∫

∂M

1

3!
(∓)

(

3V ∂0V − 1

2
∂3

0V

)

a7/2 =

√
π

2

∫

∂M

1

3!

[

∓
(

−V 3 +
3

2
V ∂2

0V − 1

2
(~∂V )2 − 3

16
∂4

0V

)

+

{

−5

7

}

3

16
(∂0V )2

]

a4 =

∫

M

1

4!

[

V 4 + 2V (∂βV )2 +
1

5
(∂β∂γV )2

]

+

∫

∂M

1

4!

[

∓
(

−6V 2∂0V + 2V ∂3
0V − 2~∂V · ~∂∂0V − 1

5
∂5

0V

)

+

{

−9

11

}

2

5
∂0V ∂2

0V

]
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a9/2 =

√
π

2

∫

∂M

1

4!

[

∓
(

V 4 − 3V 2∂2
0V + 2V

(

~∂V
)2

+
1

5
(∂b∂cV )2 +

3

4
V ∂4

0V

−~∂V · ~∂∂2
0V +

5

4
(∂2

0V )2 − 1

16
∂6

0V

)

+

{

5

−7

}

3

4
V (∂0V )2

+

{

7

−11

}

5

64

(

~∂∂0V
)2

+

{

−7

8

}

1

4
∂0V ∂3

0V

]

where the upper coefficients in the braces refer to (space-time) Dirichlet boundary condi-

tions, whereas the lower ones refer to Neumann boundary conditions.

The same results, in the form produced by the DBC propagators, is obtained by adding

to the an suitable vanishing terms, written as total derivatives minus their boundary values.

Here we list the first few ones

∆a2 = 0 = −
∫

M

1

3!
�V −

∫

∂M

1

3!
∂0V

∆a5/2 = 0 = ±
√

π

2

∫

∂M

1

3!
~∂2V

∆a3 = 0 =

∫

M

1

3!
∂β

(

V ∂βV − 1

10
∂β�V

)

+

∫

∂M

1

3!

(

V ∂0V − 1

10
∂0�V

)

+

∫

∂M

{

8

−12

}

1

5!
∂0

~∂2V

∆a7/2 = 0 = ∓
√

π

2

∫

∂M

1

3!
∂b

(

V ∂bV −
(

1

4
∂2

0 +
1

10
~∂2

)

∂bV

)

that allow to obtain a consistent check with the coefficients computed earlier in [28].
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