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Abstract 

The present paper is a first attempt of computing a skewness index for the Italian stock market. We 

compare and contrast different measures of asymmetry of the distribution: an index computed with 

the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index formula and two other asymmetry indexes, the 𝑆𝐼𝑋 indexes, as proposed in 

Faff and Liu (2014). We analyze the properties of the skewness indexes, by investigating their 

relationship with model-free implied volatility and the returns on the underlying stock index. 

Moreover, we assess the profitability of skewness trades and disentangle the contribution of the left 

and the right part of the risk neutral distribution to the profitability of the latter strategies. The data 

set consists of FTSE MIB index options data and covers the years 2011-2014, allowing us to 

address the behavior of skewness measures both in bullish and bearish market periods.  

We find that the Italian 𝑆𝐾𝐸𝑊 index presents many advantages with respect to other asymmetry 

measures: it has a significant contemporaneous relation with both returns, model-free implied 

volatility and has explanatory power on returns, after controlling for volatility. We find a negative 

relation between volatility changes and changes in the Italian 𝑆𝐾𝐸𝑊 index: an increase in model-

free implied volatility is associated with a decrease in the Italian 𝑆𝐾𝐸𝑊 index. Moreover, the 

𝑆𝐾𝐸𝑊 index acts as a measure of market greed, since returns react more negatively to a decrease in 

the 𝑆𝐾𝐸𝑊 index (increase in risk neutral skewness) than they react positively to an increase of the 

latter (decrease in risk neutral skewness).  

The results of the paper point to the existence of a skewness risk premium in the Italian market. 

This emerges both from the fact that implied skewness is more negative than physical one in the 

sample period and from the profitability of skewness trading strategies. In addition, the higher 

performance of the portfolio composed by only put options indicates that the mispricing of options 

is mainly focused on the left part of the distribution. 
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1. Introduction  

 

Measuring the asymmetry of a distribution has gained an increasingly important role in finance in 

the recent decades. A symmetric volatility specification, precludes the disentanglement of positive 

and negative extreme stock price movements. The third order moment of a distribution (skewness) 

captures the asymmetry of the distribution. Hence, accounting for skewness allows one to model 

risk-neutral probability distributions with different shapes (more skewed to the left or to the right). 

Skewness can be measured with two alternative methods: first, using historical realizations of the 

underlying asset returns (called physical skewness) or second, by using options traded on the 

underlying asset (called implied skewness). While the first methodology is backward looking, the 

latter is forward looking in nature, since option prices reflect the investors’ expectations about the 

underlying asset distribution at the maturity date. Many studies find that the option-implied 

information is superior to the historical approach (see e.g. Giamouridis and Skiadopoulos (2012) for 

a literature review) in forecasting future realized moments. 

The most important signal of the importance of measuring the skewness of the financial markets is 

the listing on February 2011 at the Chicago Board Options Exchange (CBOE) of the 

𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index. As explained in the CBOE white paper, 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 measures the risk-

neutral skewness of the distribution of S&P500 log-returns at a 30-day constant maturity date and it 

complements the 𝐶𝐵𝑂𝐸 𝑉𝐼𝑋 volatility index with an additional piece of information. In fact, while 

the 𝐶𝐵𝑂𝐸 𝑉𝐼𝑋 measures the expected standard deviation of 30-day S&P500 log-returns, the 𝑆𝐾𝐸𝑊 

index describes the tail risk of the S&P500 distribution. Both are risk-neutral measures and 

therefore embed the investors’ sentiment about the next-30-days volatility and skewness of the 

S&P500 log-returns. If the volatility index 𝑉𝐼𝑋 measures the overall risk in the 30-day S&P500 

log-returns, without disentangling the probability attached to positive and negative returns; the 

skewness index 𝑆𝐾𝐸𝑊 measures the perceived tail risk, i.e. the probability that investors attach to 

extreme negative returns (if the 𝑆𝐾𝐸𝑊 index is high, which points to a negative skewness and a 

distribution which is skewed to the left, extreme negative returns are more often expected than 

positive ones). The (negatively) skewed risk-neutral distribution points to the presence of sizable 

risk premiums in order to be hedged against negative realizations of the underlying asset (tail risk).  
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The existence of a skewness risk premium charged by the market, i.e. the difference between 

physical and risk-neutral skewness, is investigated in a few papers and the sign of the latter is 

debated. Lin et al. (2008) in the English market, find a positive relation between physical and risk-

neutral skewness: the discrepancy between the two suggests that the market charges a high risk 

premium on downside index movements. Kozhan et al. (2013) generalize the notion of variance 

swap (Carr and Wu, 2009) to higher order moments: the fixed leg is the option-implied moment and 

the floating leg is the realized moment. The average profit from the strategy can be interpreted as 

the premium for being exposed to the moment’s risk. In the S&P500 equity index options market 

they find that the average realized skew is negative and substantially smaller, in absolute terms, 

than the average implied skew. Elyasiani et al. (2014), in the time-period January 2005-December 

2009, find that implied risk-neutral skewness is less negative than the subsequently realized one in 

the Italian index options market.  

Another strand of literature investigates the skewness risk premium by using portfolio strategies 

consisting of positions in options and in the underlying asset. Javaheri (2005), based on the 

assumption that the option implied distribution is in general more negatively skewed than the 

historical one, finds mixed evidence on the profitability of skewness trades in the American market. 

Liu (2007) implements vega and delta neutral strategies by using FTSE 100 index options data and 

finds that portfolios with long positions in put options and short positions in call options achieve 

significant negative returns. Bali and Murray (2013) investigate the pricing of risk-neutral skewness 

by using options on individual stocks in the American market and find results consistent with a 

negative skewness risk premium and an investor’s preference for positive skewness. Similar 

findings are obtained by Conrad et al. (2013) on a sample of individual stock options in the 

American market. 

The predictive power of risk-neutral skewness on future realized returns is debated in the literature. 

In fact, if Bali and Murray (2013) and Conrad et al. (2013) find a negative relation, many other 

papers find a positive relation. Xing et al. (2010) find that stocks with the steepest smirks in the 

options market underperform stocks with a less pronounced smirk. Yan (2011), finds that low slope 

portfolios earn higher returns than high slope portfolios. Cremers and Weinbaum (2010) find that 

stocks with relatively expensive calls outperform stocks with relatively expensive puts. Rehman and 

Vilkov (2012) find that option-implied ex ante skewness is positively related to future stock returns. 

Last, Faff and Liu (2014), find that the more negatively skewed is the risk-neutral distribution, the 

lower the future returns in the SPX market. Stilger et al. (2015) argue that the underperformance of 

the portfolios with the lowest risk-neutral skewness is driven by those stocks that are perceived as 

overpriced by investors but hard to sell short.  
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To sum up, a positive relation between risk-neutral and physical skewness is generally found. The 

skewness risk premium is generally found to be significant but the evidence on the sign is mixed. 

The relationship between skewness and subsequently realized returns is debated: some papers find a 

positive relation, others a negative one. The majority of the papers have investigated the American 

market, and have used single stocks, very little is the evidence on market indexes, in particular, 

European ones.  

In this setting, the present paper is a first attempt of filling the gap, in order to delineate a skewness 

index for the Italian stock market. In fact, in the Italian index-options market, while implied 

volatility is currently measured by the implied volatility index, called the 𝐼𝑉𝐼 index (which is 

computed similarly to the 𝑉𝐼𝑋 index), a measure of the asymmetry and tail risk (such as a skewness 

index) has yet to be introduced. We compute both an index similar to the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index and 

investigate also other asymmetry indexes, the 𝑆𝐼𝑋 indexes, as proposed in Faff and Liu (2014). We 

analyze the properties of the skewness indexes, by investigating the relationship between the 

skewness measures, implied volatility and the returns on the underlying stock index. Moreover, we 

assess the profitability of skewness trades and disentangle the contribution of the left and the right 

part of the risk neutral distribution to the profitability of the latter strategies. The data set consists of 

FTSE MIB index options data and covers the years 2011-2014, allowing us to address the behavior 

of skewness measures both in bullish and bearish market periods. 

The results show that in the Italian market, the risk-neutral distribution of the stock market index 

presents a negative asymmetry which is higher in absolute terms than the one of the physical 

distribution. This implies that there exist a negative skewness risk premium, which is supported by 

the empirical evidence that selling out-of-the-money puts and buying out-of-the-money calls is on 

average profitable. In addition, the higher performance of the portfolio composed by only put 

options indicates that the mispricing of options is mainly focused on the left part of the distribution. 

We find a negative relation between volatility changes and changes in the Italian 𝑆𝐾𝐸𝑊 index: an 

increase in model-free implied volatility is associated with a decrease in the Italian 𝑆𝐾𝐸𝑊 index 

(less negative risk neutral distribution). We do not find any significant relation between model-free 

implied volatility and the other asymmetry 𝑆𝐼𝑋𝑚𝑓 indexes.  

By investigating the relation between the skewness indexes and market returns, we find that an 

increase in the 𝑆𝐾𝐸𝑊 index (i.e. the risk neutral distribution becomes more negatively skewed), is 

associated with an increase in the returns. We also detect an asymmetric effect: a decrease in the 

𝑆𝐾𝐸𝑊 index is associated with a strong decrease in the returns, while an increase in the 𝑆𝐾𝐸𝑊 

index is associated with a less pronounced increase in the returns. The market reacts more 

negatively to decreases in the 𝑆𝐾𝐸𝑊 index than it reacts positively to increases in the 𝑆𝐾𝐸𝑊 index. 
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Therefore in this setting the 𝑆𝐾𝐸𝑊 index acts as a measure of market greed and the opposite of the 

𝑆𝐾𝐸𝑊 index (risk neutral skewness) acts as a measure of market fear, since returns react more 

negatively to a decrease in the 𝑆𝐾𝐸𝑊 index (increase in risk neutral skewness) than they react 

positively to an increase of the latter (decrease in risk neutral skewness). When skewness is proxied 

by the 𝑆𝐼𝑋𝑚𝑓 indexes, the slope coefficients are non-significant, pointing to the uselessness of the 

𝑆𝐼𝑋𝑚𝑓 indexes as indicators of current risk. Therefore, we find that the 𝑆𝐾𝐸𝑊 index presents many 

advantages with respect the 𝑆𝐼𝑋𝑚𝑓 indexes: it has a significant contemporaneous relation with both 

returns, model-free implied volatility and is still significant in the explanation of returns, even after 

having controlled for volatility. We also find weak evidence that positive changes in the 𝑆𝐾𝐸𝑊 

index are reflected in a negative return the following day, and that a positive return is reflected in an 

increase of the 𝑆𝐾𝐸𝑊 index. This is in line with Harvey and Siddique (2000), who find that when 

past returns have been high, the investors’ forecast of skewness becomes more negative, 

consistently with the so-called “bubble theory”: if past returns have been high, this means that the 

bubble has been inflating and therefore a large drop can be expected when the bubble is going to 

burst. Given the possibility to use the Italian 𝑆𝐾𝐸𝑊 index for settling portfolio strategies and to 

forecast future returns, and the properties of the 𝑆𝐾𝐸𝑊 index as indicator of market greed, we 

believe that the results of the paper can be of importance for both investors and regulators. 

The plan of the paper is as follows: in Section 2 we review the existing literature about skewness 

measuring and forecasting, in Section 3 we present the different skewness measures, in Section 4 

we describe the data-set and the methodology in order to compute the skewness measures. In 

Section 5 we analyze the properties of the skewness indexes obtained and finally in Section 6 we 

investigate the profitability of skewness trades in line with Bali and Murray (2013), where three 

different portfolios (a 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡, a 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 and a 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 are created in order to 

disentangle the contribution to the profitability of differences in the left or in the right part of the 

distribution or in both. The last section concludes. 

 

2. Literature review  

After the October 1987 crash, many authors recognize that the implied volatility of index options 

varies with a pre-specified pattern: out-of-the-money put options are more expensive than out-of-

the-money call options (the so called skew or smirk). This phenomenon has been called (Rubinstein 

1994) the “crash-o-phobia”, since put options are deemed to be more expensive than call options 

because they provide protection against stock market crashes. Jackwerth and Rubinstein (1996) 
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investigate S&P 500 index option prices over an eight-year period from April, 1986 through 

December, 1993.  They find that risk-neutral skewness and kurtosis show a discontinuity across the 

1987 market crash: the risk-neutral probability of another significant decline in the S&P 500 index 

is increased after the crash. Aït-Sahalia and Lo (1998) propose a non-parametric technique for the 

estimation of the state price density implicit in option prices which is able to account for the 

skewness and the kurtosis of the risk-neutral density. Dennis and Mayhew (2002) investigate the 

volatility skew observed in S&P 500 index option from April, 1986 through December, 1996. The 

find that risk-neutral density tends to be more negatively skewed for stocks with higher betas, in 

periods of higher market volatility, and in periods when the implied density of the index is more 

negatively skewed. They also find evidence that some firm specific factors including liquidity and 

firm size are important in explaining the variation in the skew for individual firms, while they do 

not find a robust relationship between risk-neutral skewness and the underlying stock's leverage 

ratio.  

Even though the skew pattern of implied volatilities has been widely documented in the literature, 

only recently it has attracted the attention of researchers from the modelling perspective. The skew 

is reflected in a (negatively) skewed risk-neutral distribution and this points to the presence of 

sizable risk premiums in order to be hedged against negative realizations of the underlying asset 

(tail risk).  Some papers investigate the relation between the risk-neutral skewness of the index and 

the skewness of the individual stocks which are part of the index. Overall, they find that the risk-

neutral distribution of the index is more negatively skewed than that of individual stocks. Bakshi et 

al. (2003) propose a formula (BKM formula from now on)  to extract implied moments from a 

cross-section of option prices. The formula is model-free because it is not based on any option 

pricing model and it is consistent with many different asset price dynamics. The authors, by using 

options prices on the S&P 100 index and on the 30 largest stocks of the S&P 100 index in the 

period between January, 1991 and December, 1995, find that the risk-neutral distribution of the 

market index is more negatively skewed than that of the individual stocks. Similar results are 

obtained by Lin et al. (2008) who investigate the structure of the implied volatility smile in the 

English options market by using prices from 79 individual stock options and the FTSE 100 index 

options recorded from March 1992 through December 2002. They find that the slope of the implied 

volatility curve is significantly negative for both individual stock options and stock index options, 

however the risk-neutral skewness of individual stocks is less negative than that of the market 

index. Compared to the American market, the English market displays a flatter implied volatility 

skew. Moreover, they find a humped shape relationship between the underlying asset’s skewness 

and the options’ time-to-maturity: when the latter increases, the slope of the skew increases up to a 



7 
 

point above which it decreases for longer-term maturity options. They also find a significantly 

positive relation between the physical and the risk-neutral moment.  

Other papers investigate the skewness risk premium i.e. the difference between physical and risk-

neutral skewness. The first paper that points to the existence on a premium charged by the market 

on downside index movements is Foresi and Wu (2005), by analyzing twelve major equity indexes 

on ten years of data (May 1995-May 2005). Lin et al. (2008), on a data set made of individual stock 

options traded in the LIFFE find a positive relation between physical and risk-neutral skewness: the 

discrepancy between the two suggests that the market charges a high risk premium on downside 

index movements. More recently, Neuberger (2012) finds that implied skewness predicts future 

realized skewness, computed from high-frequency returns, in the S&P500 index options market 

from December 1997 to September 2009. By providing an unbiased estimate of the third moment, it 

is found that the realized second and third moments are highly correlated. Realized skewness 

increases with the horizon: investors with long horizons require a higher risk premium. Kozhan et 

al. (2013) generalize the notion of variance swap (Carr and Wu, 2009) to higher order moments: the 

fixed leg is the option-implied moment and the floating leg is the realized moment. The average 

profit from the strategy can be interpreted as the premium for being exposed to the moment’s risk. 

In the S&P500 equity index options market in the period between January, 1996 and January, 2012, 

it is found that the average realized skew is negative and substantially smaller, in absolute terms, 

than the average implied skew. In addition, they show that the skew risk premium is closely related 

to the variance risk premium: they both vary over time and are driven by a common factor 

(strategies to capture one and hedge out exposure to the other earn insignificant trading profits). 

Elyasiani et al. (2014), in the time-period January 2005-December 2009 find that implied risk-

neutral skewness is less negative than the subsequently realized one in the Italian index options 

market. Chang et al. (2013), by analyzing various stocks in the American market in the time period 

January 1996-January 2012, point to a negative skewness risk premium, which is economically 

significant and not explained by other common risk factors. Bali and Murray (2013), by 

investigating individual stocks in the American market in the time period January 1996-October 

2010, find a negative skewness risk premium, reflected in a preference of the investors for assets 

with positive skewness.  

Another strand of literature investigates the skewness risk premium by using portfolio strategies 

consisting of positions in options and in the underlying asset. Javaheri (2005) looks for profit 

opportunities arising from the mispricing of options. Based on the assumption that the option 

implied distribution is in general more negatively skewed than historical one, the author suggests to 

buy out-of-the-money calls and sell out-of-the-money put. This portfolio can be interpreted as an 
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insurance selling strategy. In fact the trade generates consistent profits if no crash happens but in 

case of a sudden downward large movement, it yields a significant loss. By using S&P500 options 

from January, 2002 to January, 2003, the author finds mixed evidence on the profitability of 

skewness trades.  Liu (2007) implements vega and delta neutral strategies by using FTSE 100 index 

options data from January 1996 to April 2000. Portfolios with long positions in put options and 

short positions in call options achieve significant negative returns. The evidence suggests that out-

of-the-money put options are overpriced compared to out-of-the-money call options. However, the 

profitability of the opposite strategy is unlikely to materialize because arbitrage profits are eroded 

by bid-ask spreads. Bali and Murray (2013) investigate the pricing of risk-neutral skewness by 

using options on individual stocks in the American market from January, 1996 to October, 2010. 

The portfolios are delta and vega neutral, isolating a position in skewness (hence the portfolios are 

called skewness assets). They find a strong and robust relationship between risk-neutral skewness 

(measured with BKM methodology) and the skewness asset returns which represent a long 

skewness position. They argue that this results are consistent with a negative skewness risk 

premium and an investor’s preference for positive skewness. Similar results are obtained by Conrad 

et al. (2013) on a sample of individual stock options in the American market from January, 1996 to 

December, 2005. They find a strong and negative relationship between the third order moment and 

the subsequent returns: firms with less negative or positive skewness are associated with lower 

returns over the next month. This means that investors seem to prefer assets with positive skewness. 

The relationship between skewness and returns is both economically and statistically significant and 

persists even after various controls. Moreover, they find that risk-neutral skewness can be 

considered as a market-based forward looking prediction of physical skewness. 

On this latter point, i.e. the relationship between skewness and subsequently realized returns the 

evidence in the literature is mixed. In fact, if Bali and Murray (2013) and Conrad et al. (2013) find a 

negative relation, many other papers find a positive relation. Xing et al. (2010) investigate the 

relationship between the shape of the volatility smirk and the cross-section of future equity returns, 

by using options on individual stocks in the time-period from January 1996 to December 2005. 

They find that stocks with the steepest smirks in the options market underperform stocks with a less 

pronounced smirk. Yan (2011), in the Option Metrics database from January 1996-January 2005,  

finds that low slope portfolios earn higher returns than high slope portfolios, where the average 

stock jump size is proxied by the slope of option implied volatility smile. Cremers and Weinbaum 

(2010), in the Option Metrics database from January 1996-January 2005 find that stocks with 

relatively expensive calls outperform stocks with relatively expensive puts. Rehman and Vilkov 

(2012) in the Option Metrics database from January 1996 to June 2007 find that option-implied ex 
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ante skewness is positively related to future stock returns. Last, Faff and Liu (2014) in the S&P 

index options market on the time-period from January 1996 to August 2013, find that the more 

negatively skewed is the risk-neutral distribution, the lower the future returns in the SPX market. 

Stilger et al. (2015) investigate the relationship between risk-neutral skewness of individual stocks 

and future realized stock returns over the period January, 1996 and December, 2012. By using a 

strategy that is long the quintile portfolio with the highest risk-neutral skewness stocks and short the 

quintile portfolio with the lowest risk-neutral skewness stocks, they find that the relationship is 

significant and positive. They also argue that the underperformance of the portfolios with the lowest 

risk-neutral skewness is driven by those stocks that are perceived as overpriced by investors but 

hard to sell short.  

To sum up, the majority of the papers find a positive relation between risk-neutral and physical 

skewness, individual stocks are generally more negatively skewed than the market indexes. The 

skewness risk premium is generally found to be significant but the evidence on the sign is mixed 

(even if we can say that most of the studies find that risk-neutral skewness is generally greater in 

absolute value than physical skewness). The relationship between skewness and subsequently 

realized returns is debated: some papers find a positive relation, others a negative one. The majority 

of the papers have investigated the American market, and individual stocks, very little is the 

evidence on European markets and market indexes. 

 

3. Skewness measures 

Bakshi et al. (2003) develop a model-free method in order to extract volatility, skewness and 

kurtosis of the risk-neutral distribution from a cross section of option prices. Their methodology is 

called model-free, since it does not rely on any option pricing model, being consistent with many 

underlying asset price dynamics. Model-free skewness is obtained from the following equation: 

 

𝑆𝐾(𝑡, 𝜏)  =   
𝑒𝑟𝜏𝑊(𝑡, 𝜏) − 3𝑒𝑟𝜏𝜇(𝑡, 𝜏)𝑉(𝑡, 𝜏) + 2𝜇(𝑡, 𝜏)3

[𝑒𝑟𝜏𝑉(𝑡, 𝜏) −  𝜇(𝑡, 𝜏)2]3/2
 (1) 

 with  

𝜇(𝑡, 𝜏) ≡  𝐸𝑞 𝑙𝑛[𝑆(𝑡 +  𝜏) 𝑆(𝑡)⁄ ] =  𝑒𝑟𝜏 − 1 −
𝑒𝑟𝜏

2
𝑉(𝑡, 𝜏) −

𝑒𝑟𝜏

6
𝑊(𝑡, 𝜏) −

𝑒𝑟𝜏

24
𝑋(𝑡, 𝜏) (2) 
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𝑉(𝑡, 𝜏) = ∫
2(1 − 𝑙𝑛[𝐾 𝑆(𝑡)⁄ ])

𝐾2
 𝐶(𝑡, 𝜏;  𝐾) 𝑑𝐾 + ∫

2(1 + 𝑙𝑛 [𝑆(𝑡)/𝐾]

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾 

𝑆(𝑡)

0

 
∞

𝑆(𝑡)

 (3) 

𝑊(𝑡, 𝜏) = ∫
6 𝑙𝑛[𝐾/𝑆(𝑡)] − 3 𝑙𝑛[𝐾/𝑆(𝑡)]2

𝐾2
𝐶(𝑡, 𝜏;  𝐾)𝑑𝐾

∞

𝑆(𝑡)

− ∫
6 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ + 3 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 2

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾

𝑆(𝑡)

0

   

(4) 

𝑋(𝑡, 𝜏) = ∫
12 𝑙𝑛[𝐾/𝑆(𝑡)]2 − 4 𝑙𝑛[𝐾/𝑆(𝑡)]3

𝐾2
𝐶(𝑡, 𝜏;  𝐾)𝑑𝐾

∞

𝑆(𝑡)

+  ∫
12 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 2

+ 4 𝑙𝑛 [𝑆(𝑡) 𝐾]⁄ 3

𝐾2
𝑃(𝑡, 𝜏;  𝐾)𝑑𝐾

𝑆(𝑡)

0

 

(5) 

where 𝐶(𝑡, 𝜏;  𝐾) and 𝑃(𝑡, 𝜏;  𝐾) are the prices of a call and a put option at time 𝑡 with maturity 𝜏 

and strike 𝐾, respectively, 𝑆(𝑡), is the underlying asset price at time 𝑡.  

Equation (1) is used in the computation of the skewness index called 𝑆𝐾𝐸𝑊, which measures the 

investors’ perceived skewness of the Chicago Board Option Exchange. Since the risk-neutral 

skewness attains typically negative values for equity indices, in order to enhance the interpretation, 

CBOE defines 𝑆𝐾𝐸𝑊 as:  

𝑆𝐾𝐸𝑊 = 100 − 10 × 𝑆𝐾 (6) 

where 𝑆𝐾 is the 30-day measure of risk-neutral skewness. Therefore, with a negative risk-neutral 

skewness, 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 attains  positive values bigger than 100. 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 measures the slope 

of the implied volatility curve: the more the curve is steep, the higher the 𝑆𝐾𝐸𝑊 index. Therefore,  

𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 can be also considered as a measure of the perceived tail risk of S&P500 log-returns 

at a 30-day horizon. Tail risk is the risk associated with an increase in the probability of extreme 

negative returns: returns two or more standard deviations below the mean (market crash, black 

swan). The probability of this type of events may be negligible for a normal distribution, but it 

could be significant for a skewed one with fat tails. This is the case of the distribution of S&P500 

log-returns which have a sizeable left tail and it is therefore riskier than a normal distribution with 

the same mean and variance: 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 quantifies this additional risk. Historically, 

𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 has varied in a range of about 50 points around an average value of 115. Its 

maximum value is 146.88 reached on October 16, 1998 during the Russian crisis and after a 

surprising rate cut by the Fed. 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 reached its all-time low of 101.09 on March 21, 1991 

at the end of the recession that started in July 1990. This means that the implied distribution of 

S&P500 log-returns has been historically always left-skewed.  
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It is worth noting that, in order to apply formula (1) in the financial market, where a continuum of 

option prices in strikes is not traded, both truncation and discretization errors occur. In the 

computation of the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index, only at-the-money and out-of-the money options with 

maturity of at least one week are considered. Furthermore, the interval of strike prices used is cut 

once two consecutive options with zero bid prices are found. As a result, if a change in volatility 

occurs then the number of options considered in the computation may change. Other critical issues 

in the CBOE methodology concern the linear interpolation between near and next term maturities, 

which may induce a bias if model-free skewness is not a linear function of maturity. Furthermore 

the use of the average between the lowest ask price and the highest bid price as a proxy of the 

option price may lead to errors when the bid-ask spreads are wide. Nonetheless, the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 

index formula is the market standard for the computation of skewness indexes nowadays. 

In order to overcome some of the limits of the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 methodology when only a few strike 

prices are traded, Faff and Liu (2014) propose a model-based methodology to compute skewness in 

a Black-Scholes framework, by using a state-preference pricing approach. They use Black-Scholes 

implied volatilities instead of the model-free formula extracted from a few options: only two at-the-

money call and put options with maturity closest to a 30-day period.  

They define the skewness index 𝑆𝐼𝑋, which is computed as the ratio of the lower partial moment 

volatility to the upper partial moment volatility of market returns as follows: 

𝑆𝐼𝑋 =
𝐵𝐸𝑋

𝐵𝑈𝑋
 (7) 

where 𝐵𝐸𝑋 (the bear index) and 𝐵𝑈𝑋 (the bull index) are the lower and upper partial moment 

volatility indexes of market returns. Liu (2014) define 𝐵𝐸𝑋2 as a financial asset that pays a dollar 

amount of 𝑙𝑛 (𝑆𝑇 𝑆𝑡⁄ )2 at some future date 𝑇, for every future index level 𝑆𝑇 and spot price level 𝑆𝑡 

if 𝑆𝑇 ≤ 𝑆𝑡, or $0 otherwise. 𝐵𝐸𝑋2 can be obtained as: 

𝐵𝐸𝑋2 = ∑ 𝛷𝑠

𝑆

𝑠=1

[𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) − ℎ]

2

𝐼ln (𝑆𝑇 𝑆𝑡)≤ℎ⁄  (8) 

with 𝑆𝑡 that is the current stock market index, 𝑆𝑇 is the index value at time 𝑇, 𝛷𝑠 is the risk-neutral 

probability of reaching 𝑆𝑇 (or equivalently the state price density) and ℎ is the threshold level that 

can be set to any arbitrary value (e.g. 0, the risk-free rate, or the expected return 𝐸(𝑅)). 

Symmetrically 𝐵𝑈𝑋2  is computed as follows:  

𝐵𝑈𝑋2 = ∑ 𝛷𝑠

𝑆

𝑠=1

[𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) − ℎ]

2

𝐼ln (𝑆𝑇 𝑆𝑡)>ℎ⁄  (9) 
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i.e. it pays a dollar amount of 𝑙𝑛 (𝑆𝑇 𝑆𝑡⁄ )2 if 𝑆𝑇 > 𝑆𝑡, or $0 otherwise. The argument underlying the 

𝑆𝐼𝑋 formula is the following: if the risk-neutral distribution is symmetric, 𝑆𝐼𝑋 in equation (7) is 

equal to 1; if the risk-neutral distribution is left (right) skewed, 𝑆𝐼𝑋 is greater (lower) than 1. 

Liu (2014) estimated the state prices as: 

𝛷(𝐾𝑖, 𝐾𝑖+1) = 𝑒−𝑟𝑇{𝑁[𝑑2(𝐾𝑖)]} − {𝑁[𝑑2(𝐾𝑖+1)]} (10) 

where 𝐾𝑖 < 𝐾𝑖+1 

𝑑2(𝐾) =
ln(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝜕 − 𝜎2 2⁄ )𝑇

𝜎√𝑇
 (11) 

where 𝜕 is the dividend yield and 𝜎 is estimated as the average of four Black-Scholes implied 

volatilities from two at-the-money calls and two at-the-money puts with maturities the closest to a 

30-day period. In order to discretize the state price density, Liu (2014) choose a grid of states 

spanning from 0.1 to 9999, with a 0.10 increments. 

It is worth recalling that in order to capture the asymmetry of the distribution, many authors in the 

literature use the difference between the implied volatilities of two options with different 

moneyness as a proxy of risk-neutral skewness. Bali et al. (2014) use the difference in implied 

volatilities between an out-of-the-money call option and an out-of-the-money put option with delta 

equal to -0.25 and 0.25 respectively. Yan (2011) uses the difference in implied volatilities between 

a near-the-money put option and a near-the-money call option with delta equal to -0.5 and 0.5 

respectively. Xing, Zhang and Zhao (2010) measure the slope of the volatility smile as the 

difference between the implied volatility of an out-of-the-money put option whose moneyness is 

between 0.80 and 0.95 and the implied volatility of an at-the-money call option with moneyness 

between 0.95 and 1.05. Similar proxies are used in the present paper in order to define portfolio 

trading strategies. 

 

4. The data-set and the methodology for the computation of the skewness indexes 

The data set consists of closing prices on FTSE MIB-index options (MIBO), recorded from 3 

January 2011 to 28 November 2014. MIBO are European options on the FTSE MIB, which is a 

capital weighted index composed of 40 major stocks quoted on the Italian market. As for the 

underlying asset, closing prices of the FTSE MIB-index recorded in the same time period are used. 

The FTSE MIB is adjusted for dividends as follows: 

�̂�𝑡 = 𝑆𝑡𝑒−𝛿𝑡∆𝑡 (12) 
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where 𝑆𝑡 is the FTSE MIB index value at time 𝑡, 𝛿𝑡 is the dividend yield at time 𝑡 and ∆𝑡 is the time 

to maturity of the option. As a proxy for the risk-free rate, Euribor rates with maturities one week, 

one, two and three months are used: the appropriate yield to maturity is computed by linear 

interpolation. The data-set for the MIBO is kindly provided by Borsa Italiana S.p.A; the time series 

of the FTSE MIB index, the dividend yield and the Euribor rates are obtained from Datastream. 

Several filters are applied to the option data set. First, consistently with the computational 

methodology of other indexes (such as the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊), we eliminate options near to expiry 

which may suffer from pricing anomalies that might occur close to expiration (options with time to 

maturity of less than eight days). Second, following Ait-Sahalia and Lo (1998) only at-the-money 

option and out-of-the-money options are retained (put options with moneyness lower than 1.03 and 

call options with moneyness higher 0.97). Last, option prices violating the standard no-arbitrage 

constraints are eliminated. 

In order to compute risk-neutral skewness, in this paper we follow two different model-free 

methods: we use both the methodology adopted by the CBOE that relies on the Bakshi et al. (2003) 

formula and the Faff and Liu (2014) formula with some modifications. The Faff and Liu (2014) 

formula provides an appealing intuition on the possibility to measure skewness as the ratio between 

the right and left part of the distribution of the asset return, however, it suffers from the following 

drawbacks. First, it is a model-based approach, since it relies on the Black-Scholes formula. Many 

papers in the literature have highlighted the inconsistency of the assumption of a constant volatility 

as supposed in the Black-Scholes model with the empirical evidence in the financial market. 

Second, it considers only four around-the-money options in the estimation of the implied volatility 

to plug in the Black-Scholes formula, discarding the other options traded, this results in a 

considerable loss of information. In order to overcome this limits we propose to compute the 

asymmetry index, which we indicate as 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓, in a model-free setting.  

We stick to the Faff and Liu (2014) intuition of computing the ratio between the volatility of the left 

and the right part of the distribution, however, in order to have a model-free measure of the upside 

and downside volatility, we use the enhanced Derman and Kani method (Moriggia et al. 2009) in 

order to derive the risk-neutral distribution of the underlying asset at the maturity date 𝑇. The 

implied tree has uniformly spaced levels ∆𝑡 apart. Let 𝑗 = 0, … , 𝑛 be the number of levels of the 

tree, that are spaced by ∆𝑡 = 𝑇/𝑛. As the tree recombines, 𝑖 = 1, … , 𝑗 + 1 is the number of nodes at 

level 𝑗. The use of the Enhanced Derman and Kani method ensures the absence of no-arbitrage 

violations in the implied tree and it is motivated by its simplicity and the good replication of the 

smile pattern, as documented e.g. in Muzzioli 2013a (2013b) and Elyasiani et al. (2015). 

The volatilities in the upper and lower part of the tree are computed as: 
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𝑉𝑂𝐿𝑈𝑃(𝑡, 𝑇) = √∑ 𝛷𝑖[𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) − ℎ]2 𝐼𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ )>ℎ

𝑗+1

𝑖=1

 
 (13) 

𝑉𝑂𝐿𝐷𝑊(𝑡, 𝑇) = √∑ 𝛷𝑖[𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) − ℎ]2 𝐼𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ )≤ℎ

𝑗+1

𝑖=1

 (14) 

where 𝛷𝑖 is the state price density and corresponds to the risk-neutral probability of reaching the 

ending node 𝑖 at time 𝑇, with 𝑖 = 1, … , 𝑗 + 1; 𝑙𝑛(𝑆𝑖 𝑆𝑡⁄ ) is the log-return of the underlying asset at 

node 𝑖; 𝑆𝑖 is the underlying asset price at the ending node 𝑖; 𝑆𝑡 is the underlying spot price at time 

0 and ℎ is threshold level. In particular, following Faff and Liu (2014) we use two values for ℎ: 

- ℎ = 0 to compute 𝑆𝐼𝑋𝑚𝑓0; 

- ℎ = 𝐸(𝑅) to calculate 𝑆𝐼𝑋𝑚𝑓𝑅. 

The model-free skewness index 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓 is computed (following the Faff and Liu (2014) intuition) as 

follows: 

𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓 =

𝑉𝑂𝐿𝑈𝑃

𝑉𝑂𝐿𝐷𝑊
 (15) 

 

In order to have a constant 30-days measure for the implied skewness, we derive the skewness 

indexes by using a linear interpolation with the same formula which is adopted for the computation 

of the 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index: 

𝑆𝐾 = 𝑤 𝑆𝐾𝑛𝑒𝑎𝑟 + (1 − 𝑤) 𝑆𝐾𝑛𝑒𝑥𝑡 (16) 

with 𝑤 =
𝑇𝑛𝑒𝑥𝑡−30

𝑇𝑛𝑒𝑥𝑡−𝑇𝑛𝑒𝑎𝑟
, and 𝑇𝑛𝑒𝑎𝑟 (𝑇𝑛𝑒𝑥𝑡 ) is the time to expiration of the near (next) term options, 

 𝑆𝐾𝑛𝑒𝑎𝑟 (𝑆𝐾𝑛𝑒𝑥𝑡) is the skewness measure which refers to the near (next) term options, respectively.  

Physical moments are obtained from daily FTSE MIB log-returns by using a rolling window of 30 

calendar days. In this way the physical measures refer to the same time-period covered by the risk-

neutral counterparts. 

Following the methodology adopted by the CBOE, to facilitate the interpretation we compute the 

skewness indexes as in equation (6).  For the 𝑆𝐼𝑋𝑚𝑓 index 𝑆𝐾 = (1 − 𝑆𝐼𝑋̅̅ ̅̅ ̅
𝑚𝑓0) or (1 − 𝑆𝐼𝑋̅̅ ̅̅ ̅

𝑚𝑓𝑅) in 

equation (6) in order to have the same interpretation: values above the threshold level 100 suggest 

that the distribution displays negative skewness and vice versa. Physical skewness is computed as in 

equation (6) for ease of comparison.  
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5. The results for the skewness indexes 

Skewness indexes are depicted in Figure 1. We can observe that 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 show the same 

pattern, but 𝑆𝐼𝑋𝑚𝑓0 is shifted upward and its variation range is slightly narrower. This is due to the 

different barrier level ℎ used in the two measures (ℎ = 0 and ℎ = 𝐸(𝑅) for 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 

respectively). Compared to the latter measures, 𝑆𝐾𝐸𝑊 displays a higher standard deviation. 

Moreover, 𝑆𝐼𝑋𝑚𝑓 indexes present a few number of peaks than 𝑆𝐾𝐸𝑊.  

Table 1 provides the summary statistics for the FTSE-MIB index returns, the model-free implied 

volatility (which is computed using the model-free methodology as in Muzzioli (2013) (with an 

extrapolation outside the existing domain of strike prices with a constant volatility function)), the 

skewness indexes (physical and risk-neutral), the daily changes in the model-free implied volatility 

and the daily changes in the risk-neutral skewness indexes. The physical returns display negative 

skewness and excess kurtosis and they are far from the normality assumption. For model-free 

implied volatility the hypothesis of a normal distribution is strongly rejected, indicating the 

presence of extreme movements in volatility. We can observe that all the skewness indexes are on 

average higher than the threshold level of 100. This suggests that in general, both physical and risk-

neutral skewness are negative in the sample period, with the physical distribution less negatively 

skewed than the risk-neutral one (as measured by both the 𝑆𝐾𝐸𝑊 and the 𝑆𝐼𝑋𝑚𝑓 indexes). Unlike 

previous evidence (Elyasiani et al. 2014) on a different time-period (2005-2009), we find that 

extreme price decreases are more likely than extreme price rises and that they are more often 

expected (under the risk-neutral distribution) than subsequently realized (similar findings are in 

Conrad et al. (2013)). All the skewness measures (both physical and risk neutral) display positive 

skewness and excess kurtosis and the hypothesis of a normal distribution is strongly rejected, 

indicating the presence of extreme movements also in the skewness measures. Physical skewness is 

the most symmetric one among skewness measures, followed by the 𝑆𝐾𝐸𝑊 index. The 𝑆𝐼𝑋𝑚𝑓 

indexes are the most far from the normal distribution. The  𝑆𝐼𝑋𝑚𝑓 indexes are not directly 

comparable in the levels to the other indexes. They are less volatile than 𝑆𝐾𝐸𝑊 and on average 

𝑆𝐼𝑋𝑚𝑓0 points to a more negative skewed distribution than  𝑆𝐼𝑋𝑚𝑓𝑅, being the distribution sliced 

slightly left of zero. This suggests that 𝐸(𝑅) implied in option prices is slightly less than zero.  

In Table 2 we report the correlation coefficients between the skewness measures and other moments 

of the return distribution, both in the levels and in the daily changes. We can observe that the 

𝑆𝐾𝐸𝑊 index displays the highest correlation (0.156) with realized skewness, while the 𝑆𝐼𝑋𝑚𝑓 

indexes are almost unrelated with physical skewness. 𝑆𝐾𝐸𝑊 presents a positive correlation (0.21) 
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with daily returns, the highest in absolute value, while the 𝑆𝐼𝑋𝑚𝑓 indexes are almost unrelated to 

daily returns. Interestingly, while the 𝑆𝐾𝐸𝑊 index has a negative correlation with the model-free 

implied volatility, the 𝑆𝐼𝑋𝑚𝑓 indexes show a positive correlation. Therefore, according to the 

𝑆𝐾𝐸𝑊 (𝑆𝐼𝑋𝑚𝑓) index, the risk-neutral distribution of the FTSE-MIB index returns is less (more) 

negatively skewed when model-free implied volatility is high. The value of the correlation between 

𝑆𝐾𝐸𝑊 and model-free implied volatility (-0.284) is similar to the value of the correlation between 

𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index and 𝐶𝐵𝑂𝐸 𝑉𝐼𝑋 index computed over the same period (-0.291). 𝑆𝐾𝐸𝑊 also 

shows an average value of about 104 over the period 2011-2014, far lower than the corresponding 

average value of 𝐶𝐵𝑂𝐸 𝑆𝐾𝐸𝑊 index (123.68). This means that in general the risk-neutral 

distribution of log-returns in the Italian market is less asymmetric in the sample period than the one 

of the S&P 500 index. The correlation between the daily changes of the 𝑆𝐾𝐸𝑊 index and the daily 

changes in model-free implied volatility is negative suggesting that a positive change in model-free 

implied volatility is associated to a negative change in the 𝑆𝐾𝐸𝑊 index. Daily changes in the 

𝑆𝐼𝑋𝑚𝑓 indexes are almost unrelated to volatility changes. The correlation between the daily changes 

of the 𝑆𝐾𝐸𝑊 index and the returns is positive suggesting that a positive return is associated to a 

positive change in the 𝑆𝐾𝐸𝑊 index. The 𝑆𝐼𝑋𝑚𝑓 indexes are almost unrelated to returns.    

We report in Figure 2 the graphs of the 𝑆𝐾𝐸𝑊 index and of the 𝑆𝐼𝑋𝑚𝑓0 index along with the FTSE 

MIB index (the graphical comparison with 𝑆𝐼𝑋𝑚𝑓𝑅 is not reported, since it shares the same pattern 

of 𝑆𝐼𝑋𝑚𝑓0). In order to investigate the relation between changes in the skewness measures and 

changes in model-free implied volatility, we estimate the following regression: 

𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 = 𝛼 + 𝛽𝛥𝐼𝑉𝑡 + 휀𝑡  (17) 

where 𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by 𝛥𝑆𝐾𝐸𝑊𝑡 , 𝛥𝑆𝐼𝑋𝑚𝑓0𝑡
 , 𝛥𝑆𝐼𝑋𝑚𝑓𝑅𝑡

and provide the results in Table 

3. The results point to a negative relation between volatility changes and changes in the 𝑆𝐾𝐸𝑊 

index (β statistically different from zero): an increase in model-free implied volatility is associated 

with a decrease in the 𝑆𝐾𝐸𝑊 index (less negative risk neutral distribution). We do not find any 

significant relation between model-free implied volatility and the 𝑆𝐼𝑋𝑚𝑓 indexes. The results for the 

𝑆𝐾𝐸𝑊 index are consistent with the findings in Chang et al. (2013) in the S&P500 index options 

market. Moreover, Neuberger (2012) finds also a positive correlation coefficient (equal to 0.297 in 

the time period 1997-2009, on S&P500 index options market) between model-free variance and 

skewness, implying that the higher the variance, the less skewed the distribution. Recall that the 

correlation between volatility and returns is negative (leverage effect). A possible explanation is 

that when volatility is high, returns are low (for example in a stressed market or after a market 
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crash) and a repeat crash (as indicated by the 𝑆𝐾𝐸𝑊 index) may not be viewed as that likely. On 

the other hand, when volatility is low, returns are high (tranquil market) and the possibility of a 

crash is viewed as more probable. 

In order to investigate the relation between changes in the skewness measures and the returns of the 

FTSE-MIB index, we estimate the following regression: 

𝑅𝑡 = 𝛼 + 𝛽𝛥𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 휀𝑡  (18) 

where Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by Δ𝑆𝐾𝐸𝑊𝑡 , Δ𝑆𝐼𝑋𝑚𝑓0𝑡
 , Δ𝑆𝐼𝑋𝑚𝑓𝑅𝑡

and provide the results in Table 

4. We want to assess if the skewness measures can be considered as indicators of market stress or 

market greed. The slope coefficient of changes in the 𝑆𝐾𝐸𝑊 index is positive and significant, this 

means that an increase in the 𝑆𝐾𝐸𝑊 index (i.e. the risk neutral distribution becomes more 

negatively skewed), is associated with an increase in the returns. Therefore positive peaks in 𝑆𝐾𝐸𝑊 

can be considered as indicators of investors’ greed, negative peaks in 𝑆𝐾𝐸𝑊 can be considered as 

indicators of investors’ fear (market stress). When skewness is proxied by the 𝑆𝐼𝑋𝑚𝑓 indexes, the 

slope coefficients are non-significant, pointing to the uselessness of the 𝑆𝐼𝑋𝑚𝑓 indexes as indicators 

of current risk.  

In order to disentangle the effect of positive and negative changes in the 𝑆𝐾𝐸𝑊 index on FTSE-

MIB index returns, we divide the changes in the 𝑆𝐾𝐸𝑊 index into positive ones: 

∆𝑆𝐾𝐸𝑊𝑡
+ = ∆𝑆𝐾𝐸𝑊𝑡  if  ∆𝑆𝐾𝐸𝑊𝑡 > 0, otherwise ∆𝑆𝐾𝐸𝑊𝑡

+ = 0  (19) 

and negative ones: 

∆𝑆𝐾𝐸𝑊𝑡
− = ∆𝑆𝐾𝐸𝑊𝑡  if  ∆𝑆𝐾𝐸𝑊𝑡 < 0, otherwise ∆𝑆𝐾𝐸𝑊𝑡

− = 0  (20) 

and estimate the following regression: 

𝑅𝑡 = 𝛼 + 𝛽1Δ𝑆𝐾𝐸𝑊𝑡
+ + 𝛽2Δ𝑆𝐾𝐸𝑊𝑡

− + 휀𝑡 

 

 (21) 

Table 5 reports the regression results. Both positive and negative changes in the 𝑆𝐾𝐸𝑊 index are 

highly significant. Both slope coefficients are positive, however, the slope coefficient of negative 

changes in the 𝑆𝐾𝐸𝑊 index is more than twice the slope of positive changes in the 𝑆𝐾𝐸𝑊 index. 

This indicates an asymmetric effect: a decrease in the 𝑆𝐾𝐸𝑊 index is associated with a strong 

decrease in the returns, while an increase in the 𝑆𝐾𝐸𝑊 index is associated with a less pronounced 

increase in the returns. The market reacts more negatively to decreases in the 𝑆𝐾𝐸𝑊 index than it 

reacts positively to increases in the 𝑆𝐾𝐸𝑊 index. Therefore in this setting the 𝑆𝐾𝐸𝑊 index acts as 

a measure of market greed and the opposite of the 𝑆𝐾𝐸𝑊 index (risk neutral skewness) acts as a 

measure of market fear, since returns react more negatively to a decrease in the 𝑆𝐾𝐸𝑊 index 
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(increase in risk neutral skewness) than they react positively to an increase of the latter (decrease in 

risk neutral skewness). An increase (decrease) in the 𝑆𝐾𝐸𝑊 index means that the risk-neutral 

distribution becomes more (less) negatively skewed, and this is seen as good (bad) news from the 

return side.  

As a last step, in order to assess the relation among returns, changes in model-free implied volatility 

and changes in the skewness measures, we estimate the following regression: 

𝑅𝑡 = 𝛼 + 𝛽1Δ𝐼𝑉𝑡 + 𝛽2Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 휀𝑡  (22) 

where Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 is proxied by Δ𝑆𝐾𝐸𝑊𝑡 , Δ𝑆𝐼𝑋𝑚𝑓0𝑡
 , Δ𝑆𝐼𝑋𝑚𝑓𝑅𝑡

, Δ𝐼𝑉𝑡 is the change in model-free 

implied volatility, and provide the results in Table 6. We can see that the beta coefficient of changes 

in model-free implied volatility is highly significant in every regression. While changes in the 

𝑆𝐾𝐸𝑊 index are significant, changes in the 𝑆𝐼𝑋𝑚𝑓 indexes are not significant. Therefore, the 

𝑆𝐾𝐸𝑊 index presents many advantages with respect the 𝑆𝐼𝑋𝑚𝑓 indexes: it has a significant 

contemporaneous relation with both returns, model-free implied volatility and is still significant in 

the explanation of returns, even after having controlled for volatility. 

As a second goal of the study, we want to assess if the 𝑆𝐾𝐸𝑊 index can be used in order to forecast 

future market returns. In a previous study, Muzzioli (2013) find that changes in implied volatility 

(as measured by both Black-Scholes implied volatility and model-free implied volatility) can be 

used as an early-warning of market stress, and that the returns have explanatory power in 

forecasting future implied volatility. Pan and Poteshman (2006) find that publicly observable option 

signals are able to predict stock returns for only the next one or two trading days, before stock 

prices subsequently reverse. Other papers (Xing et al. 2010) find that the predictability from 

volatility smirks persists for a period much longer (six months).  

To this end, we estimate a vector autoregression (VAR) model as follows: 

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 (23) 

Δ 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 (24) 

 

with 𝑘 = 2, chosen according to both the Schwarz and Hannan-Quinn information criterions, in 

order to keep the model as parsimonious as possible, the estimation output is reported in Table 7. 

We perform a Granger causality test, the null hypothesis is 𝑎𝑙 = 0, 𝑙 = 1,2 in order to see if 

∆𝑆𝐾𝐸𝑊 does not Granger cause 𝑅 in the first regression and 𝑅 does not Granger cause ∆𝑆𝐾𝐸𝑊 in 

the second regression. The results are reported in Table 8. The VAR estimates, show that changes in 
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𝑆𝐾𝐸𝑊 index can be explained by past returns (one lag) and by past changes in the 𝑆𝐾𝐸𝑊 index 

(lags one and two). On the other hand, returns cannot be explained by past returns, but by past 

changes in the 𝑆𝐾𝐸𝑊 index (one lag). The Granger causality test shows that the null hypothesis 

that returns (changes in the 𝑆𝐾𝐸𝑊 index) do not Granger cause changes in the 𝑆𝐾𝐸𝑊 index 

(returns) is marginally rejected (at the 5% level). Therefore there is weak evidence that positive 

changes in the 𝑆𝐾𝐸𝑊 index are reflected in a negative return the following day, on the other hand, 

a positive return is reflected in an increase of the 𝑆𝐾𝐸𝑊 index in the following day. This is in line 

with Harvey and Siddique (2000), who find that when past returns have been high, the investors’ 

forecast of skewness becomes more negative, consistently with the so-called “bubble theory”: if 

past returns have been high, this means that the bubble has been inflating and therefore a large drop 

can be expected when the bubble is going to burst. 

To investigate further this issue, in Figure 3 it is proposed a comparison between the FTSE MIB 

index and model-free implied volatility. Looking at the graph we can observe two different medium 

term trends: a negative one (bearish market) characterized by a slightly higher volatility between 

February 2011 and the end of July 2012 and a positive one (bullish market) in the second part of the 

sample period, which is characterized by a lower volatility. We may address the inversion in trend 

to the positive effect of the “whatever it takes” London Speech of the ECB President Mario Draghi 

(July 26, 2012) that put an end to the acute phase of the European sovereign debt crisis. Therefore, 

in order to assess the behavior of the skewness indexes in high and low volatility periods, we split 

the data set accordingly and report in Table 9 the descriptive statistics of the skewness indexes in 

the two sub-periods. Physical skewness is negative in the first time period characterized by a 

bearish market and slightly positive in the second time period characterized by a bullish market. 

Risk-neutral skewness indexes attain in both sub-periods a value higher than 100, pointing to an 

overall negative skewness. The 𝑆𝐾𝐸𝑊 index is high in the tranquil period and low in the turmoil 

period pointing to a more negatively skewed distribution in the low volatility period, consistently 

with the findings in Neuberger (2012), in the S&P500 options market: in the period when index 

volatility was very low (2003-2007) skewness was relatively high, whereas skewness was rather 

low in the volatility spike of 2008. When the market returns are positive (bullish market) risk-

neutral skewness tends to be more negative. On the other hand, in periods of bearish market, risk-

neutral skewness tends to be more positive, since investors are expecting an inversion of the 

tendency. In fact, when the market is bearish, investors may purchase out-of-the-money calls 

instead of the underlying asset, shifting the risk-neutral distribution to the right. The information we 

obtain from the 𝑆𝐼𝑋𝑚𝑓 is the opposite. 𝑆𝐼𝑋𝑚𝑓 is more consistent with physical skewness which is 

less negative (more positive) in the low volatility period. The 𝑆𝐼𝑋𝑚𝑓 index is consistent with Dennis 
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and Mayhew (2002) who find that risk-neutral density tends to be more negatively skewed for 

stocks in periods of higher market volatility.  

The difference between physical and risk-neutral skewness (as measured by the 𝑆𝐾𝐸𝑊 index) is 

higher in the bullish market period. This indicates the presence of a skewness risk premium in the 

Italian market, which is higher in the low volatility period. This means that in bullish market 

periods investors expect a more negatively skewed risk-neutral distribution than it is subsequently 

realized. This is investigated further by means of portfolio trading strategies in the following 

section.  

 

6. Trading strategies  

The difference between risk-neutral and physical skewness may be exploited by skewness trades 

which allow to profit from an overvalued or undervalued third moment. Javaheri (2005) suggests to 

buy out-of-the-money calls and sell out-of-the-money puts when the implied third moment is 

undervalued with respect to the physical one. This strategy is exploited also in Bali and Murray 

(2013) where three different skewness assets are used to test mispricing in different portions of the 

risk-neutral density of returns. Therefore, in order to assess if it is possible to exploit the difference 

between risk-neutral and physical skewness, in line with Bali and Murray (2013), we create three 

different portfolios: a 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 (a short position in out-of-the-money puts and a long 

position in out-of-the-money calls) a 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 (a short position in out-of-the-money puts and a 

long position in at-the-money puts) and a 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 (a long position in out-of-the-money calls 

and a short position in at-the money calls). In order to isolate the effect of skewness, the exposure to 

changes in the underlying asset (delta-neutral) and volatility (vega-neutral) is removed.  

The 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is designed to change value if there is a change in the skewness of the risk-

neutral return density coming either from a change in the left tail or from a change in the right tail, 

or from both: 

𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 = 𝐶𝑂𝑇𝑀 −
𝑉𝐶𝑂𝑇𝑀

𝑉𝑃𝑂𝑇𝑀

 𝑃𝑂𝑇𝑀 − (∆𝐶𝑂𝑇𝑀
− 

𝑉𝐶𝑂𝑇𝑀

𝑉𝑃𝑂𝑇𝑀

∆𝑃𝑂𝑇𝑀
) 𝑆 (25) 

where 𝐶𝑂𝑇𝑀 and 𝑃𝑂𝑇𝑀 indicate the price of out-of-the-money call and put respectively, ∆ is the delta 

of the option, 𝑉 is the vega of the option and 𝑆 is the position in the underlying asset. The return of 

the 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM calls are undervalued relative to OTM puts. 

This condition is consistent with an implied distribution more negatively-skewed than the physical 

one. 
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The 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 is designed to change value if there is a change in the skewness of the underlying 

asset coming from a change in the left tail of the risk-neutral density: 

𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 = −𝑃𝑂𝑇𝑀 +
𝑉𝑃𝑂𝑇𝑀

𝑉𝑃𝐴𝑇𝑀

𝑃𝐴𝑇𝑀 − (−∆𝑃𝑂𝑇𝑀
+  

𝑉𝑃𝑂𝑇𝑀

𝑉𝑃𝐴𝑇𝑀

∆𝑃𝐴𝑇𝑀
) 𝑆 (26) 

where  𝑃𝑂𝑇𝑀 and 𝑃𝐴𝑇𝑀 indicate the price of out-of-the-money put and at-the-money put 

respectively, ∆ is the delta of the option, 𝑉 is the vega of the option and 𝑆 is the position in the 

underlying asset. The return of the 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM puts are 

overvalued relative to ATM puts. 

The 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is designed to change value if there is a change in the skewness of the underlying 

asset arising from a change in the right tail of the risk-neutral density. 

𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 = 𝐶𝑂𝑇𝑀 −
𝑉𝐶𝑂𝑇𝑀

𝑉𝐶𝐴𝑇𝑀

𝐶𝐴𝑇𝑀 − (∆𝐶𝑂𝑇𝑀
−  

𝑉𝐶𝑂𝑇𝑀

𝑉𝐶𝐴𝑇𝑀

∆𝐶𝐴𝑇𝑀
) 𝑆 (27) 

where  𝐶𝑂𝑇𝑀 and 𝐶𝐴𝑇𝑀 indicate the price of out-of-the-money put and at-the-money put 

respectively, ∆ is the delta of the option, 𝑉 is the vega of the option and 𝑆 is the position in the 

underlying asset. The return of the 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 is expected to be positive if OTM calls are 

undervalued relative to ATM calls. 

We create skewness assets by using next-term option prices, that usually have a maturity between 

30 and 70 days. The options with the closest strike price to the underlying asset value are taken to 

be the at-the-money options. Out-of-the-money options are taken to be the ones whose strike price 

to underlying asset price ratio is the closest to 0.90 for puts and 1.10 for call options respectively. In 

order to have delta and vega neutral portfolios, trades are set at 𝑡 and are closed at day 𝑡 + 1. Daily 

profits and losses are computed as the difference between the value of the portfolios in 𝑡 + 1 and in 

𝑡 and represent the daily risk premium for being exposed to skewness. Daily return is computed as: 

𝑟 =  
𝑃𝑡+1 − 𝑃𝑡

|𝑃𝑡|
 (28) 

where 𝑃𝑡+1 and 𝑃𝑡 are the prices of the skewness asset at day 𝑡 + 1 and 𝑡 respectively. In line with 

Bali and Murray (2013) we use the absolute value of the skewness asset price at time 𝑡 because 

skewness asset prices are not guaranteed to be positive. 

The cumulative return of the three skewness assets is reported in Figure 4. We can observe that the 

cumulative return of all skewness assets is positive during the sample. This means that the implied 

distribution is in general more negatively-skewed with respect to the physical one. This result is 

consistent with the literature that documents the overvaluation of out-of-the-money put options with 

respect to out-of-the-money call options (see e.g. Javaheri (2005) and Liu (2007)). The descriptive 
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statistics of the skewness assets’ returns are reported in Table 10. Average daily returns are 

ascertained to be statistically different from zero, by using Newey West. The 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 

achieves the best performance with a cumulative return of 56.43%, the average daily return is 

statistically different from zero, pointing to a heavy overvaluation of out-of-the-money put options 

and a symmetrical undervaluation of out-of-the-money call options. The 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 achieves a 

cumulative return of 49.16% and the average daily returns are statistically different from zero. This 

result suggests that out-of-the-money put options are highly overvalued with respect to at-the-

money ones. The 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 realizes a cumulative return of 10.64%, however the average daily 

return is not statistically different from zero. Therefore the undervaluation of out-of-the-money call 

options with respect to at-the-money ones is not statistically significant. We can conclude that the 

mispricing of options is concentrated in the left tail of the distribution.  

 

7. Conclusions 

In this paper we have analyzed different skewness measures in the Italian equity index options 

market. We have investigated both the CBOE methodology to compute a skewness index (𝑆𝐾𝐸𝑊) 

and two model-free measure based on the ratio between the volatility in the left and in the right part 

of the risk-neutral distribution (𝑆𝐼𝑋𝑚𝑓 indexes). The CBOE methodology yields a skewness index 

which is negatively related to the model-free implied volatility, consistently with the results 

obtained by Han (2008) and Faff and Liu (2014) in the S&P500 options market. Unlike 𝑆𝐾𝐸𝑊, the 

𝑆𝐼𝑋𝑚𝑓 indexes have a weak positive correlation with model-free implied volatility. We find a 

negative relation between volatility changes and changes in the Italian 𝑆𝐾𝐸𝑊 index: an increase in 

model-free implied volatility is associated with a decrease in the Italian 𝑆𝐾𝐸𝑊 index (less negative 

risk neutral distribution). We do not find any significant relation between model-free implied 

volatility and the other asymmetry indexes (𝑆𝐼𝑋𝑚𝑓). Unlike the 𝑆𝐼𝑋𝑚𝑓 indexes, 𝑆𝐾𝐸𝑊 index can 

also be considered as a predictor of future realized skewness, thanks to the good correlation with 

future realized skewness. 

By investigating the relation between the skewness indexes and market returns, we find that an 

increase in the 𝑆𝐾𝐸𝑊 index (i.e. the risk neutral distribution becomes more negatively skewed), is 

associated with an increase in the returns. We also detect an asymmetric effect: a decrease in the 

𝑆𝐾𝐸𝑊 index is associated with a strong decrease in the returns, while an increase in the 𝑆𝐾𝐸𝑊 

index is associated with a less pronounced increase in the returns. Therefore in this setting the 

𝑆𝐾𝐸𝑊 index acts as a measure of market greed and the opposite of the 𝑆𝐾𝐸𝑊 index (risk neutral 

skewness) acts as a measure of market fear, since returns react more negatively to a decrease in the 



23 
 

𝑆𝐾𝐸𝑊 index (increase in risk neutral skewness) than they react positively to an increase of the 

latter (decrease in risk neutral skewness). When skewness is proxied by the 𝑆𝐼𝑋𝑚𝑓 indexes, the 

slope coefficients are non-significant, pointing to the uselessness of the 𝑆𝐼𝑋𝑚𝑓 indexes as indicators 

of current risk. Therefore, we find that the 𝑆𝐾𝐸𝑊 index presents many advantages with respect the 

𝑆𝐼𝑋𝑚𝑓 indexes: it has a significant contemporaneous relation with both returns, model-free implied 

volatility and is still significant in the explanation of returns, even after having controlled for 

volatility. We also find weak evidence that positive changes in the 𝑆𝐾𝐸𝑊 index are reflected in a 

negative return the following day, and that a positive return is reflected in an increase of the 𝑆𝐾𝐸𝑊 

index. This is in line with Harvey and Siddique (2000), who find that when past returns have been 

high, the investors’ forecast of skewness becomes more negative, consistently with the so-called 

“bubble theory”: if past returns have been high, this means that the bubble has been inflating and 

therefore a large drop can be expected when the bubble is going to burst. 

The results of the paper point to the existence of a skewness risk premium in the Italian market. 

This emerges both from the fact that implied skewness is more negative than physical one in the 

sample period and from the profitability of skewness trading strategies. The positive returns of the 

three portfolios (a short position in out-of-the-money puts and a long position in out-of-the-money 

calls; a short position in out-of-the-money puts and a long position in at-the-money puts; a long 

position in out-of-the-money calls and a short position in at-the money calls) confirm that the 

implied distribution of log-returns is more skewed than the physical one. In addition, the higher 

performance of the portfolio composed by only put options indicates that the mispricing of options 

is mainly focused on the left part of the distribution. 

Given the properties of the Italian 𝑆𝐾𝐸𝑊 index, we believe that the results of the paper can be of 

importance for both investors and regulators. Investors may take advantage of the discrepancy 

between physical and risk neutral skewness by creating skewness assets and use skewness in order 

to forecast future returns. Regulators may view the 𝑆𝐾𝐸𝑊 index as indicator of market greed and 

settle the appropriate actions. 

This analysis is preliminary and should be extended in many directions. Further research is needed 

in order to assess the relationship among implied moments and the study of other asymmetry 

measures which, similarly to the portfolio strategies, are able to capture changes in the implied 

distribution coming from the different tails. Moreover, being the skewness coefficient a normalized 

measure which is divided by variance, the study of non-normalized measures which react only to 

asymmetry and not to both asymmetry and variance will be useful to better understand the 

properties of the skewness indexes.  
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Table 1 – Descriptive statistics  

 𝑆𝐾𝐸𝑊𝑃𝐻 𝑆𝐾𝐸𝑊 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 𝐼𝑉 𝑅 Δ𝐼𝑉 
Δ 

𝑆𝐾𝐸𝑊 

Δ 
𝑆𝐾𝐸𝑊+ 

Δ 
𝑆𝐾𝐸𝑊− 

Δ 
𝑆𝐼𝑋𝑚𝑓0 

Δ 
𝑆𝐼𝑋𝑚𝑓𝑅 

Mean 100.13 103.78 103.11 101.44 0.10 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 

Median 100.08 103.84 103.27 101.62 0.09 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 

Maximum 103.52 126.36 115.99 112.24 0.22 0.06 0.30 0.15 0.15 0.00 0.13 0.11 

Minimum 95.97 89.11 96.31 95.27 0.04 -0.07 -0.52 -0.20 0.00 -0.20 -0.10 -0.09 

Std. Dev. 1.11 4.56 2.03 1.77 0.03 0.02 0.08 0.03 0.02 0.02 0.02 0.02 

Skewness -0.00 0.39 0.65 0.49 1.29 -0.24 -0.81 0.31 3.13 -3.10 0.22 0.21 

Kurtosis 4.37 4.92 5.97 5.61 4.51 4.44 6.82 7.70 15.39 20.13 4.74 4.44 

Jarque-Bera 76.58 174.53 428.85 319.10 362.52 92.98 700.75 913.73 7833.07 13493.71 130.34 91.87 

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: The table reports the descriptive statistics of physical and risk-neutral skewness indexes, the model-free implied volatility, FTSE 

MIB returns and daily changes in volatility and skewness measures. We indicate as 𝑆𝐾𝐸𝑊𝑃𝐻 the index of subsequently realized 

skewness in the next 30 days, 𝑆𝐾𝐸𝑊 is the index we compute using the CBOE methodology, 𝑆𝐼𝑋𝑚𝑓0 and 𝑆𝐼𝑋𝑚𝑓𝑅 refer to the 𝑆𝐼𝑋𝑚𝑓 

indexes computed as the ratio between upside and downside corridor implied volatilities with barriers equal to 0 and R respectively, 

where R is the expected return; 𝐼𝑉 is the model-free implied volatility on a monthly basis; 𝑅 is the FTSE MIB daily return (continuously 

compounded); Δ 𝑆𝐾𝐸𝑊+ and Δ 𝑆𝐾𝐸𝑊− are the positive and negative changes in the 𝑆𝐾𝐸𝑊 index respectively. 
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Table 2 – Correlation table 

 𝑆𝐾𝐸𝑊𝑃𝐻 𝑆𝐾𝐸𝑊 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 𝐼𝑉 𝑅 Δ𝐼𝑉 
Δ 

𝑆𝐾𝐸𝑊 

Δ 
𝑆𝐾𝐸𝑊+ 

Δ 
𝑆𝐾𝐸𝑊− 

Δ 
𝑆𝐼𝑋𝑚𝑓0 

Δ 
𝑆𝐼𝑋𝑚𝑓𝑅 

𝑆𝐾𝐸𝑊𝑃𝐻 1.000            

𝑆𝐾𝐸𝑊 0.156 1.000           

𝑆𝐼𝑋𝑚𝑓0 0.030 0.063 1.000          

𝑆𝐼𝑋𝑚𝑓𝑅 0.047 0.090 0.991 1.000         

𝐼𝑉 0.008 -0.284 0.209 0.142 1.000        

𝑅 -0.017 0.208 -0.038 -0.032 -0.117 1.000       

Δ𝐼𝑉 0.057 -0.145 0.031 0.023 0.134 -0.573 1.000      

Δ 
𝑆𝐾𝐸𝑊 

0.003 0.354 -0.061 -0.036 -0.059 0.439 -0.435 1.000     

Δ 
𝑆𝐾𝐸𝑊+ 

-0.026 0.352 -0.063 -0.063 -0.060 0.286 -0.432 0.830 1.000    

Δ 
𝑆𝐾𝐸𝑊− 

0.034 0.214 -0.062 -0.039 -0.034 0.431 -0.264 0.788 0.310 1.000   

Δ 
𝑆𝐼𝑋𝑚𝑓0 

0.004 0.009 0.565 0.565 0.006 -0.026 0.031 -0.061 -0.038 -0.0620 1.000  

Δ 
𝑆𝐼𝑋𝑚𝑓𝑅 

0.005 0.020 0.561 0.564 0.004 -0.015 0.023 -0.036 -0.0206 -0.0390 0.997 1.000 

Note: The table reports the correlation coefficients between the measures used in the study. For the definition of the measures see Table 1. 
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Table 4 - Regression output for the changes in the skewness measures and daily returns on the 

FTSE-MIB. 

 𝛼 𝛽 R2 

Δ 𝑆𝐾𝐸𝑊𝑡 
-0.000 

(0.922) 

0.237 

(0.000) 
0.192 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 -0.000 

(0.986) 

-0.019 

(0.414) 
0.001 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.987) 

-0.013 

(0.618) 
0.000 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 휀𝑡, 

where for  Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use changes in the three risk-neutral skewness measures: 𝑆𝐾𝐸𝑊, 

𝑆𝐼𝑋𝑚𝑓0, 𝑆𝐼𝑋𝑚𝑓𝑅; p-values in parentheses. 

 

 
 

 

 

 

Table 3 - Regression output for the changes in the skewness measures and the changes in model-

free implied volatility 

 𝛼 𝛽 R2 

Δ 𝑆𝐾𝐸𝑊𝑡 
-0.000 

(0.766) 

-0.177 

(0.000) 
0.189 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 -0.000 

(0.976) 

0.009 

(0.351) 
0.003 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.975) 

0.006 

(0.487) 
0.001 

Note: The table presents the estimated output of the regression: Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 = 𝛼 + 𝛽Δ𝐼𝑉𝑡 + 휀𝑡, 

where for  Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use changes in the three risk-neutral skewness measures: 𝑆𝐾𝐸𝑊, 

𝑆𝐼𝑋𝑚𝑓0, 𝑆𝐼𝑋𝑚𝑓𝑅; p-values in parentheses. 

 

Table 5 - Regression output for positive and negative changes in the 𝑆𝐾𝐸𝑊 index and daily  returns 

on the FTSE-MIB. 

 𝛼 𝛽1 𝛽2 R2 

 
-0.002 

(0.000) 

0.140 

(0.000) 

0.349 

(0.000) 
0.212 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽1Δ𝑆𝐾𝐸𝑊𝑡
+ +

𝛽2Δ𝑆𝐾𝐸𝑊𝑡
− + 휀𝑡; p-values in parentheses. 
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Note: The table reports the estimation output (t-stat in parentheses) of the VAR model: 

𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝑆𝐾𝐸𝑊𝑡−𝑙 + ∑ 𝑏𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 𝑅𝑡 = 𝑐 + ∑ 𝑎𝑙Δ 𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝑢𝑡 

 

Δ 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 + ∑ 𝑏𝑙Δ 𝑆𝐾𝐸𝑊𝑡−𝑙 +

𝐾

𝑙=1

𝐾

𝑙=1

𝑢𝑡 Δ 𝑆𝐾𝐸𝑊𝑡 = 𝑐 + ∑ 𝑎𝑙𝑅𝑡−𝑙 +

𝐾

𝑙=1

𝑢𝑡 

 

 

 

 

 

Table 6 - Regression output for the changes in the skewness measures, changes in model-free  

implied volatility and daily returns on the FTSE-MIB. 

 𝛼 𝛽1 𝛽2 R2 

Δ 𝑆𝐾𝐸𝑊𝑡 
-0.000 

(0.944) 

0.126 

(0.000) 

-0.103 

(0.000) 
0.373 

Δ 𝑆𝐼𝑋𝑚𝑓0𝑡
 -0.000 

(0.886) 

-0.006 

(0.760) 

-0.126 

(0.000) 
0.328 

Δ 𝑆𝐼𝑋𝑚𝑓𝑅𝑡
 

-0.000 

(0.885) 

-0.002 

(0.925) 

-0.126 

(0.000) 
0.328 

Note: The table presents the estimated output of the regression: 𝑅𝑡 = 𝛼 + 𝛽1Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 +
𝛽2Δ𝐼𝑉𝑡 + 휀𝑡, where for  Δ𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 we use changes in the three risk-neutral skewness measures: 

𝑆𝐾𝐸𝑊, 𝑆𝐼𝑋𝑚𝑓0, 𝑆𝐼𝑋𝑚𝑓𝑅; p-values in parentheses. 

 

 

 

Table 7 -  VAR Estimation output 

 𝑅𝑡 Δ 𝑆𝐾𝐸𝑊𝑡 

𝑅𝑡−1  
 0.009831 

(0.27549) 

 0.182693 

 ( 2.86033) 

𝑅𝑡−2  
-0.019276 

 (-0.53848) 

 0.066370 

 ( 1.03584) 

Δ 𝑆𝐾𝐸𝑊𝑡−1 
-0.042144 

 (-2.11985) 

-0.306903 

 (-8.62454) 

Δ 𝑆𝐾𝐸𝑊𝑡−2 
 0.001620 

 ( 0.08129) 

-0.085880 

 (-2.40804) 

c 
-2.93E-06 

 (-0.00544) 

-0.000221 

 (-0.22926) 
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Note: The table reports the Granger causality test for the VAR model as defined in note to Table 7. 

 

 

Table 9 – Descriptive statistics of skewness measures in the two sub-periods.  

03/01/2011 – 25/07/2012: Bearish market 

 𝑆𝐾𝐸𝑊𝑃𝐻 𝑆𝐾𝐸𝑊 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 

Mean 100.43 103.35 103.47 101.68 

Median 100.43 103.65 103.50 101.77 

Maximum 103.09 114.77 115.99 112.24 

Minimum 97.95 93.68 96.31 95.27 

Std. Dev. 0.93 3.70 2.41 2.08 

Skewness 0.25 -0.09 0.65 0.57 

Kurtosis 0.17 0.00 2.82 2.83 

26/07/2012 – 28/11/2014: Bullish market 

 𝑆𝐾𝐸𝑊𝑃𝐻 𝑆𝐾𝐸𝑊 𝑆𝐼𝑋𝑚𝑓0 𝑆𝐼𝑋𝑚𝑓𝑅 

Mean 99.93 104.16 102.86 101.28 

Median 99.82 104.10 103.12 101.57 

Maximum 103.52 126.36 109.22 107.05 

Minimum 95.97 89.11 99.46 98.15 

Std. Dev. 1.18 5.03 1.67 1.51 

Skewness 0.13 0.41 0.15 0.03 

Kurtosis 1.59 1.77 0.17 -0.01 

Note: for the definition of the measures see Table 1. 

 
 

 

 

Table 8 - Granger causality test between daily returns on  the FTSE-MIB and daily changes in 

𝑆𝐾𝐸𝑊 𝑖𝑛𝑑𝑒𝑥. 

Null Hp.  𝑋2 p-value 

Δ𝑆𝐾𝐸𝑊 does not Granger cause 𝑅  7.12 0.029 

𝑅 does not Granger cause Δ𝑆𝐾𝐸𝑊  8.68 0.013 
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Table 10 - Skewness assets returns for the entire sample period 

 𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡 𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡 

Cumulative return 56.43% 49.16% 10.64% 

Average daily return 0.05% 0.04% 0.01% 

t-statistic 5.49 4.05 0.95 

p-value 0.000 0.000 0.343 

Average ann. return 11.44% 10.28% 2.73% 

Annualized volatility 4.14% 5.03% 5.70% 

Note: The table reports the descriptive statistics for the Skewness assets returns used in the study in 

order to disentangle the contribution to the profitability of differences between the physical and the 

risk-neutral distribution in the left (𝑃𝑈𝑇 𝑎𝑠𝑠𝑒𝑡) or in the right (𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡) parts of the 

distribution or in both (𝑃𝑈𝑇𝐶𝐴𝐿𝐿 𝑎𝑠𝑠𝑒𝑡) . 
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Figure 1 - Graphical comparison of Skewness measures 
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Figure 2 – Comparison between the FTSE MIB index, the  𝑆𝐾𝐸𝑊 index and the 𝑆𝐼𝑋𝑚𝑓0 

 

 

 

Note: The Figure reports the closing values of the Italian market index FTSE MIB and the skewness 

indexes (𝑆𝐾𝐸𝑊 and 𝑆𝐼𝑋𝑚𝑓0) 
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Figure 3 – Comparison between FTSE MIB index and model-free implied volatility 

 

Note: FTSE MIB index refers to the values on the left and implied volatility refers to the values on 

the right. Implied volatility values are obtained as the model-free implied volatility multiplied by 

100 (𝑉𝐼𝑋 methodology).  
 

 

Figure 4 – Skewness assets cumulative performance during the sample period  
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