B, citation and similar papers at core.ac.uk brought tg

provided by Archivio istituzionale della ricerca - Universita di Moc

Engineering Pervasive Service Ecosystems: The SAPERE Approach

GABRIELLA CASTELLI, MARCO MAMEI, ALBERTO ROSI,
and FRANCO ZAMBONELLI, Universita di Modena e Reggio Emilia

Emerging pervasive computing services will typically involve a large number of devices and service compo-
nents cooperating together in an open and dynamic environment. This calls for suitable models and infras-
tructures promoting spontaneous, situated, and self-adaptive interactions between components. SAPERE
(Self-Aware Pervasive Service Ecosystems) is a general coordination framework aimed at facilitating the
decentralized and situated execution of self-organizing and self-adaptive pervasive computing services.
SAPERE adopts a nature-inspired approach, in which pervasive services are modeled and deployed as au-
tonomous individuals in an ecosystem of other services and devices, all of which interact in accord to a limited
set of coordination laws, or eco-laws. In this article, we present the overall rationale underlying SAPERE
and its reference architecture. We introduce the eco-laws—based coordination model and show how it can be
used to express and easily enforce general-purpose self-organizing coordination patterns. The middleware
infrastructure supporting the SAPERE model is presented and evaluated, and the overall advantages of
SAPERE are discussed in the context of exemplary use cases.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance; H.4.0
[Information Systems Applications]: General; 1.2.11 [Artificial Intelligence]: Multiagent Systems;
C.2.4 [Computer-Communication Systems]: Distributed Systems

General Terms: Middleware, Coordination, Self-Organization

Additional Key Words and Phrases: Pervasive computing, middleware, self-organization, coordination

ACM Reference Format:

Gabriella Castelli, Marco Mamei, Alberto Rosi, and Franco Zambonelli. 2015. Engineering pervasive service
ecosystems: The SAPERE approach. ACM Trans. Autonom. Adapt. Syst. 10, 1, Article 1 (March 2015), 27
pages.

DOI: http://dx.doi.org/10.1145/2700321

1. INTRODUCTION

Advances in ubiquitous, mobile, and embedded computing technologies are leading to
the emergence of an integrated and dense infrastructure for the provisioning of innova-
tive general-purpose applications and services [Zambonelli 2012; Harnie et al. 2014].
The infrastructure will be used to ubiquitously access services for better interaction
with the surrounding physical world and the social activities in it [Lukowicz et al. 2012;
Rosi et al. 2011]. It is also expected that users will be able to deploy customized ser-
vices and enrich existing ones by making their own devices and components available
[Campbell et al. 2008].

This work is supported by the SAPERE (Self-Aware Pervasive Service Ecosystems) project (EU FP7-FET,
contract number 256873).

Authors’ addresses: G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli, Dipartimento di Scienze e Metodi
dell'Ingegneria, Universita di Modena e Reggio Emilia, Via G. Amendola 2, Pad. Morselli, Reggio Emilia,
Italy; emails: {gabriella.castelli, marco.mamei, alberto.rosi, franco.zambonelli}@unimore.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1556-4665/2015/03- ARTl $15.00

DOL: http://dx.doi.org/10.1145/2700321

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

https://core.ac.uk/display/54010942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2700321
http://dx.doi.org/10.1145/2700321

1:2 G. Castelli et al.

We are already facing the release of early pervasive services trying to exploit the
possibilities opened by these new scenarios, such as those in the form of environmental
displays capable of reacting to users’ presence [Alt et al. 2012; Elhart et al. 2013],
car navigation systems with real-time traffic information [Riener and Ferscha 2013],
and location-based social services [Pejovic and Musolesi 2013; Schuster et al. 2013].
However, the full exploitation of the emerging pervasive computing infrastructure
requires innovative solutions to support the development of advanced services and
applications, particularly services capable of flexibly and adaptively interacting with
each each other on a spatial and context-aware basis.

Numerous research proposals exist for middleware architectures and coordination
models supporting the engineering of pervasive applications [Raychoudhury et al.
2013]. Among others, some recent proposals absorb concepts from self-organizing and
self-adaptive natural systems [Zambonelli et al. 2011a; Omicini 2012; Zambonelli and
Viroli 2011]. Getting inspiration from nature can be effective in supporting sponta-
neous composition of services, supporting spatiality and situatedness, and promoting
self-organization and self-adaptation. Unfortunately, many nature-inspired solutions
are proposed in terms of “add-ons” to be integrated in existing frameworks [Babaoglu
et al. 2006]. The result is often an increased complexity and the emergence of contrast-
ing trade-offs between different solutions.

Against this background, the SAPERE (Self-Aware Pervasive Service Ecosystems)
approach (www.sapere-project.eu) defines a fully fledged nature-inspired and self-
organizing framework for the engineering of distributed pervasive services by which
to uniformly tackle the emerging requirements of pervasive service systems.

The main contribution of this article is to present the SAPERE architecture and
coordination mechanisms. In particular, it shows that the SAPERE architecture can
support the development of pervasive applications by generalizing and incorporating
a number of useful nature-inspired self-organizing mechanisms (e.g., chemical bonds
[Fernandez et al. 2014], stigmergy [Parunak 1997], and fields-based approaches [Mamei
and Zambonelli 2009]). By using the SAPERE framework instead of relying on a num-
ber of different tools and solutions, developers can program the self-organizing and
self-adapting mechanisms that are useful to their applications (or mobile apps) within
the same conceptual model and architecture.

The remainder of this article makes the following contributions and is organized as
such:

—It motivates the suitability of nature-inspired approaches for the engineering of
pervasive service systems and the need for a novel synthesis of nature-inspired
coordination mechanisms (Section 2).

—It introduces the reference conceptual architecture of SAPERE, as well as its op-
erational counterpart, and overviews the key aspects of its coordination model
(Section 3).

—1It details, with the help of practical examples, the SAPERE coordination model and
the associated programming model (Section 4) and discusses how it can be exploited
to support adaptive self-organizing patterns (Section 5).

—1It presents the design and implementation of the SAPERE middleware architecture
(Section 6) and experimentally evaluates its effectiveness in supporting SAPERE
applications (Section 7).

—Finally, it discusses related work in the area (Section 8) and concludes and sketches
future development (Section 9).

2. REQUIREMENTS AND MOTIVATIONS

From the analysis of the literature in this area, we identified some key requirements
that are important for managing the complexity of future pervasive service scenarios.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:3

As discussed next, these requirements can hardly be met by traditional approaches
to distributed systems engineering. The extent to which research proposals related to
SAPERE meet these requirements is discussed in Section 8.

2.1. Requirements

Spontaneous and open interactions. Components of pervasive applications need to in-
teract seamlessly with each other in a spontaneous way [Raychoudhury et al. 2013].
They should be provided with flexible means for discovering other components on-the-
fly, engaging them in effective interaction patterns, with only minimal information or
statically encoded strategies. This is also aimed at opening the scenarios to the dynamic
deployment (also by users) of new components/devices/services in a fully decentralized
way.

Context and situation awareness. Components of pervasive applications have to
be supported in acquiring information about the surrounding context, and dynami-
cally adapting to it, which calls for mechanisms to obtain a high-level representation/
summary of relevant contextual parameters [Ye et al. 2012; Roggen et al. 2013]. This
is not only about flexibly interacting with context-data sources (as in the first re-
quirement) but also about having mechanisms to aggregate, summarize, and extract
knowledge from the data—knowledge that can possibly be reused by various applica-
tion components.

Proxemic interactions and location-based activities. Proxemic interactions and
location-based applications are at the basis of mainstream pervasive applications
[Greenberg et al. 2011]. In many applications, the behavior of applications and services
strongly depends on the spatial context, as well as on the relative spatial positioning
of users and devices. Accordingly, components should be provided with mechanisms
to deal with distances and spatial information [Beal et al. 2012], and they should be
supported in navigating such a space.

Self-adaptation and self-organization. Pervasive computing scenarios are inherently
open and decentralized (devices and service components belong to multiple stakehold-
ers), as well as dynamic (due to the presence of mobile and ephemeral devices and
components). This makes it impossible for humans to intervene in the system for
low-level configuration, management, and maintenance activities [Kephart and Chess
2003; De Lemos et al. 2013]. Rather, applications and services should be able to self-
adapt (which includes self-configuring, self-managing, and self-healing) their activities
and self-organize their interaction patterns with little or no configuration and man-
agement efforts.

2.2. From Top-Down to Bottom-Up Nature-Inspired Approaches

The need for software systems to become more open, capable of dealing with the dynam-
ics of unpredictable environments, and able to self-adapt their behavior in response to
contextual changes has been widely recognized in the areas of software engineering
[Cheng et al. 2009; De Lemos et al. 2013] and distributed systems [Brazier et al. 2009;
Babaoglu et al. 2006; Zambonelli and Viroli 2011].

In the area of software engineering, many consider integrating self-adaptation capa-
bilities with software systems by coupling them with autonomic control loops [Kephart
and Chess 2003]. Such control loops can dynamically monitor the behavior of the sys-
tem and trigger adaptation actions as needed [Kephart and Chess 2003; Vromant et al.
2011]. In the case of distributed systems, this requires multiple control loops, each de-
voted to control a portion the system, coordinating with one other [Weyns et al. 2012].

Approaches based on the engineering of control loops achieve situation awareness
and self-adaptation by design (i.e., in a “top-down” way). This may work well for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:4 G. Castelli et al.

systems of limited size and where the developer has control over the system as a whole.
For large and decentralized systems whose components belong to different stakehold-
ers (as in pervasive services systems), solutions that are able to meet the requirements
and promote context-aware and self-adaptive behavior without centralized predefined
control strategies (i.e., in a “bottom-up” way) are preferred [Cheng et al. 2009; Mamei
et al. 2005]. In particular, getting inspiration from natural systems and their capa-
bility of promoting the bottom-up emergence of self-organized patterns of coordinated
behaviors may represent a suitable approach.

Indeed, a number of natural systems (e.g., ant colonies) put coordination mechanisms
in action and express behaviors that let them meet the identified requirements spon-
taneously and efficiently [Omicini 2012]. For example, ants interact indirectly with
each other by depositing and locally smelling pheromones in the environment. This
kind of communication, which is based on “signs” left in the environment and acts as a
sort of externalized memory, is called stigmergy [Babaoglu et al. 2006; Parunak 1997].
In general, stigmergic interactions decouple interacting agents and let interactions
take place spontaneously (e.g., ants interact independently of their explicit will) and
in an open way (ants do not need to be aware of each other). Locality in depositing
and smelling pheromones enforce proxemic and location-based interactions. In addi-
tion, pheromones inherently express some fact/event/information that has occurred in
that portion of the environment—that is, they promote simple forms of situation-aware
interactions. Finally, the overall activities of ants in depositing pheromones and thus
building complex distributed pheromones structure, and in reacting to the presence
and shape of such structures, make globally coordinated finalized behaviors emerge in
the colony, supporting self-adaptation and self-organization.

In addition to stigmergy, other natural systems exploit different coordination mecha-
nisms and have inspired coordination models that are capable—to different extents—of
meeting some the requirements of pervasive service systems.

Gossip-based/epidemic protocols are inspired by the form of gossip seen in social
networks, and by the way a virus spreads in a biological community [Jelasity et al.
2005; Bicocchi et al. 2012]. These approaches well address the requirement of context-
awareness, and particularly situation-awareness, in that they allow one to flexibly
combine and aggregate contextual information from multiple sources in a decentralized
and robust way. In addition, the way in which information in gossip-based/epidemic
protocols is distributed and manipulated is also very open and adaptive.

Fields are inspired by physical force fields and chemical gradients. They are
spanning-tree data structures diffused across the network to provide distance in-
formation from the source [Mamei and Zambonelli 2009; Beal et al. 2012] in terms
of network hops. These approaches well address proxemic interactions and location-
based activities, as well as a specific form of situation awareness—that is, spatial
awareness—enabling the ability to effectively engineer distributed motion coordina-
tion and location-based coordination activities [Mamei and Zambonelli 2009].

Artificial chemistries and artificial immune systems, which are inspired by chemical
reactions [Fernandez et al. 2014] and immune systems [Read et al. 2012], are mech-
anisms based on simple matching rules that use a digital description or “footprint” of
the involved components to trigger interactions and compositions among them. This is
similar to a pattern matching approach, in which reactions are triggered by a specific
signature in the data/components being processed. Such approaches effectively support
spontaneous and self-adaptive interactions depending on contextual conditions and in
the presence of large classes of diverse components (as can be the case for pervasive sys-
tems). However, these mechanisms typically lack the notions of space and distributed
data manipulation that exist in the other approaches.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 15

2.3. Toward a Unified Nature-Inspired Architecture

The basis of our work is to identify a unified architecture and approach to incorpo-
rate the preceding mechanisms and nature-inspired schemes into a coherent modeling
frameworkto get the best from each of them.

To this end, and without committing to a specific natural metaphor, one can gen-
erally consider a pervasive computing system as a sort of natural ecosystem. There,
interactions and the overall coordination among components are not ruled by prede-
fined orchestrated patterns but are simply subject to a limited set of coordination laws,
acting as a sort of synthetic “laws of nature” for the ecosystem (or, shortly, eco-laws).
From the enactment of the eco-laws, even complex patterns of interactions dynamically
emerge via self-organization, the same as it happens in natural systems that evolve
and organize by simply obeying natural laws (whether physical, chemical, or biological
laws).

To get the best from the introduced nature-inspired mechanisms, the overall mod-
eling of the ecosystem components and its coordination laws should (1) have the flex-
ibility of chemical systems in supporting spontaneous interactions and composition
among diverse components; (2) tolerate stigmergic means of interactions—that is, rely
on the components’ ability to externalize contextual information to be locally shared
with other components; (3) support spatial abstractions means to propagate spatial
information in the forms of fields to support spatial awareness and spatial coordina-
tion schemes; and (4) support distributed aggregation and manipulation of information
toward advanced forms of situation awareness.

As it will become clear in the course of the following sections, this is exactly the
rationale behind SAPERE, its conceptual architecture, and its coordination model.

3. THE SAPERE APPROACH: OVERVIEW
3.1. Reference Conceptual Architecture

In line with a nature-inspired vision, SAPERE models and architects a pervasive
service environment as a sort of abstract computational ecosystem, built around a
spatial substrate—that is, a set of components modeling the space where application
agents execute—Ilaid above the actual pervasive network infrastructure (Figure 1).

Interactions take place by publishing and accessing information and events (in the
form of tuples called live semantic annotations (LSAs)) in specific locations of the spatial
substrate. The substrate stores such LSAs and rules how they can be manipulated
(e.g., linked with each other in a sort of virtual information chemistry), how they can
be perceived (as if LSAs were sorts of stigmergic signs in the environment), how they
can be possibly propagated (to support the construction of distributed data structures
such as fields), or aggregated (to support epidemic aggregation). Such rules, which we
call eco-laws, define the laws ruling interactions among SAPERE individuals. In a way
somewhat similar to tuple-based coordination models [Gelernter 1985; Eugster et al.
2003], we can say that SAPERE defines a nature-inspired coordination model, where
the SAPERE spatial substrate acts as a coordination space embedding and enforcing
the coordination laws (i.e., the eco-laws) to rule the interactions between the individuals
of the ecosystem.

The population of SAPERE individuals is represented by software agents, each as-
sociated with one of the components that can play some roles in the provisioning of
pervasive services. These include agents in charge of representing and interfacing
with all pervasive devices around (e.g., ambient sensors, smart phones and individ-
ual sensors within, interactive displays, and generic actuators) and agents in charge
of providing specific services and algorithmic functionalities. All of these agents are

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:6 G. Castelli et al.

User and prosumers
Use and Prosume
consume and control

F %Agent %Agent Agent || \
[/ A

/

(B & & &)
[& 8 |
[é @ \ Eco-Laws / @
Spatial Substrate C'%l
k (acting as coordination space) J
s '
Device l Pervasive Network Infrastructure [:3
m (pervasive devices and networks) Device
. >

Fig. 1. The SAPERE reference architecture.

expected to locally access the shared substrate of the ecosystem and thus indirectly
interact with one other—with respect to the eco-laws—to serve their individual needs
and the sustainability of the overall ecosystem (e.g., by precomputing some information
useful from other agents).

Users themselves (e.g., via an app on a smart phone) can access the SAPERE ecosys-
tem in a decentralized way to use and consume data and services (resulting from the
activities of the ecosystem). Users can also act as “prosumers” by making (in the form of
SAPERE agents) new service components, new devices, or new sensor data available,
possibly also for the sake of controlling the ecosystem behavior.

Each SAPERE agent can take part in the ecosystem by publishing (or “injecting”) in
the spatial substrate a semantic description ofitselfin the form of an LSA tuple. An LSA
is an observable interface of the agent that can encapsulate information to describe
the agent itself, as well as the data it can produce, and can reify events occurring
within the agent. To account for the high dynamics of the scenario and for its need of
continuous adaptation, LSAs are “alive” in the sense that they can have continuously
updating content reflecting the current situation and context of the component they
describe. For instance, an ambient sensor can be represented by an LSA describing
the nature of the sensors and including the alive data that represents the currently
sensed information; a pervasive display can be represented by an LSA describing the
available display features and the updated information about the currently displayed
information.

3.2. The Coordination Model in a Nutshell

The SAPERE coordination model considers that agents interact indirectly via LSAs
and are based on how eco-laws act on such LSAs. The idea is to enforce—on a spatial
and situation-aware basis, and possibly relying on diffusive mechanisms—spontaneous
networking and composition of data and services (as represented by the LSAs of the
associated agents) capable of promoting adaptation to situations and facilitating the
engineering of self-organizing coordination schemes.

The set of eco-laws that rules the interactions among SAPERE agents includes the
following:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1.7

ififi

0
0 O<}-

5 o

mm C] @//

| Dlspla\r

SAPERE Node Agent '|
fiifin
® 66 e o @n . '6
@ \Eco Laws D

Local LSA Space

Fig. 2. The SAPERE operational architecture.

—Bond, the basic mechanism for local interactions between agents that links together
spatially co-located LSAs whenever the matching conditions exist. When their LSAs
are linked together, agents can access each other’s information and functionalities.
This is the basic mechanism enabling interactions in SAPERE, which subsumes
virtual chemical composition (by linking together LSAs and thus the corresponding
agents) and stigmergy (since LSAs are information left in the environment by some
agents and perceivable by other agents).

—Spread, which diffuses LSAs on a spatial basis in the spatial substrate and is nec-
essary to support spatial awareness by agents, propagation of information, and in-
teractions among remote agents. In particular, the spreading of LSAs is a basic
mechanism for supporting advanced forms of distributed self-organization [Mamei
and Zambonelli 2009].

—Aggregate, which can spontaneously produce new LSAs deriving from the aggrega-
tion of existing ones and can support both the local computing of aggregated in-
formation as well as—in synergy with the spread eco-law—forms of gossip-based
distributed data aggregation [Nath et al. 2004] and the creation of fields [Beal
et al. 2012], both necessary to support physically inspired self-organized coordination
patterns.

—Decay, which mimics a sort of chemical evaporation and is necessary to garbage-
collect data and to ensure evolvability of services via disappearing of service descrip-
tions. In addition, along with spread and aggregate, decay makes it possible to realize
pheromone-like data structures [Holldobler and Wilson 2009] and thus stigmergic
coordination patterns [Babaoglu et al. 2006].

3.3. Operational Architecture

The SAPERE middleware (as represented in Figure 2 and more deeply detailed in
Section 6) implements the spatial substrate in terms of a set of data spaces (“LLSA
spaces” to be practically realized via tuple space technologies [Eugster et al. 2003])
distributed on the nodes that form the actual network infrastructure. Both small mobile
devices (e.g., smart phones) and fixed infrastructural nodes (e.g., pervasive interactive
displays) can host an LSA space, devoted to store the LSAs of local agents. LSA spaces

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:8 G. Castelli et al.

dynamically network with each other according to their spatial relations and on the
basis of spatial strategies that can be configured within the middleware. Such strategies
affect how LSAs flow and propagate from one space to neighbor ones.

On each node, specific processes execute on the LSA space to analyze the current
status of LSAs and to trigger eco-laws, in the form of a set of rules that determines
how and when to bond, aggregate, decay, or diffuse to which neighbor nodes the LSAs
of that node belong.

From the agents’ viewpoint, whenever an agent approaches a node or is created on it,
an LSA is automatically injected into the LSA space of that node, making the component
part of that space and its local coordination dynamics. When a component moves away
from a node, its LSA is eventually removed from that space and possibly reconnected to
one of the neighbor LSA spaces (if the associated component has moved accordingly).
Agents can exploit a specific API to update their own LSAs, inject additional LSAs,
and subscribe to local events such as the modification of some LSAs or the enactment
of some eco-laws.

4. THE SAPERE COORDINATION MODEL

This section details the nature-inspired coordination model dictating how LSAs are
shaped and how eco-laws act on them. Code examples will be presented to clarify the
concept expressed and to show how to program SAPERE applications.

In particular, we focus on an exemplary pervasive computing application scenario:
information and guidance services in a smart museum. In this scenario, users provided
with smart phones and tablets visit a museum equipped with a network and sensor
infrastructure. Mobile apps running on the smart phones interact with the museum
infrastructure, and possibly with other users, to acquire information and provide nav-
igation, guidance, entertainment, and coordination services. The system is assumed to
be able to localize users within the museum [Gu et al. 2009].

4.1. Live Semantic Annotations

Any component that takes part in a SAPERE ecosystem has to be represented by at
least one LSA to be injected in the local LSA space at creation time. However, any agent
can inject multiple LSAs during its lifetime. Such LSAs are linked to the corresponding
agent and can reflect some of its internal variables in real time, enabling the agent to
take part of the dynamics of the ecosystem. All agents in our museum scenario will be
represented via LSAs.

LSAs are realized as descriptive tuples made by a number of fields in the form of
“name = value” properties and possibly organized in a hierarchical fashion: the value
of a property can be a property again. The detailed description of LSA’s semantic
representation is not in the scope of this article but can be found in Stevenson et al.
[2012].

By building over tuple-based models and extending upon them [Gelernter 1985], an
LSA value can be actual, yet possibly dynamic and changing over time (which makes
LSAs living entities), or formal, not tied to any actual value unless bound to one and
representing a dangling connection (represented by the symbol “?”).

Concerning the dynamic fields of LSAs, the idea behind the programming model is
that each agent, other than taking care of injecting any needed LSAs, will also take
care of keeping the values of such LSAs updated (possibly by spawning internal threads
to this purpose). An agent can access and modify only the fields of its own LSAs, but it
can also read the LSAs to which it has been linked by an eco-law. Moreover, LSAs can
be accessed and modified by eco-laws, as explained in the following sections.

Pattern matching between LSAs is the mechanism at the basis of eco-law triggering.
A match between two LSAs takes place when the actual values of all properties with the
same name (or, more generally, of those properties whose concepts match according to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:9

Table |. Pattern Matching Rules in SAPERE

Actual Formal Potential

Actual Y Y N
Formal Y N Y
Potential N Y N

some ontology [Stevenson et al. 2012]) correspond, or when an actual value corresponds
to a formal value. More specifically, two values of a property match depending on
whether they are formal or actual, as shown from the matrix in Table I (the concept of
potential value is explained a bit later).

We emphasize that unlike traditional tuple-space coordination models [Gelernter
1985], SAPERE does not distinguish between tuples and antituples (or templates), and
a unique injectLSA API method subsumes the read/write operations of that models.
This behavior is provided by the specific operation of the bond eco-law, as described in
the following section.

For example, to model temperature sensors embedded in the smart museum sce-
nario, we can consider the following LSA: (sensor-type = temperature; accuracy =
0.1; temp = 45). Such an LSA can match the following one: (sensor-type = tem-
perature; temp = 7), expressing a request to acquire information about the current
local temperature. For instance, such an LSA request could come from a service in
need of estimating the comfort level in the museum’s rooms. We emphasize that fur-
ther properties presented in the first LSA (e.g., accuracy) are not taken into account by
the matching function, which considers only inclusive matches.

4.2. SAPERE Programming

Programming a SAPERE application consists of developing a set of agents interacting
with each other, and possibly with other agents existing in the ecosystem, to meet
specific the application goals. Agents typically are distributed among user devices (e.g.,
packing them in a mobile app) and among other pervasive computing elements deployed
in the environment. In SAPERE, we enforce a notable separation of concerns between
an application’s computation and interaction/coordination. Computation (i.e., the main
application business logic) is coded in the SAPERE agents using standard software
engineering methodologies. Interaction and coordination consists of writing agents’
LSAs and letting the eco-laws manage their evolution over time, possibly promoting
spontaneous service interactions and composition.

Two agents interact by reading one other’s LSAs. In particular, in their LSA, agents
express the fact that they wish to bind with other LSAs. On the basis of the pattern
matching mechanism described in Section 4.1, eco-laws will bind two matching LSAs.
The execution of eco-laws triggers callback functions in the agent code so that the
application business logic can be realized.

Figure 3 shows an exemplary SAPERE agent. TempSensorAgent is an agent asso-
ciated with a temperature sensor in the museum. The agent publishes the current
temperature value via its LSA. In addition, it tries to connect to another sensor pro-
viding information about the level of COg in the room to estimate a comfort parameter
for the visitors. To support the programmer, we developed a SapereAgent class to be
subclassed to create actual application agents. This class masks all interactions with
the SAPERE middleware and provides simple methods to create and update an LSA
(setInitiallLSA(), updateLSA()), as well as callback methods to be overwritten ap-
propriately (e.g., the onBond () method that is called when eco-laws create new bonds,
which is one of many callback methods of the API to handle the events occurring in
the LSA space as induced by the eco-laws). The method setInitialLSA() of the API is
called by the super constructor and sets the values of the LSA (lines 3 through 9). It

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:10 G. Castelli et al.

. public class TempSensorAgent extends SapereAgent {

1

2

3 // the agent simply has to initialize the initial LSA
4. // called ‘myLSA’ with the desired fields

5. public void setInitialLSA (){

6 myLSA.addProperty("sensor-type", "temperature");

7 myLSA.addProperty("accuracy", 0.1);

8. myLSA.addProperty("temp", readTemp());

9. myLSA.addProperty("co2", "7");

10. }

11. // then the constructor of the SapereAgent, after having connected with the local LSA space,
12. // will automatically inject there such LSA as follows:
13. // 1lsas = bindLSASpace();

14. // injectLSA(new myLSAQ));

15.

16. run() {

17. while(true) {

18. // this cycle reads a new value and updates myLSA
19. sleep();

20. String ts = Float.toString(readTemp());

21. updateLSA("temp", ts);

22. }

23. }

24.

25. public void onBond(Event e) {

26. double co2 = e.getLSA().getProperty("co2");

27. // the Event object contains a copy of the bound LSA
28. // from which one can access the internal information
29. double comfort = compute(readTemp(),co2);

30. print("current comfort = "+ comfort);
31. myLSA.addProperty("comfort", comfort);
32. }

33. }

34. public class CO2SensorAgent extends SapereAgent {

36. public void setInitialLSA (){
37. myLSA.addProperty("sensor-type", "co2");
38. myLSA.addProperty("co2", readC02());

39. }

40. run() {

41. while(true) {

42. sleep();

43. updateLSA("co2", readC02());
44. }

45. }

46. }

Fig. 3. An exemplary TemperatureSensor agent that publishes the current temperature value via its LSA
and connects to a COg sensor to compute a comfort parameter for the visitors, and an exemplary C02Sensor
agent reading COg information and publishing it via LSA.

is worth emphasizing that the agent expresses the need to connect to a COy sensor by
adding a formal “?” value associated with the co2 property (line 9). The run() method
(lines 16 through 21) is also called at the end of the super constructor and executes
the main agent code. In this example, the agent periodically reads the temperature
sensor and updates the LSA accordingly. The onBond () method (lines 25 through 31)
is called once an eco-law connects this agent to a COy sensor via the pattern matching
mechanism described in Section 4.1. Once the bond is established, the interaction can
proceed: the agent reads COy information from the other LSA and computes the com-
fort parameter. Such information can be printed in a user interface and published in
the LSA for others to use (lines 31 and 32).

For completeness, we also present (lines 34 through 46) the code of the
C02SensorAgent to read COy information via the readC02() method and update its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:11

LSA accordingly. This LSA will match with the LSA of the TempSensorAgent to enable
reading information about the CO; level.

4.3. Eco-Laws—Based Coordination

The eco-laws trigger reactions in the ecosystem once matches among LSAs occur. In
particular, eco-laws operate on the pattern matching schema described in Section 4.1.
They are triggered by the presence of LSAs matching with each other and manipulate
such LSAs (i.e., the fields within) according to a set of coordination rules [Zambonelli
and Viroli 2011] (see discussion).

4.3.1. Bond Eco-Law. The bond eco-law realizes a link between LSAswhenever two
LSAs (or some subdescriptions within) match. This is the primary form of interaction
among agents in SAPERE within the same LSA space. In particular, it can be exploited
to locally discover and access information, as well as to get in touch and access local
services.

The bond eco-law is triggered by the presence of formal values in at least one of the
LSAs involved. Upon a successful pattern matching between the formal values of an
LSA and actual values of another LSA, the eco-law creates the bond between the two.
In the example in Figure 3, this happens between the LSA (sensor-type = tempera-
ture; accuracy = 0.1; temp = 45; co2=7) of the TemperatureSensor agent and the
LSA (sensor-type = co02; co2=10) of the C02Sensor agent. The link established by
binding in the presence of the ? formal field is bidirectional and symmetric. Once a
bond is established, the agents holding the LSAs are notified of the new bond, can
trigger actions accordingly, and read each other’s LSAs. This implies that once a formal
value of an LSA matches an actual value in another LSA to which it is bound, the cor-
responding agent can access the actual values associated with the formal ones. If more
LSAs match with a given formal value, then one match is randomly selected. Bond
disruption takes place automatically whenever some changes in the actual values of
some LSAs make the matching conditions no longer valid.

SAPERE also makes it possible to express a “*” formal field, which leads to a one-
to-many bonds with multiple matching LSAs. This is used to read all of the LSAs
matching a given signature.

Moreover, the ! formal field, which we call potential formal field, expresses a field
that is formal unless the other ? field has been bound. This makes it possible for an LSA
to express a parameterized service, where the 7 formal field represents the parameters
of the service and the ! field represents the answers that it is able to provide once it
has been filled with the parameters.

For example, the TempSensorAgent described earlier could have an LSA in the form
(co2 = 7; comfort = !), expressing that if it gets information about the COy level
as input, it can provide a comfort value output. Another agent could have an LSA in
the form (co2 = 4; comfort = 7). This would trigger a reaction that automatically
would complete all formal fields in the two LSAs. In this regard, we emphasize that
the bond eco-law can be used to enable two agents to discover each other and exchange
information with a single operation. Moreover, in the case of the ! field, it also allows
automatic invocation of a service. That is, unlike in traditional discovery of data and
services, it allows composition of services without distinguishing between the roles of
the involved agents and subsuming the traditionally separated phases of discovery and
invocation.

4.3.2. Aggregate Eco-Law. The ability of aggregating information to produce high-level
digests of some contextual or situational facts is a fundamental requirement for
adaptive and dynamic systems. In fact, in open and dynamic environments, one cannot
know a priori which actual information will be available (some information sources

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:12 G. Castelli et al.

may disappear, others may appear later, etc.), and mechanisms to extract a summary
of all available information without having to explicitly discover and access the indi-
vidual information sources are very important. To this end, an agent can inject an LSA
with two specific aggregate and type properties.

The aggregate eco-law is triggered by those properties. It selects all LSAs in the local
space having a (numerical) property equal to the property type. Then it computes an
aggregated value of those numerical properties on the basis of the aggregate value that
identifies a function to base the aggregation upon (e.g., maximum, average). For ex-
ample, the LSA (aggregation-op = max; property = temp) triggers the aggregated
eco-law to compute the maximum of the temp values. If the LSA space contains the
LSAs (temp = 10) and (temp = 20), the aggregate eco-law would produce an LSA
(type = aggregate; aggregation-op = max; temp = 20).

In the current implementation, the aggregate eco-law is capable of performing most
common order and duplicate insensitive (ODI) aggregation functions [Nath et al. 2004;
Jelasity et al. 2005]—that is, those functions whose results are independent from the
order by which data is aggregated and from the possible multiple accounting of the
same data items.

The aggregate eco-law supports separation of concerns and allows reuse of previous
aggregations. On the one hand, an agent can request an aggregation process without
dealing with the actual code to perform the aggregation. On the other hand, the LSA
resulting from an aggregation can be read (via a proper bond) by any other agent
that needs to get the precomputed result. Even more importantly, aggregation can
work in combination with the spread eco-law (see later) to trigger aggregation in a
fully distributed and decentralized environment, and without having to deploy specific
aggregator agents in remote nodes.

4.3.3. Decay Eco-Law. The decay eco-law enables the vanishing of components and
information from the SAPERE environment. It applies to all LSAs that specify a
decay property. This property expresses the LSA’s remaining time to live. Once the
time to live expires, the LSA is automatically removed from the space. For instance,
the LSA (sensor-type = temperature; temp = 10; decay = 1000) automatically
deletes the LSA after 1,000 time units.

The decay eco-law is a kind of garbage collector capable of removing LSAs that
are no longer needed in the ecosystem or no longer maintained by a component. On
the other hand, for components that maintain a LSA, it is always possible to access
the decay property and eventually increment its value to prevent the removal of the
LSA. Similarly to what happens for aggregation, the decay eco-law enables distributed
garbage collection of distributed LSAs without having to deploy in the various nodes
of the system agents specifically devoted to that. This ensures the sustainability of
the overall ecosystem. In addition, the decay function is necessary to support the
realization in SAPERE of many nature-inspired interaction patterns that rely on the
spatial environment to actively play a role in making information (e.g., pheromones)
to evaporate or be reinforced.

4.3.4. Spread Eco-Law. The preceding discussion presented eco-laws that basically act
on a local basis—that is, on a single LSA space. However, the SAPERE model is
distributed; in particular, it is grounded on interactions across a set of LSA spaces
networked with each other according to some strategies (e.g., spatial proximity). Ac-
cordingly, eco-laws should also take care of ruling spatial distribution of LSAs and,
accordingly, nonlocal interactions.

The spread eco-law aims at enabling the diffusion of LSAs from one LSA space to
neighbor ones according to the concept of neighborhood defined by the topology of con-
nections of LSAs spaces. The most basic usage of the spread eco-law is to search for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:13

components that are not available locally, or vice versa, to enable the remote advertise-
ment of services. However, it is also a fundamental mechanism to support the creation
of dynamic distributed data structures in support of self-organization.

For an LLSA to be subject to the spread eco-law, it has to include a diffusion field
whose value (along with additional parameters) defines the specific type of propagation.
Two different types of propagation are implemented in SAPERE:

—direct propagation, a unicast that propagates an LSA to a specified neighbor node,
such as (...diffusion_op=direct; destination=node_x; ...);and

—spatial diffusion, a multicast that propagates an LSA to all neighbor SAPERE
nodes, such as (...diffusion_op=general; hop=10; ...), where the hop value can
be specified to limit the distance of propagation of the LSA from the source node.

General spatial diffusion of an LSA via the spread eco-law to distances greater than
1 is a sort of point-to-point broadcast that clearly induces a large number of replicas
of the same LSA to reach the same node, multiple times, from different paths. Indeed,
the general diffusion to prevent this is typically coupled with the aggregation eco-law
to merge together multiple copies of the same LSA that arrive on a node from different
paths.

It is worth noting that application components can use the direct propagation primi-
tive to implement any kind of local communication scheme. For example, gossip-based
information diffusion [Jelasity et al. 2005] can easily be implemented on top of direct
propagation by letting an agent communicate directly with a random subset of neighbor
nodes.

5. FROM ECO-LAWS TO SELF-ORGANIZATION PATTERNS

The defined eco-laws form a limited yet highly expressive set by which is it possible to
realize a large variety of nature-inspired, self-organizing, and self-adaptive coordina-
tion patterns.

5.1. Artificial Chemistries and Immune Systems

SAPERE allows to natural modeling and expression of artificial chemistries’ and im-
mune systems’ models. The chemical/immune system population can be directly repre-
sented by an LSA, whereas the bond eco-law can effectively model chemical reactions
and gene—antigene interactions [Fernandez et al. 2014; Read et al. 2012]. In addition,
as discussed next, the combinations of eco-laws allow modeling of other self-organizing
mechanisms highlighted in Section 2.1.

5.2. Fields

Aggregation applied to multiple copies of diffused LSAs can reduce the number of
redundant LSAs to form a distributed field structure [Mamei and Zambonelli 2009].
A field data structure is distributed across the nodes of the network, with each of
these nodes containing a copy of the LSA storing the hop distance from the node of the
network that created and injected it (Figure 4).

In general, field data structures are a useful tool for encoding and spreading infor-
mation in a distributed system. The main point of using them is that they effectively
provide adaptive spatial awareness to agents. In fact, fields naturally provide a measure
of distance in the network (by means of hop count from the source) and of the direction
from where the information comes (by considering the slope of the hop counts). Such
information is useful in a number of pervasive applications that are closely coupled
with the location of the agents.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:14 G. Castelli et al.

Spread (1)
eco-law

(3)
Aggregation
eco-law

Fig. 4. Generating and navigating distributed data structures. The Room agent uses the spread eco-law (1) to
propagate its LSA to neighbor nodes that, at their time, repropagate a copy (2) to other nodes. Once multiple
copies of the same LSA reach the same node, the aggregation eco-law preserves the copy with minimum hop
number (3). This process creates field-like data structures that the User agent can read to get information
about the presence and approximate location of the room.

For example, an agent monitoring a room of the museum that is fresh and not crowded
could propagate a field data structure allowing other agents to sense that room and get
information about how far away it is located (see Figure 4).

The spread eco-law propagates the LSA hop by hop across the network. In partic-
ular, the keyword general specifies to recursively propagate the LSA by n hops, and
aggregation_op specifies how to aggregate the copies of the LSA. Spreading also main-
tains hop_count to indicate the number of hops from the source, previous to indicate
from which node the field LSA comes, and spread_id to identify a specific field. The
aggregation eco-law guarantees that redundant LSA copies are discarded and the field
is properly laid out. SAPERE allows realization of this pattern effectively by moving
all of the burden to the eco-laws. For example, the LSA (diffusion-op = general;
hop = 10; aggregation-op = min) would spread a field data structure like the one
in Figure 4 by 10 hops.

Another agent can query for fields propagated by the room and be notified with
information regarding the presence; the distance to the room; and by using the previous
data of the field, the approximate direction where the room is located.

It is important to notice that since the field is constructed on the basis of “ever-
running” eco-laws, its global “shape”—the values of the hop counts across the network—
is periodically refreshed to accommodate network churn, agent movements, and chang-
ing configuration of the entities involved. This fact makes the field and the agent’s
spatial awareness adaptive to changing conditions.

5.3. Stigmergy and Pheromone-Based Data Structures

Fields can be the basis for constructing pheromone-like data structures driving agent
activities [Babaoglu et al. 2006]. These data structures, mimicking pheromone trails in
natural systems like ant colonies, are deployed in a distributed environment by mobile
agents and provide local information on how to explore the distributed environment.
For example, a user agent finding some interesting information can start spreading a
pheromone trail to allow other agents to easily reach the source (e.g., art piece) of that
information by following the trail.

Pheromones can be realized via LSAs locally deposited by agents as they move across
the network; accordingly, such LSAs would be deployed on the agents’ path. Pheromone

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:15

Sensor @ Sensor TE ET

lemp = 48 |~ te 48
(M = |_temp = 50
- Aggregati 2)] _.h 4 3
= acu-la& J \ Lt]‘.
T
%pread Aggregafjon
eco-law | co-la
L oo WL I
Aggregation (2) * @ @W y
eco-law i . (3) - temps 48]
ggregation Eﬁ=
il temp =5 _] eco-law L et

Sensor @

Sensor
(a) (b)

Fig. 5. Distributed aggregation. The Aggregator agent’s LSA is spread over the network (a.1) to be ag-
gregated with other LSAs (in this example from the TemperatureSensor agents) over the “temp” property
(a.2). The result of aggregations is spread to other nodes (b.3) and then aggregated again (b.4), providing
the Aggregator agent with the maximum temp value in the network. The final result can be presented on a
suitable monitor display.

LSAs would be also associated with the decay eco-law to emulate pheromone evapora-
tion. Here we do not present a code example of this pattern in that it simply results
by adding a decay property to the LSAs described for creating fields and by notably
limiting the hop radius at which the field can propagate—or by removing propagation
entirely—to obtain a pheromone trail that is stored only in the nodes actually visited
by the agent.

5.4. Distributed Self-Organized Aggregation

Spreading and aggregation can be used together to produce distributed self-organized
aggregation—that is, computing in a distributed way the value of some properties of
the system (i.e., the average temperature measured in the museum’s sensor network)
and having the results of such computation available at each and every node of the
system, as from Nath et al. [2004]. This mechanism is also at the basis of leader
election algorithms by which to realize forms of distributed consensus, distributed task
allocation, and behavior differentiation [Bicocchi et al. 2012].

To ground the discussion, we illustrate how to trigger distributed self-organized ag-
gregation of sensorial data. Let’s say that an employee in the museum wants to see
the maximum temperature sensed in a display at the museum. In this example, the
Aggregator LSA is spread by a node to compute, in a distributed way, the maximum
value of the “temp” property of LSAs available in the network (in this example mea-
sured by a pool of sensors) and to show such a value on the display. For example, the
LSA (property = temp; aggregation-op = max; diffusion-op = general; hop =
10) would perform a distributed aggregation like the one depicted in Figure 5.

In particular, the assertion aggregation_op = max from one side aggregates LSAs
around the property type “temp” from another side, allowing multiple copies of the
same LSA to be aggregated and routed back to the source. As well in this case, all of
the complexity is moved at the middleware level via the eco-laws.

The same kind of approach can be used to realize gossip-based aggregation mecha-
nisms [Bicocchi et al. 2012]: instead of propagating an LSA to all of the neighbors, the
LSA is sent only to a random subset of them. Probabilistically, this results in the same
globally coherent behavior but with fewer messages being exchanged.

In general, this kind of LSA aggregation supports situation awareness in the system.
In fact, it allows different information elements (e.g., sparse sensor readings) to be

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:16 G. Castelli et al.

combined into an higher-level representation of the current state in the environment
(e.g., summary statistics on the sensed values).

5.5. Self-Organizing Spatial Coordination

Several different classes of self-organized spatial and motion coordination schemes,
self-assembly, and distributed navigation can be expressed in terms of fields and
pheromones.

In these approaches, a number of field and pheromone data structures are laid out
over the pervasive network. Agents coordinate their activities and movements on the
basis of the local shape of such structures.

For example, field data structures can be used to coordinate the motion of people
in the museum. Agents running on users’ smart phones could give them directions by
following the gradient of the fields in the environment. Considering the example in
Figure 4, the agent could guide the user to the room by letting him or her follow the
field of the room LSA (i.e., iteratively directing the user to the node associated with
the previous variable). The strength of this approach resides in the fact that motion
guidance is based on strictly local information (the local shape of the field) and is
adaptive to changing conditions (e.g., a corridor made unaccessible), as the field would
reshape accordingly.

A similar approach can be used to allow different entities to leave pheromone trails
in the museum to be followed later on by users or robots [Mamei and Zambonelli 2007].
A final relevant example consists of the spatial computing approach [Beal et al. 2012].
In this context as well, agent activities are driven by fields spread in an ad hoc network
of nodes. For example, a node can inject a field representing a query. Replying nodes
can send a message (LSA) to the requestor by routing it following the gradient of the
query field (this kind of gradient routing is often referred to as chemotaxis). Extending
this principle, even more complex patterns and behaviors can be flexibly realized.

6. THE MIDDLEWARE IMPLEMENTATION

From an implementation-oriented viewpoint, the SAPERE middleware reifies LSAs
in the form of tuples to be dynamically stored and updated in a system of spatially
situated tuple spaces spread over the network devices.

On each node on which the SAPERE middleware is instantiated, it consists of three
main components (Figure 6):

—the LSA space, where local LSAs are stored and manipulated by the eco-laws;

—the Notifier, which manages events happening to LSAs and notifies the applications;
and

—the Networking, which builds and maintains the network topology and rules LSA
exchange with other nodes.

Possibly, additional libraries of agents could be deployed to enrich services offered by
the middleware. In addition, the SAPERE external interfaces, to ease the applica-
tion programming, offer several programming agent templates, facilitating the whole
LSA life cycle management. For instance, the SapereAgent used in the code examples
features seamless invocation of the middleware API.

6.1. The LSA Space

The LSA space is realized as a lightweight tuple space that stores local LSAs and
executes eco-laws over them. The core component is the Space that stores LSAs and
provides access to them. The Operation Manager and the Eco-Laws Engine get mutual

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:17

Remote SAPERE
SAPERE nodes

f / ¥ Networking

Topology Communication

Logical Physical Receiver Transmitter

Network Communication

Network Topology Manager Manager

—) N LSA Space
Notifier Operation

Manager Eco-Laws Engine

|
|
|
|
|
|
|
|
|
€ | e
|
|
|
|
|
|
|
|
|

=
e B £
T Space]

[oo S «»
Subscription
. v
\ J 0 J
a ¢)
Api and External Interfaces
\ ¢ ¢ J
a)
Additional Libraries
Agents

Application Agents

Fig. 6. The SAPERE middleware architecture.

access to the Space to submit operations and execute eco-laws respectively over the
LSAS’ collection.

The Operation Manager is used to submit operations to the Space; they are the
operations that realize the basic SAPERE API (injectLSA, updateLSA, onBond, on-
BondUpdate). During the the operation execution, the Operation Manager, for each
submitted operation, interacts with the Notifier, adding or removing subscriptions to
events and/or triggering new ones. Operations, in particular, are managed in two dif-
ferent ways: operations coming from external API are queued and passed to the Space
one by one, whereas operations coming from the Eco-Laws Engine are executed as they
arrive.

The Eco-Laws Engine gets periodically activated to execute eco-laws on the collection
of locally stored LSAs. To keep the bonds between LSAs consistent, a routine removing
no longer valid bonds is run every time an update, or a remove operation is executed
on the Space.

Therefore, at each wake-up, the engine will process the following:

—Nondiffusive eco-laws in the following order: decay, aggregate, bond. That is, eco-laws
that can possibly remove LSAs (e.g., the decay eco-law can remove an LSA that is
decayed) are prioritized and managed in a finite state fashion, proceeding iteratively
until applicable to a steady point in which no more aggregations are possible,

—The spread eco-law, executed once for each LSA requiring diffusion.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:18 G. Castelli et al.

6.2. The Notifier

The Notifier component takes care of managing events happening to LSAs (e.g., bonds
established, bonds removal) and notifying the Agents in charge of their management.
This includes taking care of the following:

—FEvents to be notified; for instance, an Event related to the happening of a bond will
be forwarded to one of the following methods: onBond to represent the happening of
a new bond, onBondUpdate to represent the happening of some update in the content
of an already bound LSA, and onUnbond to represent the happening of the removal
of a bond.

—Subscriptions, to record the interest of a subscriber to a particular event. Subscrip-
tions are managed automatically by the middleware and are not demanded to the
application programmer; in particular, they are managed both by the Operation
Manager as operations are forwarded to the Space, and by the Agent managing the
LSAs for the onBondUpdate.

—Filters responsible for discarding events not of interest for a subscriber. When an
event occurs, the Notifier component determines which subscriber is interested in
this event, applying the filter provided by the subscriber.

Events are fired by the Space object when operations on LSAs are performed. For
each fired event, the Notifier checks if there are Subscriptions for that Event class and
invokes the filters to detect the specific subscriber that shall be notified.

6.3. The Networking

The Networking module manages interactions with other SAPERE nodes. This implies
two separate networking tasks:

—Communicating with other nodes to exchange (spread) LSAs. To this end, the Net-
work Communication Manager provides two modules, respectively called “Receiver”
and “Transmitter,” enabling communication between SAPERE nodes. Their actual
implementation is based over standard Java Tcp/Ip sockets (however, we have also
tested over Bluetooth PAN/BNEP), and the Network Communication Manager might
easily be extended to support other communication protocols.

—Building and maintaining a topology of the network. In SAPERE, each node in the
environment is made aware of one-hop neighbors and can communicate only with
direct neighbors to exchange LSAs. This is realized by the local Network Topology
Manager, which can easily support custom overlay networks by managing the result-
ing topology according to a specified policy. In particular, we have tested topologies
based on both spatial proximity (defining an overlay network for nodes that are in
a connectivity range as supported by the Bluetooth technology available on common
smart phones) and on logical proximity (defining a overlay network that is based on
the distance between entities linked to an external social network, e.g., Facebook).
We have also considered mixed approaches as the result of crossing together the
previous ones to identify as neighbors only those nodes that are in both social and
physical proximity, as better described in Zambonelli et al. [2011Db].

The process of managing the topology of the network is distributed on each node,
where the local Network Topology Manager, depending on the node configuration,
instantiates a number of processes to build the network topology based on the chosen
spatial model.

6.4. Launching SAPERE Applications

The SAPERE middleware has been developed in Java language; sources and bina-
ries are available at www.sapere-project.eu/download. Whereas on traditional personal

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:19

Fig. 7. Screenshots from the Android SAPERE app. (Left) The launch icon to be pushed on the Android
springboard to start SAPERE and have that device become a node of the ecosystem. (Center) The user is
presented with a menu of the locally available SAPERE services; launching one of them brings to life the
associated agents and their LSAs. (Right) The GUI of a simple test application for inspecting the LSA space.

computers SAPERE comes bundled over a Java Jar file to be linked to an application-
specific agent class, an optimized Apk bundle has been developed to be used on Android
mobile devices.

In general terms, launching the SAPERE app implies starting a local instance of the
SAPERE middleware (which, depending on the configured networking strategy, will
start looking for other SAPERE nodes to connect to or will accept new connections)
and presenting the users with a menu of the locally available SAPERE services. To add
new services on a node, the developer has to produce the corresponding agent classes
and link them to the SAPERE jar/bundle.

Figure 7 depicts and explains three exemplary menus from the Android version.

7. EXPERIMENTAL EVALUATION

The effectiveness of the SAPERE model and middleware has been evaluated along two
main aspects. On the one hand, we performed a software engineering evaluation, trying
to assess whether SAPERE supports and facilitates the development of self-adaptive
pervasive systems. On the other hand, we performed a performance evaluation, try-
ing to assess whether the SAPERE middleware can support a number of pervasive
applications with limited overhead.

7.1. Software Engineering Evaluation

To understand the effectiveness of the SAPERE model in developing pervasive ap-
plications, we tried to model some exemplary use-case applications both in SAPERE
and in a FIPA-compliant agent-based middleware (MalacaTiny-Sol [Ayala et al. 2012])
to assess strengths and weaknesses of our system. In this section, we report a spe-
cific case of a general analysis that we described in Ayala et al. [2013]. In particu-
lar, we model an emergency exit application in the smart museum scenario. In this
application, users are guided across the museum toward the closest/least crowded exit.
It is assumed that a number of agents are running in the museum: there are tourist
agents associated with each visitor and security agents associated with monitoring
emergency and crowding conditions within the museum.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:20 G. Castelli et al.

—Design with SAPERE. This modeling approach takes advantage of the uncoupled
interactions among the agents. When an emergency is detected, security agents
associated with exits propagate an LSA spreading across the building and creating
a field (or pheromone trail) leading to the exit. The shape of such a field can be
influenced by the crowd distribution in the museum (computed via the aggregation
eco-law). Tourist agents follow the resulting field downhill to reach the closest exit.

—Design with FIPA agents. This modeling approach takes advantage of multicast com-
munication among the agents. When an emergency is detected, the security agent no-
tifies all tourist agents about the situation. Tourist agents, provided with intelligent
capabilities, and possibly requesting to other agents about the crowd distribution in
the museum, plan the optimal route to the closest exit. An important strength of this
system is that all of the preceding behaviors can be flexibly encapsulated (e.g., via
aspects or rule-based engines) to realize the agent code.

From a general perspective, this exemplary application highlights some key ar-
chitectural features of SAPERE and FIPA agents. The differences between the two
approaches for the development of pervasive applications come not only from their
schemas of interaction (LSA spaces in SAPERE vs. message passing in FIPA) but also
from their mechanisms to support separation of concerns (i.e., eco-laws in SAPERE vs.
agent functional behaviors in FIPA) and how they adapt the agent paradigm to perva-
sive computing (e.g., uncoupled interactions in SAPERE vs. multicast communication
in FIPA).

Next, we highlight the following advantages of the two approaches in more detail:

—SAPERE advantages. SAPERE agents have a good capacity for separation of con-
cerns, components’ decoupling and cohesion, and robustness. In the SAPERE LSA-
based approaches, as in tuple spaces, the service provision and consumption is more
efficient than in those of FIPA because a direct interaction between agents is unnec-
essary. The negotiation is done in the LSA spaces via a pattern matching process that
avoids message exchange. The distributed nature of SAPERE applications results in
systems that adapt easily to changes in the physical space where the application is
distributed. Finally, SAPERE spaces offer a more robust infrastructure thanks to its
multiple SAPERE nodes. This is not a common feature in tuple-based approaches,
but it is one of the strongest points of SAPERE.

—FIPA advantages. In FIPA, the design of the agents is more scalable (in terms of
complexity increase due to additional features) and can ensure the privacy of users
more easily. In fact, FIPA-based approaches focus on the programming of agents’
interval behavior. Accordingly, they allow the set of services offered by the agents to
be modified more easily. Some FIPA systems can do this at runtime because agents’
behaviors can be encapsulated in aspects or sets of rules. Additionally, because the
computing is encapsulated inside agents, the risk of a lateral effect when the system
is extended is lower than in tuple-based approaches and also in SAPERE. Finally, in
FIPA-based approaches, it is somewhat easier to ensure the privacy of users, because
most of the computation is performed locally.

Overall, the results from this analysis show that SAPERE effectively supports the
development of adaptive pervasive applications with regard to interaction and dis-
tributed coordination, especially in the case of spatially related tasks in which fields
and distributed aggregation are most useful. From this perspective, we think that
SAPERE fulfills its goal of supporting and facilitating adaptive pervasive systems.

Vice versa, other platforms, such as the considered FIPA-based system, better sup-

b3

port agents’ “internal” coding, agents’ planning, and intelligent behaviors.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:21

Table II. Local Resource Utilization on a Node against
the Number of Locally Stored LSAs

LSAs | M. Footprint | PC CPU % | Mobile CPU %
0 4KB 1% 24%
100 55KB 4% 30%
200 111KB 5% 60%
500 249KB 7% 75%
1,000 488KB 9% 90%
2,000 1,002KB 18% 100%

In general, the two approaches could be combined, with benefits to both. The func-
tional behaviors of FIPA agents would simplify the deployment of complex agents in
SAPERE. The main benefits for SAPERE would be to enhance the internal modular-
ization of agents deployed in SAPERE nodes to promote reuse and ease the adaptation
of agents even at runtime.

7.2. Performance Evaluation

From the performance viewpoint, we have evaluated three main aspects: (i) local re-
source utilization, (i) time performance involved in running the eco-laws locally to
a node, and (iii) distributed overhead in supporting LSA spreading and aggregation
across a network of SAPERE nodes.

From our investigations, the key parameter impacting the performance of the
SAPERE middleware is the number of LSAs populating the nodes. Indeed, the higher
the number of LSAs stored in one node, the heavier can be the matching process in-
volved in the LSA space engine to trigger eco-laws. Given the inherent local nature of
LSA spaces, and the fact that the number of LSAs on one node expresses the number
of local devices and service components on it, and to those eventually diffused from
neighbor nodes, we assume that such a number will never grow excessively and set
2,000 LSAs per node as an upper bound for our tests.

Experiments have been performed both on personal computers (Apple MacbookPro
2011 with an Intel 2Ghz I7 processor and 8GB of RAM) and on mobile devices (Samsung
Gt-P1000 running Android 2.3.6).

Local resource utilization. Table II illustrates local resource utilization of memory
consumption and CPU usage at an increasing number of LSAs populating a single
node, both on a personal computer and on an Android device.

With regard to the memory footprint, our measure highlights the following:

—The memory occupancy of the bare SAPERE middleware is about 4KB.

—The memory occupancy of each LSA that we developed for our experiments is, on
average, 0.5KB. This amount accounts for the LSA object instance itself, the LSA’s
payload (that is application specific and in these experiments contains a temperature
measure), and the SapereAgent instance managing the LSA’s life cycle.

Our measures suggest that for reasonable numbers of LSAs per node (a mobile
unit will unlikely host more than a dozen local services and sensors), the SAPERE
middleware is lightweight enough to be hosted on even small devices.

The memory footprint size has been estimated using the SizeOflibrary (sizeof. source-
forge.net). The CPU usage has been measured with Oracle JConsole (included in the
Oracle JDK) and Google DDMS (included in the Google Android JDK) on personal
computers and Android mobile devices, respectively.

Time performance. We analyze the time performance associated with the execution
of the SAPERE eco-laws. For each of the experiments, we executed 1,000 runs on a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:22 G. Castelli et al.

Bond Timing Aggregation Timing
500 - 400
25% of binding LSAs s« 25% of aggregated LSAs
450 50% of binding LSAs 350 | 50% of aggregated LSAs @
75% of binding LSAS = e 75% of aggregated LSAs =—e—
400
300
350 [,«“
300 250
£ 250 £ 200
200 ,«4/
150
150 /“M
100
100 /f
50
50 /1
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Number of LSA Number of LSA
(a) (b)
Round-Trip Timing Decay Timing
1800 90 —
1LSA in each node e Decay eco-law processing time =—e—
1600 - 1000 LSAs in each node @ 80 LSA decaying time (Decay =5)
2000 LSAs in each node =——=— LSA decaying time (Decay =10)
70 LSA decaying time (Decay = 20)
1400
60 i
1200 o o g o
BO [g
£ 1000 g =
40 w
800 v
/— “““ 30
1T J ———————————
““““““““““““““““ g 20
40D e 10
200 S gt 0

2 3 4 5 6 0 500 1000 1500 2000
Number of Hops Number of LSA

(c) (d)

Fig. 8. (a) Time for binding two LSAs. (b) Aggregation time with a growing number of LSAs populating the
space. (¢) Round-trip time to spread an LSA to a remote node and to get a reply back. (d) Time to decay of a
given LSA on the basis of the number of LSAs populating the space.

personal computer and averaged the results. Similar trends, although with a reduced
number of runs, have been obtained on Android devices as well.

Bond eco-law. We measured the time required to realize a bond between two LSAs.
We run the experiments by preinjecting a number of LSAs and then injecting an LSA
with the “?” formal value. Figure 8(a) reports the time occurring between the injection
of the last LSA and the notification of the bond event. For a number of preinjected LSAs
lower than 2,000, the binding time is below 10ms. The time required grows linearly
with the number of involved LSAs, as the current LSA engine is not provided with a
mechanism for LSAs’ indexing and quick verification of pattern matching. However,
performance appears perfectly acceptable with respect to its reference context, which
is completely compatible with average human reaction time and with the frequencies
of contextual changes.

Aggregation eco-law. We measured the time required to aggregate a subset of the
LSAs populating the space. Results of this experiment (aggregating the 25%, the 50%,
and the 75% of the LSAs in a node) are shown in Figure 8(b): the time required by the
aggregation is not affected by the percentage of the LSAs to be aggregated but by the
whole number of LSAs populating the space. Again, the lack of an indexing mechanism
for LSAs makes the execution of the aggregation eco-law require an exhaustive search
over the whole LSA space. Yet, the overall time is still in line with the expectation of a
large class of interactive application-level user services.

Spread eco-law. We measured the round-trip time required to spread an LSA from a
source node to a destination node and to spread it back to the source using Wi-Fi con-
nections as a career. The key parameters of this experiment are (1) the distance in hop

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:23

Overhead w/o the Decay Eco-Law Overhead using the Decay Eco-Law
10000 - 100 7000 100

9000

H " 6000 |- §

a e H 5

8000 | S a 80 § 80
o

" $
5000 |- i 70

7000 -

6000 [-# 2 60

"
£ Gradient e
Percentage’of nodes with incorrect vaules s

: 4000 1

i Gradient e

5000 f - Percentage oi‘go'ae with incorrect vaules wmu | 50
-

3000

4000

Incorrect Values
Incorrect Values

» R

Number of Propagated LSA
Number of Propagated LSA

3000

2000

]
5.
L

2000 <
r 4 10

1000

1000

(]

[]

0 = 0 0 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

ms

(a) (b)
Fig. 9. (a) Number of LSA exchanges required to propagate and maintain the field distributed shape.
(b) Number of LSA exchanges required once a decaying factor is introduced.

terms between the source and the destination and (2) the number of LSAs populating
each node. Results in Figure 8(c) show that the time linearly increases with the hop dis-
tance, as the LSA needs to move across multiple nodes. It also linearly increases with
the number of LSAs because of the exhaustive search applied to the LSA population
to detect those to be propagated. Although a bit higher, and highly influenced by WiFi
performance, the time required appears acceptable from the application viewpoint in
this case as well.

Decay eco-law. In this experiment, we measure the time required to remove an
expired LSA. For a varying number of LSAs, we set one of them to be decayed after 5,
10, or 20 middleware cycles. Results of this experiment are shown in Figure 8(d) and
are in line with the other results involving an exhaustive search over the LSAs.

7.3. Distributed Overhead Evaluation

We measured the number of operations required to propagate information as a field
across SAPERE nodes. That involves spreading LSAs from node to node and aggre-
gating those multiple copies getting the same node from different sources. Such a
process requires time to converge and repeated aggregations. In addition, to ensure
the coherency of the field structure despite network dynamism, the spread has to be
repeated periodically.

Figure 9 shows the number of operations required to spread a field in a network (a
regular lattice with connectivity grade 4) of 100 SAPERE nodes tracing the number of
LSAs exchanged. The field quickly stabilizes, and the constant increment of operations
involved, even after convergence, is due to the field periodic refresh. Figure 9 shows the
effect of introducing a decaying factor in the field: as soon as the decaying procedure
completes, the field is removed from the network and the number of operations drops
to zero (thus allowing multiple fields to be spread in the network without affecting
performance in the long run).

Summarizing, the reported experimental results show that our current SAPERE
implementation, despite being highly unoptimized, is already compatible with a large
class of pervasive computing applications. In particular,

—The memory footprint and CPU usage have a limited impact enabling the effective
deployment of SAPERE over mobile devices.

—The time for triggering and executing eco-laws allows for application-level reaction
times compatible with interactive pervasive applications.

—The time for spreading LSAs across a network is acceptable and compatible with
application-level expectations, and its overhead on the network is limited.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

1:24 G. Castelli et al.

8. RELATED WORK

In the past few years, several proposals have tried to identify novel models and mech-
anisms to support the design and development of pervasive service systems.

Many approaches, starting from service-oriented architectures [Huhns and Singh
2005], in the attempt to overcome the static and context-unaware mechanisms of ser-
vice discovery and composition, propose innovative mechanisms [Kalasapur et al. 2007;
Bronsted et al. 2010] and associated middleware infrastructures [Raychoudhury et al.
2013]. These include novel approaches to context-aware discovery and novel means
to handle the dynamic arrival and dismissal of service components [Bronsted et al.
2010]—there possibly including service relocation [Riva et al. 2007]—and novel mecha-
nisms to evaluate the most suitable service composition patterns at runtime depending
on current context and availability of components [Kalasapur et al. 2007]. SAPERE,
with the single mechanism of bonding, supports both dynamic context-aware service
discovery and composition. In addition, SAPERE can support self-organizing patterns
of distributed service compositions and orchestration, and thus can achieve a high
degree of adaptivity with little programming effort.

Different threads of research explore solutions based on coordination modes pro-
moting a weaker degree of coupling between service components than service-oriented
architectures, such as event-based coordination models and tuple-based ones [Eugster
et al. 2003]. In particular, tuple-based coordination models, by expressively enabling
both flexible communication and synchronization of activities, have been extensively
exploited as a tool to coordinate service activities in mobile environments. Proposals
typically rely on networked tuple spaces spread across pervasive environments and
mobile devices [Bellavista et al. 2012; Murphy et al. 2006; De Nicola et al. 2014], possi-
bly integrating mechanisms to dynamically reconfigure the standard pattern matching
mechanisms of tuple spaces [Omicini and Zambonelli 1999]. SAPERE has been defi-
nitely been inspired by tuple-space coordination models but has radically redefined it
with its concepts of LSAs and eco-laws.

TOTAM [Harnie et al. 2014] is a tuple-based infrastructure that addresses scenar-
ios of pervasive computing similarly to those of SAPERE. In addition, again similarly
to SAPERE, it proposes exploiting sort of enhanced tuple spaces associated with per-
vasive devices to support localized spatial interactions in urban scenarios, as well as
information diffusion and propagation. However, unlike SAPERE, TOTAM does not
deal with the issue of supporting adaptive and self-organizing coordination patterns,
leaving up to application agents the duty of organizing their own coordination schemes.

The LSA concept of SAPERE shares some key characteristics and goals with the
concept of dynamic tuples proposed in Stovall and Julien [2008]—that is, the idea
that dynamically changing fields in tuples can support adaptive context-aware discov-
ery of services. However, the LSA concept of SAPERE is embedded in a fully fledged
framework where this concept finds practical and complete realization.

The TOTA system [Mamei and Zambonelli 2009], previously developed within our
research group, shares the idea of SAPERE of enabling the flexible programming of
self-organizing distributed coordination schemes. However, TOTA was capable of sup-
porting only self-organization mechanisms based on distributed computational fields.
SAPERE has a more general nature and is capable of supporting fields but also more
general mechanisms and schemes of self-organization, such as pheromones, gossip
schemes, and distributed aggregation. Similar considerations apply to other spatial
computing models based on computational fields, like Proto [Beal et al. 2012].

The concept of augmented ecologies [Tisato et al. 2012] shares with SAPERE both the
ecosystem inspiration and the idea of mapping components of a pervasive environment
into a virtual ecosystem of organisms interacting in a spatial and context-dependent

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

The SAPERE Approach 1:25

way. However, the augmented ecologies proposal does not aim at supporting some
specific adaptive coordination model, leaving up to application components the duty of
ruling their own coordination activities.

Chemical bonds have been proposed as a middleware mechanism to promote spon-
taneous service and workflow in open environments [Banéatre and Priol 2009; Fernan-
dez et al. 2014]. Unlike SAPERE, however, such proposals do not integrate the spa-
tial mechanism required for decentralized pervasive environments. In a recent work
[Viroli et al. 2011], we proposed a chemically inspired coordination model that, although
not being coupled with a specific eco-laws model or implemented middleware, can be
considered our first attempt toward nature-inspired pervasive service coordination.

9. CONCLUSIONS AND FUTURE WORK

SAPERE proposes a radically new approach to engineer pervasive computing ser-
vices that suits the emerging characteristics of pervasive computing environments. In
particular,

—Its nature-inspired coordination supports spontaneous, context-aware, and adaptive
interactions among situated pervasive service components.

—A variety of adaptive self-organizing patterns can be enforced in SAPERE to realize
several effective schemes for the provisioning of distributed pervasive services.

—The SAPERE middleware effectively supports the SAPERE model and a variety of
networking schemes with acceptable performance.

Currently, we are working to improve some implementation aspects of the SAPERE
middleware, particularly to optimize LSA storing and access, and to extend its support
for semantic data representation [Stevenson et al. 2012]. As a plan for future work, we
intend to experience the SAPERE approach with a number of innovative services in
the area of urban computing [Harnie et al. 2014; Zambonelli 2012] and smart mobility
services [Riener and Ferscha 2013].

REFERENCES

Florian Alt, Jorg Muller, and Albrecht Schmidt. 2012. Advertising on public display networks. Computer 45,
5, 50-56. DOI : http://dx.doi.org/10.1109/MC.2012.150

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. 2012. Self-configuring agents for ambient assisted
living applications. Personal and Ubiquitous Computing 17, 1159-1169.

Inmaculada Ayala, Mercedes Amor, Lidia Fuentes, Marco Mamei, and Franco Zambonelli. 2013. Developing
pervasive agent-based applications: A comparison of two coordination approaches. In Proceedings of the
International Workshop on Agent-Oriented Software Engineering. 73-98.

Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni A. Di Caro, Frederick Ducatelle, Luca M.
Gambardella, Niloy Ganguly, Mark Jelasity, Roberto Montemanni, Alberto Montresor, and Tore Urnes.
2006. Design patterns from biology for distributed computing. ACM Transactions on Autonomous and
Adaptive Systems 1, 1, 26-66. DOI : http://dx.doi.org/10.1145/1152934.1152937

Jean-Pierre Banatre and Thierry Priol. 2009. Chemical programming of future service-oriented architec-
tures. Journal of Software 4, 7, 738-746.

Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. 2012. Organizing the aggregate:
Languages for spatial computing. In Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments. Information Science Reference, Hershey, PA, 436-501.

Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Lana Foschini. 2012. A survey of context data distri-
bution for mobile ubiquitous systems. ACM Computing Surveys 4, 44, Article No. 24.

Nicola Bicocchi, Marco Mamei, and Franco Zambonelli. 2012. Self-organizing virtual macro sensors. ACM
Transactions on Autonomous and Adaptive Systems 7, 1, Article No. 2.

Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N. Huhns. 2009. Agents and
service-oriented computing for autonomic computing: A research agenda. IEEE Internet Computing 13,
3, 82-87.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

http://dx.doi.org/10.1109/MC.2012.150
http://dx.doi.org/10.1145/1152934.1152937

1:26 G. Castelli et al.

Jeppe Bronsted, Klaus M. Hansen, and Mads Ingstrup. 2010. Service composition issues in pervasive com-
puting. IEEE Pervasive Computing 9, 1, 62-70.

Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano Miluzzo, Ronald A. Peterson, Hong
Lu, Xiao Zheng, Mirco Musolesi, Krist6f Fodor, and Gahng-Seop Ahn. 2008. The rise of people-centric
sensing. IEEE Internet Computing 12, 4, 12-21.

Betty H. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, et al. 2009. Software engineering for self-adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, Vol. 5525. Springer, 1-26.

Rogério De Lemos, Holger Giese, Hausi A. Muller, Mary Shaw, Jesper Andersson, Luciano Baresi, Basil
Becker, et al. 2013. Software engineering for self-adaptive systems: A second research roadmap. In
Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, Vol. 7475. Springer,
1-32.

Rocco De Nicola, Rosario Pugliese, and Francesco Tiezzi. 2014. A formal approach to autonomic systems
programming: The SCEL language. ACM Transactions on Autonomous and Adaptive Systems 9, 2,
Article No. 7.

Ivan Elhart, Marc Langheinrich, Nigel Davies, and Rui José. 2013. Key challenges in application and content
scheduling for open pervasive display networks. In Proceedings of the IEEE International Conference on
Pervasive Computing and Communications Workshops. 393-396.

Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces of
publish/subscribe. ACM Computing Surveys 35, 2, 114-131.

Hector Fernandez, Cédric Tedeschi, and Thierry Priol. 2014. Rule-driven service coordination middleware
for scientific applications. Future Generation Computer Systems 35, 1-13.

David Gelernter. 1985. Generative communication in Linda. ACM Transactions on Programming Languages
and Systems 7, 1, 80-112.

Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen Wang. 2011. Proxemic
interactions: The new ubicomp? ACM Interactions 18, 1, 42-50.

Yanying Gu, Anthony Lo, and Ignatius Niemegeers. 2009. A survey of indoor positioning systems for wireless
personal networks. IEEE Communications Surveys and Tutorials 11, 1, 13-32.

Dries Harnie, Theo D’Hondt, Elisa Gonzalez Boix, and Wolfgang De Meuter. 2014. Programming urban-
area applications by exploiting public transportation. ACM Transactions on Autonomous and Adaptive
Systems 9, 2, Article No. 8.

Bert Holldobler and Edward O. Wilson. 2009. The Superorganism: The Beauty, Elegance, and Strangeness of
Insect Societies. W. W. Norton, New York, NY.

Michael N. Huhns and Munindar P. Singh. 2005. Service-oriented computing: Key concepts and principles.
IEEE Internet Computing 9, 1, 75-81. DOI : http:/dx.doi.org/10.1109/MIC.2005.21

Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2005. Gossip-based aggregation in large dynamic
networks. ACM Transactions on Computer Systems 23, 3, 219-252.

Swaroop Kalasapur, Mohan Kumar, and Behrooz A. Shirazi. 2007. Dynamic service composition in pervasive
computing. IEEE Transactions on Parallel and Distributed Systems 18, 7, 907-918.

Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. IEEE Computer 36, 1,
41-50.

Paul Lukowicz, Sandy Pentland, and Alois Ferscha. 2012. From context awareness to socially aware com-
puting. IEEE Pervasive Computing 11, 1, 32—41.

Marco Mamei, Andrea Roli, and Franco Zambonelli. 2005. Emergence and control of macro-spatial
structures in perturbed cellular automata, and implications for pervasive computing systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part A 35, 3, 337-348. DOI:http:/dx.doi.org/10.
1109/TSMCA.2005.846379

Marco Mamei and Franco Zambonelli. 2007. Pervasive pheromone-based interaction with RFID tags. ACM
Transactions on Autonomous and Adaptive Systems 2, 2, 1-28.

Marco Mamei and Franco Zambonelli. 2009. Programming pervasive and mobile computing applications:
The TOTA approach. ACM Transactions on Software Engineering and Methodology 18, 4, Article No. 15.

Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. 2006. LIME: A coordination model and
middleware supporting mobility of hosts and agents. ACM Transactions on Software Engineering and
Methodology 15, 3, 279-328. DOI : http://dx.doi.org/10.1145/1151695.1151698

Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. 2004. Synopsis diffusion for
robust aggregation in sensor networks. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems. ACM, New York, NY, 250-262.

Andrea Omicini. 2012. Nature-inspired coordination for complex distributed systems. In Intelligent Dis-
tributed Computing VI. Studies in Computational Intelligence, Vol. 446. Springer, 1-6.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

http://dx.doi.org/10.1109/MIC.2005.21
http://dx.doi.org/10.1109/TSMCA.2005.846379
http://dx.doi.org/10.1109/TSMCA.2005.846379
http://dx.doi.org/10.1145/1151695.1151698

The SAPERE Approach 1:27

Andrea Omicini and Franco Zambonelli. 1999. Coordination for Internet application development. Au-
tonomous Agents and Multi-Agent Systems 2, 3, 251-269. DOI:http:/dx.doi.org/10.1023/A:101006032
2135

Van Parunak. 1997. Go to the ant: Engineering principles from natural multi-agent systems. Annals of
Operations Research 75, 69—101.

Veljko Pejovic and Mirco Musolesi. 2013. Anticipatory mobile computing: A survey of the state of the art and
research challenges. arXiv:1306.2356v5 [cs.HC]. Available at http://arxiv.org/abs/1306.2356.pdf.

Vaskar Raychoudhury, Jiannong Cao, Mohan Kumar, and Dagiang Zhang. 2013. Middleware for pervasive
computing: A survey. Pervasive and Mobile Computing 9, 2, 177-200.

Mark Read, Paul S. Andrews, and Jon Timmis. 2012. An introduction to artificial immune systems. In
Handbook of Natural Computing. Springer, 1575-1597.

Andreas Riener and Alois Ferscha. 2013. Enhancing future mass ICT with social capabilities. In Co-evolution
of Intelligent Socio-Technical Systems. Springer, Berlin Heidelberg, 141-184.

Oriana Riva, Tamer Nadeem, Cristian Borcea, and Liviu Iftode. 2007. Context-aware migratory services
in ad hoc networks. IEEE Transactions on Mobile Computing 6, 12, 1313—-1328. DOI:http://dx.doi.org/
10.1109/TMC.2007.1053

Daniel Roggen, Gerhard Troster, Paul Lukowicz, Alois Ferscha, José del R. Millan, and Ricardo Chavarriaga.
2013. Opportunistic human activity and context recognition. IEEE Computer 46, 2, 36—45.

Alberto Rosi, Marco Mamei, Franco Zambonelli, Simon Dobson, Graeme Stevenson, and Juan Ye. 2011. Social
sensors and pervasive services: Approaches and perspectives. In Proceedings of the IEEE International
Conference on Pervasive Computing and Communications Workshops. 525-530.

Daniel Schuster, Alberto Rosi, Marco Mamei, Thomas Springer, Markus Endler, and Franco Zambonelli.
2013. Pervasive social context: Taxonomy and survey. ACM Transactions on Intelligent Systems and
Technology 4, 3, Article No. 46.

Graeme Stevenson, Mirko Viroli, Juan Ye, Sara Montagna, and Simon Dobson. 2012. Self-organising se-
mantic resource discovery for pervasive systems. In Proceedings of the 1st International Workshop on
Adaptive Service Ecosystems: Natural and Socially Inspired Solutions. 47-52.

Drew Stovall and Christine Julien. 2008. Rapid prototyping of routing protocols with evolving tuples. In
Distributed Applications and Interoperable Systems. Lecture Notes in Computer Science, Vol. 5053.
Springer, 296-301.

Francesco Tisato, Carla Simone, Diego Bernini, Marco P. Locatelli, and Daniela Micucci. 2012. Grounding
ecologies on multiple spaces. Pervasive and Mobile Computing 8, 4, 575-596.

Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. 2011. Spatial coordination of perva-
sive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive
Systems 6, 2, Article No. 14.

Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. 2011. On interacting control loops in self-
adaptive systems. In Proceedings of the 2011 ICSE Symposium on Software Engineering for Adaptive
and Self-Managing Systems. ACM, New York, NY, 202-207.

Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer,
Jochen Wuttke, et al. 2012. On patterns for decentralized control in self-adaptive systems. Software
Engineering for Self-Adaptive Systems II. Lecture Notes in Computer Science, Vol. 7475. Springer, 76—
107.

Juan Ye, Simon Dobson, and Susan McKeever. 2012. Situation identification techniques in pervasive com-
puting: A review. Pervasive and Mobile Computing 8, 1, 36—66.

Franco Zambonelli. 2012. Toward sociotechnical urban superorganisms. IEEE Computer 45, 8, 76-78.

Franco Zambonelli, Gabriella Castelli, Laura Ferrari, Marco Mamei, Alberto Rosi, Giovanna Di Marzo
Serugendo, Matteo Risoldi, et al. 2011a. Self-aware pervasive service ecosystems. Procedia CS 7, 197—
199. DOI : http://dx.doi.org/10.1016/j.procs.2011.09.006

Franco Zambonelli, Gabriella Castelli, Marco Mamei, and Alberto Rosi. 2011b. Integrating pervasive middle-
ware with social networks in SAPERE. In Proceedings of the 2011 International Conference on Selected
Topics inMobile and Wireless Networking (iCost). 145-150.

Franco Zambonelli and Mirko Viroli. 2011. A survey on nature-inspired metaphors for pervasive service
ecosystems. Journal of Pervasive Computing and Communications 7, 3, 186—204.

Received March 2014; revised July 2014; accepted November 2014

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 1, Publication date: March 2015.

http://dx.doi.org/10.1023/A:1010060322135
http://dx.doi.org/10.1023/A:1010060322135
http://arxiv.org/abs/1306.2356.pdf.
http://dx.doi.org/10.1109/TMC.2007.1053
http://dx.doi.org/10.1109/TMC.2007.1053
http://dx.doi.org/10.1016/j.procs.2011.09.006

