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Abstract  

Thermally sprayed Fe-based coatings have been extensively studied as future solution in order 

to replace more expensive, harmful and environmentally dangerous Ni- and WC-based 

coatings for several industrial applications where high corrosion and wear resistance is 

required. Aim of the present study is to investigate the effect of spraying parameters on the 

microstructure and the corrosion resistance of Fe-based coatings manufactured with the High 

Velocity Air Fuel (HVAF) thermal spray process. Six sets of thermal spraying parameters 

have been chosen and their effect on the overall quality of coatings was investigated. All 

HVAF coatings showed comparably dense microstructure with near-zero oxidation, proving 

the high quality of the deposition process. However, higher anti-corrosion and mechanical 

properties were achieved by increasing the spraying air pressure and decreasing the particle 
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feeding rate without altering the thickness and the overall deposition rate. Powder feeding rate 

was reported to have a remarkable effect on microstructure and corrosion properties. Coatings 

with beneficial compressive residual stresses were successfully obtained by increasing air 

pressure during spraying which resulted in improved microstructural and corrosion properties. 

 

1. Introduction 

 

Thermal spraying is a widely spread coating technology process employed in several 

industrial applications. It consists of molten, semi-molten or solid particles accelerated by a 

high speed stream of gases towards a substrate in order to form a thick coating [1]. Increasing 

the deposition efficiency and lowering the costs of the process while preserving the overall 

high coating quality is the general trend of thermal spraying, in order to reduce the production 

costs and decrease the environmental impact. Among different solutions, iron-based coatings 

deposited with thermal spray processes seem to gain growing interest in the research 

community due to their unique combination of low price, health safety and good mechanical 

properties [2-4]. Iron-based thermal spray powders generally combine hard precipitates such 

as borides and carbides in an austenitic and/or ferritic matrix with high chromium content.  

High chromium content is designed in order to provide chromium for hard precipitates and on 

the other hand to provide chromium dissolved in the austenitic solid solution matrix in order 

to increase the ability to form a thin protective oxide layer. Such design is meant to increase 

the corrosion resistance of the alloy without altering the mechanical properties [5]. Moreover, 

Fe-based coatings have been studied as alternative solution to replace more expensive, 

harmful and environmentally dangerous Ni- and WC-based coatings for several industrial 

applications where high corrosion and wear resistance is required. Ni- and WC-based 

materials have been lately pointed out as potential lung disease and carcinogenic agents and 

responsible of skin diseases (eczema, allergen), asthma and pneumoconiosis [6] [7]. 
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Traditional thermal spray processes like Arc Spraying (AS), Flame Spraying (FS) and 

Atmospheric Plasma Spraying (APS) have been employed for Fe-based powder deposition [8-

13]. However, the high gas temperature, low particle velocity and the lack of a proper 

shrouding atmosphere of AS, FS and APS processes resulted in large amount of molten 

particles with a non-uniform heating and solidification, which is detrimental to the overall 

quality of the coatings. This leads to low hardness, high oxide and porosity content up to 10 

% which in turn barely offers good protection against aggressive solution to penetrate towards 

the substrate [8-13]. The High Velocity Oxygen Fuel (HVOF) spray process has also been 

extensively used for Fe-based coatings due to its ability of depositing dense coatings with 

high adhesion strength [14-17]. In HVOF spraying, powders are accelerated by the supersonic 

jet achieved by expansion of the combustion products between oxygen and fuel gases through 

a convergent-divergent nozzle. Some drawbacks are related to oxidation, to the possible 

generation of tensile residual stresses [18,19] (whereas compressive residual stresses are 

preferred in coatings) and, sometimes, thermal deterioration due to the relatively high 

temperature [3, 20].  

 

Recently, High Velocity Air Fuel (HVAF) spraying has been considered as alternative process 

deposition for Fe-based powders in order to overcome the above mentioned limitations of 

HVOF. It reduces the cost of operation by replacing pure oxygen with compressed air and it 

increases the flexibility of high velocity combustion spray processes while retaining their 

ability to produce high quality coatings [21, 22]. Supersonic jet in HVAF is achieved by 

combustion of air and fuel gases and subsequent expansion of combustion products through a 

convergent-divergent nozzle. In M3 HVAF torch, secondary air and fuel mixture is injected at 

the throat of the secondary nozzle in order to provide additional heat to the process. The M3 

torch design (Fig. 1) together with high pressure capabilities and total replacement of oxygen 
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with air assures higher particle velocities, higher powder feeding rate, lower temperature and 

less oxidizing atmosphere [23,24] resulting in a promising alternative method to manufacture 

high quality coatings [25-28]. Low oxide content, high retention of powder microstructure, 

low porosity with an excellent wear and corrosion behavior were reported in the recent studies 

of HVAF-sprayed Fe-based coatings [25]. Furthermore, equal or even better wear and 

corrosion resistance of HVAF-sprayed cermet coatings compared with HVOF-sprayed ones 

were reported [29]. Moreover, HVAF process has been lately employed for the deposition of 

amorphous Fe-based coatings with good resistance to sliding and abrasive wear, low friction 

coefficients and superior corrosion resistance [3, 26]. The HVAF process, which relies more 

on kinetic energy than on thermal energy, indeed allows minimal microstructural and 

chemical changes to the complex composition of Fe-based feedstock powders with high Glass 

Forming Ability (GFA) leading to high amorphous contents in the resulting Fe-based 

coatings.  

 

Although promising results were obtained with the HVAF process using the latest M3 torch 

model for the deposition of hardmetal powder [30], no study on the effect of spraying 

parameters of such HVAF process on microstructure and corrosion properties of Fe-based 

coatings has been performed yet. The present work focuses on the effect of spraying 

parameters (air/propane pressure ratio in combustion chamber, propane pressure in the 

convergent-divergent nozzle and the powder feeding rate) on the microstructural and the 

corrosion properties of HVAF Fe-Cr-Ni-B-C coatings. Structural details were studied by 

means of scanning electron microscopy (SEM), electrochemical impedance spectroscopy 

(EIS) and residual stress analysis indicating good correlation with corrosion behavior of 

coatings. Corrosion properties were studied with open-circuit potential and polarization 

measurements. 
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2. Experimental procedure 

 

2.1 Materials and coating manufacturing 

 

Commercial gas-atomized Fe-based powder Fe-31Cr-12Ni-3.6B-0.6C (wt.%) with nominal 

size of -40 + 20 μm traded as Durmat 512.021 (Durum Verschleiss-Schutz GmbH, Krefeld, 

Germany), was used as feedstock material. More details of the powder are presented in our 

previous study [25]. The powder was sprayed onto low carbon steel (Fe52) by Supersonic Air 

Fuel HVAF (SAF, 3
rd

 generation) M3 (Uniquecoat Technologies LLC, Oilville VA, USA) 

spray gun. The sample substrates were attached by screws to a sample holder before spraying, 

and compressed air was used as cooling medium. Propane was used as main combustion fuel 

gas (fuel 1) and as well as secondary combustion gas (fuel 2, additional combustion gas 

inserted into the nozzle, Fig.1) in order to increase the heat provided to particles. Six sets (1-

6) of spraying parameters (Table 1) were studied. Substrates were grit-blasted (Al2O3 grits, 36 

Mesh) prior to the spraying. The process gases are pressure-controlled which also means that 

the real gas flow rates in the equipment are unknown. 

 

The heat of combustion was varied by selecting three different air-propane pressure ratios 

(110/106, 116/106 and 120/108) whereas secondary propane gas was regulated at 3 pressures: 

108 (0.74), 110 (0.76) and 112 (0.77) psi (MPa). The value of 108 psi (0.74 MPa) was 

associated to the lowest air-propane ratio (110/106), 110 psi (0.76 MPa) was used for the air-

propane ratio of 116/106 and 112 psi (0.77 MPa) for the largest air-propane ratio (120/108). 

Traverse speed (0.5 m/s), step size (4 mm), stand-off distance (300 mm) of gun and the 

nitrogen carrier gas flow rate (60 l/min) were kept as constant. The powder feeding rate was 

varied as 75 g/min and 140 g/min. The number of gun passes was 6 and 4 for the coating 
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samples with powder feeding rate of 75 g/min and 140 g/min, respectively. The sole purpose 

was to keep the coating thickness approximately at the same level for all coatings. 

 

2.2 Microstructural and mechanical studies 

 

The microstructure of the coatings was investigated by Scanning Electron Microscope (SEM, 

Philips XL30, The Netherlands) equipped with Energy Dispersive X-ray (EDX) 

microanalysis whereas phase composition was assessed by X-Ray Diffractometry (XRD, 

Empyrean, PANAnalytical, The Netherlands, Co-Kα radiation). Experimental conditions 

include 2θ range 20°-120°, step size 0.02°, beam mask 20 mm, programmable divergent slit 

fixed at ½ degree, Fe-filter and PANAnalytical PIXcel 3D detector. Phase identification was 

performed using the PANAlytical X’Pert High Score Plus software using the ICDD JCPDF-2 

database (International Centre for Diffraction Data, Newtown Square, PA, USA).  

 

X-ray diffraction was also employed to analyse the surface of the samples after corrosion test 

(Open-circuit potential measurements (OCP)) in grazing incidence X-ray diffraction mode 

(GID) (XRD, Empyrean, PANAnalytical, The Netherlands, Co-Kα radiation). GID consists of 

fixing the incidence angle of the X-ray beam (conventionally designated as ω) to a small 

value in order to limit the penetration of X-rays through the sample and eventually study the 

formation of thin outer corrosion layers. Experimental conditions include incidence angle ω  = 

2°, 2θ range 5°-70°, step size 0.02°, beam mask 15 mm, programmable divergent slit fixed at 

1/16 degree, Fe-filter and PANAnalytical PIXcel 3D detector. Phase identification was again 

performed using the PANAlytical X’Pert High Score Plus software using the ICDD JCPDF-2 

database. 
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Coating thickness was calculated as an average of 10 measurements on SEM images taken on 

polished cross-sections, prepared by grinding samples embedded in resin with SiC papers up 

to 4000 mesh and polished with colloidal silica suspension. Coating roughness (Ra) was 

calculated through 3D optical profilometry (Veeco, WYKO NT1100, USA) in order to get an 

indirect estimation of particles melting during deposition. Indeed, higher particle melting and 

velocity generally result in higher particle softening and plastic deformation and in turn 

particle flattening ratio during deposition leading to lower roughness. [31] The microhardness 

of HVAF-sprayed coatings was calculated as an average of 20 Vickers microhardness 

indentations (HV0.3) on the polished cross-sections by means of standard microindenter 

(Matsuzawa MMT-X7, Japan - 300 grams normal load). 

 

Residual stresses were characterized by X-ray residual stress analysis, using the ω-tilt method, 

on as-sprayed samples and on samples polished up to mirror-like surface finish. Mechanical 

removal of material in grinding and polishing may alter the actual stress state of the coatings 

[32]. However, Co Kα radiation with large X-rays penetration allowed an average residual 

stress calculation over large coating thickness making any possible superficial alteration not 

significant. Line focus configuration with beam mask 20 mm and programmable divergent slit 

fixed at ½ degree with the Euler cradle stage was used. 7 symmetric ψ tilt values were 

employed corresponding to sin
2
ψ = 0; 0.1; 0.2; 0.3, along three directions corresponding to 

ϕ=0°, ϕ=45° and ϕ=90°. The (3 1 1) peak of austenite, located at 2θ = 110.95°, was acquired 

by scanning a 2θ range of 7°, and the deformation in the (h k l) = (3 1 1) direction was 

determined by equation (1)          

                          (1) 

where dψ is the lattice spacing measured at ψ tilt and d0 the unstressed lattice spacing. Data 

were interpreted by implementing the sin
2
 ψ method according to the formulation described in 
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[32], in the hypothesis of plane stress condition. The relations for directions corresponding to 

ϕ=0°, ϕ=45° and ϕ=90° Eq. 2 - 4 are the following: 

         
    

 

 
   

          
     

          )        (2) 

        
    

 

 
   

     
      

 
          

     
           )    (3) 

  

        
    

 

 
   

            
     

           )      (4) 

The values of the X-ray elastic constants employed for equations were taken from [33] for the 

(3 1 1) peak of austenite: (1/2)S2 = 7.52*10
-6

 mm
2
/N; S1 = -1.80*10

-6
 mm

2
/N. 

It is worth noting that unstressed lattice spacing d0 is not known a priori, so the strains were 

first calculated from an initial assumption d0 ≈ d  , ψ =0°. Despite the assumption d0 ≈ d  , ψ =0, 

the slopes of ɛ ψϕ vs. sin
2
ψ fitting depicted in equations 2, 3 and 4 are numerically correct. 

Therefore, σx σy τxy were first calculated through the slopes of equations 2, 3 and 4. 

Afterwards, σx and σy values where used for calculating a new unstressed planar distance d0 

value (equation 5 obtained from equation 1 and 2 by imposing ψ equals 0).  

       
      

   

  
           

       
              

    
       
   

    
          

    (5) 

Strains and σx, σy and τxy were therefore iteratively recalculated (MatLab code employed) 

until convergence is reached. 

 

2.3 Corrosion studies 

 

The corrosion behaviour of HVAF-sprayed coatings was evaluated with open-circuit potential 

measurements (OCP) and potentiodynamic polarization technique. All samples were ground 

and polished to Ra ≈ 0.02 μm before testing in order to remove any influence from the 

original surface roughness and from possible defects in the top layer of the coating (as shown 

later on in Section 3.1). OCP measurements were performed by gluing a plastic tube 
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(diameter 20 mm) to the coating surface. An amount of 12 ml of a 3.5 wt.% NaCl aqueous 

solution was filled into the tube. The open-circuit potential was measured up to 24 days of 

immersion (reference electrode (Ag/AgCl/KCl(sat)) and afterwards exposed surface of 

coatings was observed by means of stereomicroscopy. Potentiodynamic polarization 

technique was performed with the standard three-electrode cell with a wide overpotential 

range (from -0.4 V vs. OC to 1.4 V vs. OC – scan rate 0.5 mV/s) in 0.1 M solution of 

hydrochloric acid. Corrosion parameters such as corrosion potential (Ecorr) and corrosion 

current density (Icorr) were calculated by using Gamry Echem Analyst Software. The software 

was also used for calculations of anodic and cathodic Tafel constants (βa and βc) needed for 

polarization resistance calculations. The polarization resistance (RP) of coatings was 

calculated by using the Stern-Geary equation (6) [34]:    

                                         (6) 

where βa and βc are the slope of anodic and cathodic Tafel line respectively and Icorr is the 

corrosion current density.  

 

In addition, electrochemical impedance spectroscopy (EIS) was employed by using a non-

corrosive electrolyte in order to estimate the overall open porosity (interconnected porosity) 

as described in [35,36] in order to avoid the limitations of image analysis technique. EIS was 

performed in a three-electrode electrochemical cell where the reference electrode is 

Ag/AgCl/KCl(sat) and the counter electrode is a platinum grid. The samples were ground and 

polished as described previously in order to avoid the effects of surface roughness and of 

defects in the topmost coating layer. The results were represented through Bode plots. The 

choice of a suitable equivalent circuit with a reliable description of electrochemical processes 

occurring during the test returns quantitative data (resistance and capacitance values) related 

to coating open-porosity. The testing conditions were the following: exposed surface 0.95 

cm
2
, start frequency 300 kHz, end frequency 1 mHz, voltage perturbation amplitude ±20 mV 
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around OCP measured for 30 s before EIS measurement. The electrolyte was a 0.01 M 

K3Fe(CN)6/K4Fe(CN)6 aqueous solution, chosen for its stability and for the high redox 

reversibility of the Fe(CN)6
3- 

+e
- 
 Fe(CN)6

4-
 reaction, with an equilibrium potential of about 

280 mV vs. (Ag/AgCl/KCl(sat)), as previously described in [37]. Tests were started with a 0.5 

h delay to allow full impregnation of the coating by the test solution and complete 

stabilization of the open-circuit potential. 

 

 

3 Results and discussions 

 

3.1 Microstructural and mechanical properties of coatings 

 

All HVAF-sprayed coatings showed very dense microstructure (Fig. 2) with particle 

boundaries barely visible (high magnifications in Fig. 2) proving good inter-particle bonding. 

One can notice that the near-surface region of all coatings has some pores. This has been 

reported as characteristic of high-kinetic thermal sprayed coatings where the lack of particles 

hammering (primary role in coating densification [16,32]) in the last layers deposited 

contributes to create more porous near-surface layers. It is worth saying that generally in 

practical use the outer porous layer is entirely removed by grinding and polishing coatings 

before use.  However, such external porous layer was reported to be much thinner when 

compared the same powder composition sprayed with HVOF in our previous study [16]. 

Coating thicknesses are presented in Fig. 3 and Table 2. Larger coating thickness and larger 

thickness per pass (larger deposition rate and deposition efficiency) were measured for 

samples with higher powder feeding rate (2, 4, 6). The powder feeding rate of samples 2, 4 

and 6 is nearly twice as large as those of samples 1, 3 and 5; therefore, one can state that the 

deposition efficiency of samples sprayed with the same parameters (1/2, 3/4 and 5/6) but with 
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different powder feeding rate is comparable proving the high versatility of the HVAF process. 

Furthermore, even though the combustion ratio of each parameter setting is not known a 

priori, by observing the cross-sectional image of the coatings (particle boundaries and particle 

flattening ratio) it is inferred that increasing air pressure decreases the flame temperature. An 

increase of air pressure is also thought to raise particle velocity. Kuroda et al. [38] have 

similarly reported higher particle velocity when dealing with higher air pressure in HVAF 

spray process. Having said that, the increase of air pressure (1 < 3 < 5 and 2 < 4 < 6) (Fig. 3) 

can be resulted in increase of flame velocity and decrease of flame temperature.  

Allegedly, when dealing with lower particle feeding rate (75 g/min, sample 1, 3 and 5) a slight 

increase of air pressure seemed not to alter the deposition efficiency (comparable deposition 

efficiency of sample 1 and 3, Fig. 3). Indeed, as found in the study of Wang et al.[39], 

lowering the powder feeding rate may increase heat transfer to particles and in turn a slight 

increase of air pressure may not significantly alter the particle melting and the overall coating 

deposition process. However, further increase of air pressure led to lower powder deposition 

(sample 5, Fig. 3) proving the inadequate powder melting (sample 5, Fig. 2, particle 

boundaries largely visible). Conversely, lower deposition efficiency was reported for any air 

pressure increase when dealing with higher powder feeding rate (140 g/min, sample 2, 4 and 

6) (Fig. 3). Apparently, with high particle feeding rate, increasing the air pressure 

simultaneously increased the particle velocity and lowered particle temperature, which seems 

to be disadvantageous for the deposition efficiency. 

 

The microhardness values of HVAF-sprayed coatings ranged from 730 HV0.3 to 780 HV0.3 but 

all differences are always comprised within the standard deviations (see Table 2). The lack of 

visible porosity and the noticeably similar microstructure led to similar coatings hardness 

except sample 3 whose microhardness appeared to be the highest. Comparable coating 

roughness was also reported. It is generally presented that higher flame temperature and 
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higher particle velocity lead to higher flattening ratio of particles which in turn results in 

lower coating roughness [31]. However, no remarkable differences were observed for the 

studied coatings possibly due to the likely simultaneous decrease of flame temperature and 

increase of particle velocity when increasing air pressure.  

 

According to XRD patterns (Fig. 4), all coatings seem to retain the powder microstructure 

proving no undesired reactions occurred at high temperatures, which in turn demonstrates the 

high reliability of the HVAF spray process in preventing thermal alterations. Phase 

identification of XRD patterns revealed the presence of large amounts of austenitic (f.c.c.) ϒ  

matrix (JCPDS 98-010-8132) and several low intensity peaks were assigned to chromium and 

iron mixed boride (Cr,Fe)2B (JCPDS 01-072-1073) which seems to be the most abundant 

secondary phase. Other small peaks may be assigned to chromium and iron mixed carbides 

(Cr3C2 98-061-7482, Cr7C3 01-089-5902, (Cr,Fe)23C6 JCPDS  98-006-2669. Moreover, a 

small presence of Cr2O3 (JCPDS 04-008-6181) is assumed due to the increase of the peak at 

2θ ≈28° and to the low intensity peak at 2θ ≈ 38°. Although the coatings seem to retain the 

microstructure of the powder, it is worth noting the slight broadening of the highest intensity 

peak of austenite (2θ ≈ 51°) much likely due to micro-strain or grain size refinement. This 

could be due to the severe plastic deformation of the particles upon impact, and/or to particle 

melting and to the subsequent re-solidification of a finer crystalline structure than that of the 

original feedstock powder. 

 

3.1.1 Electrochemical Impedance Spectroscopy 

 

EIS measurement was chosen as a method to estimate the overall inter-connecting porosity of 

the coatings because no visible pores were detected from the cross-sections by image analysis. 

Indeed, when dealing with dense coatings, image analysis limitations are related to the 
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problem of detecting sub-micron porosity at particles interfaces [37]. Conversely, EIS is a 

powerful, non-destructive method which relies on small AC-voltage signal (20 mV) and it 

allows us to evaluate the resistance and capacitance of the coatings through a fit of the data 

with a proper model circuit. Non-corrosive, highly stable 0.01 M K3Fe(CN)6/K4Fe(CN)6 

aqueous solution with high redox reversibility was chosen as electrolyte in order to have a 

reliable open porosity estimation. In the EIS measurement, the model circuit in Fig. 5 was 

employed as model circuit for the excellent data fitting (goodness of fit ≈ 10
-6

) and because it 

is commonly used in the description of the electrochemical behavior of thermally sprayed 

coatings [37]. 

 

R1 represents the resistance of the electrolyte (it is important noting that even though a 

modern 3-electrode cell was used with a compensation for the solution resistance between the 

counter and the reference electrode, the solution resistance has always to be considered in the 

model circuit). The parallel subcircuit CPE-c/R2 describes coating resistance and capacitance. 

CPE (Y0,n) is a constant phase element which is generally employed instead of double layer 

capacitance in real electrochemical processes [35,36], whose impedance is expressed as 

presented in Equation (7): 

ZCPE = 1/[Y0(jω)
n
]            (7) 

Where j = the imaginary unit, ω = 2πf and f = the frequency, Y0 and n = CPE parameters 

(when n = 1, the CPE becomes an ideal capacitance). 

The second parallel subcircuit CPE-s/R3 describes the double layer capacitance and charge 

transfer resistance at the electrolyte/working electrode interface. Specifically, R3 is the charge 

transfer resistance and it represents the actual double layer current resistance at 

coating/electrolyte interface. Indeed, the non-corrosive nature of the electrolyte provides the 

electrons and ions needed for the current flow by means of highly reversible and stable redox 

reaction.  
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Without performing numerical fitting, it can be immediately noted (Bode plot Fig. 6) that 

sample 3 showed higher resistant behaviour (the low frequency region is resistive since the 

impedance of capacitors at low frequency is very high). The Bode plot of sample 3 at low 

frequency approaches a value of resistance of approximately 2 kΩ which is higher than those 

of other coatings (between 1 kΩ and 1,5 kΩ). The quantitative electrochemical parameters 

obtained after fitting through the model circuit (Fig. 4) are shown in Table 3. Specifically, 

based on electrochemical considerations, it was shown in [40, 41] that each subcircuit 

consisting of a resistance R in parallel with a constant phase element (characterised by the 

parameters Y0, n) can be associated to an effective capacitance C according to equation (8): 

    
 
   

     
                                                              (8) 

Sample 3 possesses higher R3 proving lower exposed coating/electrolyte interface and 

therefore lower coating open porosity. Furthermore, sample 3 also possesses the lowest value 

of effective double layer capacitance (obtained from R3 and from the Y0, n parameters of the 

CPE-s element using equation (8), and listed in Table 3). By definition the capacitance is 

inversely proportional to the distance between the two conductive plates and directly 

proportional to the electrical permittivity of the material and to the overall plate area. Since 

the distance (i.e. the thickness of the electrical double layer formed onto the electrode surface) 

and the electrical permittivity of the test medium do not change among the various samples, a 

decrease of the effective double layer capacitance may be attributed to lower electrolyte 

penetration (i.e. lower overall area) and thus, lower open porosity. 

 

The overall resistance (R3) of the coatings appeared relatively low because of the reversible 

redox of the electrolyte. Such redox occurs at approximately 280 mV and the open cell 

potential (potential at open circuit) of tested coatings is about 260-270 mV. Therefore, during 

the EIS measurement, the AC-potential oscillated above and below 280 mV making the 
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electrolyte redox extremely fast with a large electron formation leading to high AC-current 

and relatively low resistance. Therefore, it is important to remark that the low R3 value is, in 

this case, not related to low electrochemical corrosion resistance of the coatings, since no 

corrosion reaction is involved in the present electrochemical process. 

 

3.1.2 Residual stresses measurements 

 

In residual stress measurements, a good linear fitting was found for the ɛ ψ vs. sin
2
ψ plots of 

all HVAF Fe-based coatings (Fig. 7). Most of the coatings presented tensile residual stresses 

in as-sprayed condition and slightly compressive ones when they were polished with fairly 

low shear stresses. During the deposition two main mechanisms occur in high velocity 

thermal spray processes: 1) mechanical interlocking of particles due to rapid quenching of 

molten or semi molten particles which creates tensile stresses at particles boundaries due to 

the shrinkage of lamellae; and 2) peening effect. In high kinetic energy thermal spray 

processes, such as HVAF, peening effect is a remarkable mechanism in coating building-up 

and it relies on the high velocity of solid particles which efficiently hammer the previously 

deposited coating layers [32]. For such a reason, despite the high penetration of Co radiation 

which may actually collect information several micrometres deep into the coatings, all as-

sprayed HVAF coatings showed tensile residual stresses due to the lack of peening effect on 

the last deposited coating layer. Instead, compressive residual stresses were reported for 

polished coatings. It should be noticed that the mechanical polishing may have actually 

modified the residual stresses of coatings. However, the penetration depth of the Co-Kα 

radiation in Fe is of more than 10 μm (the attenuation length of the Co-Kα radiation in pure 

Fe is ≈23 μm at an incidence angle of 80°, as computed from [42]), i.e. it exceeds the depth 

which would be reasonably expected to bear any polishing-induced alteration. Since the 

linearity of the ɛ ψ vs. sin
2
ψ plots does not suggest any significant through-thickness stress 
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gradient, it is concluded that the stress alterations from polishing in the vicinity of the top 

surface can be neglected. The only exception was found in sample 4 whose residual stresses 

in polished condition were reported to be slightly tensile (Table 4). Despite the increase of 

spraying pressures for set 4, a decrease of temperature may have occurred in deposition 

conditions which might have provided uneven particle melting. Therefore it can lead to low 

peening effect so in this case we do not see stresses turning compressive below the surface. 

Conversely, sample 3 (sprayed with the same spraying pressures of sample 4 but powder 

feeding rate 75 g/min), showed the largest compressive residual stresses and among the 

lowest shear residual stresses. It is worth remembering that sample 3 and sample 4 were 

sprayed with the same spraying parameters but with different powder feeding rate (75 g/min 

for sample 3 and 140 g/min for sample 4). Thus, it can be stated that the powder feeding rate 

has noticeable importance on melting and peening effects during the HVAF spray process. A 

possible explanation might be found in the higher specific heat provided to particles if powder 

feeding rate is lowered [39]. The same spraying parameters for sample 3 (75 g/min) and 

sample 4 (140 g/min) led to totally different residual stress state much likely due to higher and 

more even heat provided to particles while spraying sample 3 (more even particle softening 

and/or melting).  Furthermore, high compressive residual stress seemed to play an important 

role on coating hardness. Indeed, compressive residual stresses tend to counteract the 

penetration of the indenter resulting in lower penetration and high microhardness (sample 3 

simultaneously exhibits the highest microhardness, Table 2, and the highest compressive 

residual stresses, Table 4).  

 

3.2 Corrosion properties 

 

3.2.1 Open-circuit potential behaviour 
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Through-porosity (open-porosity) was evaluated by open-circuit potential (OCP) 

measurements up to 24 days immersion. Coating top-surface was evaluated after immersion 

by stereomicroscopy in order to estimate the penetration of the electrolyte through the coating 

towards the substrate. Furthermore, grazing incidence X-ray diffraction (GID) was carried out 

to determine the possible formation of detrimental and voluminous corrosion products at the 

coating surface. 

 

At the very early stage of the test, coatings 1, 2, 3, 5 and 6 reported high potential, which 

slowly increased throughout the test. Conversely, coating 4 steadily decreased its potential 

within the first 100 hours towards the characteristic value of the substrate, proving the 

penetration of the electrolyte through open porosity or localized defectiveness. However, after 

such a quick drop, its potential increased to higher values probably due to clogging of open-

porosity rather than passivation of coating (Fig. 8: sample 4 shows two dark spots where the 

penetration occurred and much likely got clogged by corrosion products from the substrate). 

The OCP measurements of coatings are consistent with residual stress calculations. Indeed, 

coatings 1, 2, 3, 5 and 6 showed compressive residual stresses (Fig. 7) after polishing 

(superficial layer removed), whereas coating 4 showed tensile residual stresses. Certainly, 

compressive residual stresses are beneficial for corrosion applications because of their 

tendency to close any possible open path towards the substrate. After OCP measurements, the 

surfaces of coatings 2, 3 and 4 were analysed by grazing incidence X-rays diffractometry. 

Accordingly to GID patterns, neither localized nor generalized corrosion products were 

detected for coatings 2 and 3; instead, coating 4 showed 3 small intensity peaks (red circles 

Fig. 9) attributed to iron oxyhydroxide FeO(OH) (JCPDS 98-024-5057), commonly known as 

the main component of rust when dealing with aqueous solutions.  

 

3.2.2 Potentiodynamic polarization behaviour 
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The electrochemical behaviour of the coatings is shown in Fig. 10. The corrosion potential 

(Ecorr), corrosion current density (icorr), anodic (βa) and cathodic (βc) Tafel slopes and 

polarization resistance (Rp) obtained by potentiodynamic polarization technique are 

summarized in Table 5. The corrosion potential values of the coatings range from -300 mV to 

-328 mV, showing negligible differences between the various samples. As shown in Fig. 10 

(a) the polarization curves of the coatings are shifted towards more noble values of potential 

and lower current density compared to that of carbon steel substrate proving better protection 

in chlorine environment. In addition, the presence of pseudo-passivation behaviour during 

anodic polarization at current densities of 100 μA/cm
2
 (Fig. 10 (b)) was detected for all 

sprayed coatings. The current density of 3 sample is lower compared to that of all the other 

tested coatings, which is much likely due the formation of a more stable and protective 

superficial layer. The largest pseudo-passivation current densities are reported for sample 4, 5 

and 6. 

 

Regarding the polarization resistance calculated in Table 5, the largest Rp was consistently 

reported for sample 3 (1.64∙10
3
 Ω∙cm

2
) due to the low current density and relatively high 

Tafel slopes. Indeed, high Tafel slopes lead to lower anodic and cathodic current at the same 

overpotential during the polarization measurements which in turn results in higher 

polarization resistance as depicted by eq. 6. Consistent with OCP measurements and with 

open porosity estimations by EIS, sample 4 showed the lowest polarization resistance (832
 

Ω∙cm
2
) and the highest corrosion current density (more than twice as high as that of sample 

3), much likely due to the high porosity and, therefore, to the large electrode/electrolyte 

interface or interconnected porosity through the coating towards the substrate. This proves the 

fundamental importance of limiting any kind of electrolyte paths for assuring higher corrosion 

protection.   
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4 Conclusions 

 

The aim of this study was to evaluate the effect of HVAF process parameters on the 

microstructural and corrosion properties of Fe-based coatings. This kind of materials can be 

exploited for their low price, reduced health hazardousness, and for their good mechanical 

properties, and they can represent future alternative solutions in demanding corrosion and 

wear applications. Six sets of spray parameters were chosen by varying the combustion gas 

pressures and by selecting two different powder feeding rates. The main conclusions are listed 

as follow: 

 HVAF Fe-based coatings showed dense microstructure with negligible porosity (SEM 

analysis). Some pores were detected in the outer layer of the coatings due to the 

intrinsic lack of hammering effect during subsequent particle impacts. Minor changes 

in crystalline phases from powder to coatings were reported. All coatings showed 

broadened X-ray diffraction peaks of austenite in comparison to the powder, due to 

micro-strains and/or to grain refinement, which in turn is most likely due to high 

particle deformation and rapid quenching. According to cross-sectional SEM/EDS 

analysis and XRD phase-evaluation large amount of chromium and iron mixed boride 

(Cr,Fe)2B was present in coatings. Few oxide inclusions were found in the coatings.  

 Electrochemical impedance spectroscopy (EIS) allowed a quantitative, though indirect 

estimation of the open porosity according to the values of double layer capacitance 

and charge transfer resistance at the electrolyte/working electrode interface. One 

parameter setting, characterised by low powder feed rate (75 g/min) and by average air 

pressure/propane pressure ratio (116/106), emerged as the one (sample 3) exhibiting 

the lowest open porosity.  

 The same sample (3) was also reported to possess the highest compressive residual 

stresses, with beneficial effects on corrosion and polarization resistance. Under these 
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deposition conditions, the limited heat input from the flame and the higher flame 

velocity brought to higher particle deformation without worsening the overall powder 

softening and so the particle deposition.  

 Fig. 11 summarises all of the present results by showing the correlation between 

residual stresses, charge transfer resistance from EIS tests (estimation of open 

porosity), and polarization resistance (measuring the electrochemical corrosion 

resistance in 0.1 M HCl) for all samples. The performances of the best and worst 

sample, deposited with the same air pressure/propane pressure ratio (116/106) but with 

low and high powder feed rates (respectively), are particularly highlighted in the 

figure. The combination of high compressive residual stress and high charge transfer 

resistance (low open porosity) resulted beneficial for the polarization resistance.  

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 

 

Acknowledgments 

 

The authors would like to thank Mr. Mikko Kylmälahti of Tampere University of 

Technology, Department of Materials Science for spraying the coatings. The study was 

supported by the Finnish National Graduate School (Concurrent Mechanical Engineering) and 

Tampere University of Technology. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

22 

 

References 

[1] L. Pawlowski, 2008, The science and engineering of thermal spray coatings, 2nd 

edition, John Wiley & Sons, Chichester, West Sussex, 2008, p 67-165 

[2] R.Q. Guo, C. Zhang, Y. Yang, Y. Peng, L. Liu, Corrosion and wear resistance of a Fe-

based amorphous coating in underground environment, Intermetallics (2012), 30, p 94-99 

[3] R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, L. Liu, Study of structure and 

corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. 

Sci. (2011), 53, p 2351-2356 

[4] Z. Zeng, N. Sakoda, T. Tajiri, S. Kuroda, Structure and corrosion behavior of 316L 

stainless steel coatings formed by HVAF spraying with and without sealing, Surf. Coat. Tech. 

(2008), 203, p 284-290 

[5]  S. Bose, (2007), High Temperatures Coatings, Elsevier Inc., Burlington USA, 2007, p 

33-52 

[6] H. Hériaud-Kraemer, G. Montavon, S. Hertert, H. obin, C. Coddet, Harmful risks for 

workers in thermal spraying: a review completed by a survey in a French company, J. Therm. 

Spray Tech. (2003), 12(4), p 542-554 

 

[7]  U.S. Department of Health and Human Services, “Cobalt–Tungsten Carbide: Powders 

and Hard Metals”, 12th Report on Carcinogens, June 10, 2011   

[8] M.F. Morksa, Y. Tsunekawab, M. Okumiyab, Characterization and properties of 

splats sprayed with different cast iron powders, Mater. Lett. (2004), 58, p 2481-2485 

[9] K. Volenik, F. Hanousek, P. Chraska, J. Ilavsky, K. Neufuss, In-flight oxidation of 

high-alloy steels during plasma spraying, Mat. Sci. Eng., A272 (1999), p 199-206 

[10] A. Edrisy, T. Perry, Y.T. Chengb, A.T. Alpas, Wear of thermal spray deposited low 

carbon steel coatings on aluminum alloys, Wear (2001), 251, p 1023-1033 

[11] O. Redjdala, B. Zaidb, M.S. Tabtic, K. Hendad, P.C. Lacazee, Characterization of 

thermal flame sprayed coatings prepared from FeCr mechanically milled powder, J. Mat. 

Process. Tec. (2013), 213, p 779-790 

[12] B. Wielage, H. Pokhmurska, M. Student, V. Gvozdeckii, T. Stupnyckyj, V. 

Pokhmurskii, Iron-based coatings arc-sprayed with cored wires for applications at elevated 

temperatures, Surf. Coat. Tech.  (2013), 220, p 27-35 

[13] F. Bin-you, H. Ding-yong, Z. Li-dong, Effect of heat treatment on the microstructure 

and mechanical properties of Fe-based amorphous coatings, J. Alloy. Compd. (2009), 480, p 

422-427 

[14] Z. Zhou, L. Wang, F.C. Wang, H.F. Zhang, Y.B. Liu, S.H. Xu, Formation and 

corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying, 

Surf. Coat. Tech.  (2009), 204, p 563-570 

[15] B. Rajasekaran, G. Mauer, R. Vaßen, A. Röttger, S. Weber, W. Theisen, Development 

of cold work tool steel based-MMC coating using HVOF spraying and its HIP densification 

behaviour, Surf. Coat. Tech.   (2010), 204, p 3858-3863 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 

 

[16] G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, K. Niemi, Vuoristo, P., 

Micromechanical properties and sliding wear behaviour of HVOF-sprayed Fe-based alloy 

coatings, Wear (2012), 276-277, p 29-47 

[17] Z.B. Zheng, Y.G. Zheng, W.H. Sun, J.Q. Wang, Erosion–corrosion of HVOF-sprayed 

Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution, 

Corros. Sci. (2013), 76, p 337-347 

[18]  M. Hasan, J. Stokes, L. Looney, M.S.J. Hashmi, Effect of spray parameters on 

residual stress build-up of HVOF sprayed aluminium/tool-steel functionally graded coatings, 

Surf. Coat. Tech.   202 (2008), p 4006–4010. 

[19]  Y.Y. Santana, J.G. La Barbera-Sosa, M.H. Staia, J. Lesage, E.S. Puchi-Cabrera, D. 

Chicot, E. Bemporad, Measurement of residual stress in thermal spray coatings by the 

incremental hole drilling method, Surf. Coat. Tech.   201 (2006). p 2092–2098. 

[20] J.M. Guilemany, J. Fernandeza, N. Espallargas, P.H. Suegama, A.V. Benedetti, 

Influence of spraying parameters on the electrochemical behaviour of HVOF thermally 

sprayed stainless steel coatings in 3.4% NaCl, Surf. Coat. Tech.   (2006), 200, p 3064-3072 

[21] S. Liu, D. Sun, Z. Fan, H.Y. Yu, H.M. Meng, The influence of HVAF powder 

feedstock characteristics on the sliding wear behaviour of WC–NiCr coatings, Surf. Coat. 

Tech.   (2008), 202, p 4893-4900 

[22] Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, G. Yang, Wear and corrosion 

performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying 

processes, Surf. Coat. Tech.   (2013), 218, p 127-136 

[23]  A. Verstak, V. Baranovski, Deposition of carbides by activated combustion HVAF 

spraying, in: Thermal Spray 2004 – Advances in Technology and Application – Proceedings 

of the International Thermal Spray Conference 2004, ASM International, Materials Park, OH, 

USA, 2004, p 551-555. 

[24]  L.-M. Berger, R. Puschmann, J. Spatzier, S. Matthews, Potential of HVAF Spray 

Processes, Therm. Spray Bull. 6(1) (2013), p 16-20. 

[25]  A. Milanti, H. Koivuluoto, P. Vuoristo Influence of the spray gun type on 

microstructure and properties of HVAF-sprayed Fe-based novel corrosion resistant coatings, 

Thermal Spray 2014: Not Fiction: Thermal Spray the Key Technology in Modern Life!, May 

21-23, 2014, Barcelona, Spain, 6 p. 

[26]  A.P. Wang, Z.M. Wang, J. Zhang, J.Q. Wang, Deposition of HVAF-sprayed Ni-based 

amorphous metallic coatings, J. Alloy Compd. (2007), 440, p 225–228 

[27]  S.L. Liu, X.P. Zheng, G.Q. Geng, Influence of nano-WC–12Co powder addition in 

WC–10Co-4Cr AC-HVAF sprayed coatings on wear and erosion behavior, Wear (2010), 269, 

p 362–367 

[28]  K. Tao, X.L. Zhou, H. Cui, J.S. Zhang, Oxidation and hot corrosion behaviors of 

HVAF-sprayed conventional and  nanostructured NiCrC coatings, T. Nonferr. Metal. Soc. 

(2009), 19, p 1151-1160. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

 

[29] I. Hulka, V.A. Şerban, I. Secoşan, P. Vuoristo, K. Niemi, Wear properties of CrC–

37WC–18M coatings deposited by HVOF and HVAF spraying processes, Surf. Coat. Tech. 

(2012) 210, p 15–20 

[30]  C. Lyphout. K. Sato, Screening design of hard metal feedstock powders for supersonic 

air fuel processing, Surf. Coat. Tech. (2014), 258, p 447–457. 

[31]  P. Vuoristo, S. Ahmaniemi, S. Tuurna, T. Mäntylä, E. Cordano, F. Fignino, G.C. 

Gualco, Development of HVOF sprayed NiCoCrAlYRe coatings for use as bond coats of 

plasma sprayed thermal barrier coatings, International Thermal Spray Conference, (2002), 6, 

p 470-475. 

[32] G. Bolelli, I. Hulka, H. Koivuluoto, L. Lusvarghi, A. Milanti, K. Niemi, P. Vuoristo, 

Properties of WC–FeCrAl coatings manufactured by different high velocity thermal spray 

processes, Surf. Coat. Tech. (2014), 247, p 74–89 

[33]  B. Eigenmann, E. Macherauch, Röntegnographische Untersuchung von 

Spannungszuständen in Werkstoffen, Materialwiss. Werkstofftech., (1996), 27, p 426-437. 

[34] D. A. Jones, (1991), Principle and Prevention of Corrosion, Macmillan Pub. Co., p 

568 

[35]  G. Antou, G. Montavon, F. Hlawka, A. Cornet, C. Coddet, Exploring thermal spray 

gray alumina coating pore network architecture by combining stereological protocols and 

Impedance Electrochemical Spectroscopy, J. Therm. Spray Tech. (2006), 15, p 765-772 

[36] J. Zhang, V. Desai, Evaluation of thickness porosity and pore shape of plasma sprayed 

TBC by Electrochemical Impedance Spectroscopy, Surf. Coat. Tech. (2005), 190, p 98-109 

[37] G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, Properties of 

high velocity suspension flame sprayed (HVSFS) TiO2 coatings, Surf. Coat. Tech. (2009), 

203, p 1722-1732 

[38]  S. Kuroda, M. Watanabe, K. Kim, H. Katanoda, Current Status and Future Prospects 

of Warm Spray Technology, J. Therm. Spray Tech. (2011), 20-4, p 653-676. 

[39]  A.P. Wang, Z.M. Wang, J. Zhag, J.Q. Wang, Deposition of HVAF-sprayed Ni-based 

amorphous metallic coatings, J. Alloys Compd. (2007), 440, p 225-228.  

[40] G.J. Brug, A.L.G. Van Den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis 

of electrode impedances complicated by the presence of a constant phase element, J. 

Electroanal. Chem. 176 (1984) 275-295. 

[41] B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, 

Determination of effective capacitance and film thickness from constant-phase-element 

parameters, Electrochim. Acta 55 (2010) 6218-6227. 

[42] http://henke.lbl.gov/optical_constants/atten2.html (last accessed 17/02/2015). 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

25 

 

Table I. HVAF spray parameters. Traverse speed (0.5 m/s), step size (4 mm), stand-off 

distance (300 mm) of gun and the nitrogen carrier gas (60 l/min) were kept as constant. 

 

Set Air pressure, 

psi (MPa) 

Propane gas 1 

pressure, psi 

(MPa) 

Propane gas 2 

pressure, psi 

(MPa) 

Air-propane1 

pressure ratio 

Powder 

feeding rate 

(g/min) 

Number of 

passes 

1 110 (0.76) 106 (0.73) 108 (0.74) 1.04 75 6 

2 110 (0.76) 106 (0.73) 108 (0.74) 1.04 140 4 

3 116 (0.80) 106 (0.73) 110 (0.76) 1.09 75 6 

4 116 (0.80) 106 (0.73) 110 (0.76) 1.09 140 4 

5 120 (0.83) 108 (0.74) 112 (0.77) 1.11 75 6 

6 120 (0.83) 108 (0.74) 112 (0.77) 1.11 140 4 
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Table II. Powder feeding rate f, thickness d, thickness per pass d’, ratio of thickness per pass 

and powder feeding rate d’/f, Hardness (HV0.3) and Roughness Ra of the coatings. 

 

Set Powder feeding rate 

f (g/min) 

Coating thickness 

d (μm) 

Thickness-pass 

d’ (μm) 

Ratio  

d’/f 

Hardness 

(HV0.3) 

Roughness  

Ra (μm) 

1 75 265.9 ± 7.0 44.3 ± 1.2 0.59 732 ± 62 7.5 ± 0.4 

2 140 321.1 ± 9.4 80.3 ± 2.4 0.57 753 ± 47 7.3 ± 0.4 

3 75 268.5 ± 7.8 44.7 ±  1.3 0.60 781 ± 48 7.5 ± 0.4 

4 140 305.6 ± 11.6 76.3 ± 2.9 0.54 733 ± 46 7.2 ± 0.5 

5 75 218.4 ± 10.1 36.4 ± 1.7 0.49 735 ± 47 7.3 ± 0.6 

6 140 282.8 ± 8.0 70.7 ± 2 0.51 733 ± 41 7.3 ± 0.3 
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Table III. EIS test results 

Set R1 (Ω) R2 (Ω) C from R2 and CPE-c (μF) C from R3 and CPE-s (μF) R3 (Ω) 

1 24.7 124.9 11.5 258 1151 

2 108.4 243.6 13.1 135 1176 

3 106.8 521.7 13.1 45 1748 

4 87.32 175.1 12.8 73.7 1089 

5 107.4 154.1 12.9 173 1090 

6 109.3 301 2.5 166 1148 

Note: effective capacitance values C are computed for each (CPE,R) parallel subcircuit using 

equation (8) 
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Table IV. Residual stress calculated by XRD analysis. Values recalculated with optimized 

value of d0 unstressed planar distance of austenite plane (h k l) = (3 1 1) 

Set  σ1 (MPa) σ2 (MPa) σ1 + σ2 (MPa) τ12 (MPa) 

1 As_sprayed 152 131 283 -3 

 Polished -157 -139 -296 -1 

2 As_sprayed 158 134 292 14 

 Polished -219 -205 -424 -15 

3 As_sprayed 258 276 534 15 

 Polished -277 -327 -604 -10 

4 As_sprayed 152 150 302 9 

 Polished 161 159 320 -12 

5 As_sprayed 179 195 374 -23 

 Polished -207 -220 -427 42 

6 As_sprayed 258 220 478 -6 

 Polished -265 -230 -495 -13 
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Table V.  Corrosion potential Ecorr, corrosion current Icorr, anodic and cathodic Tafel lines 

slopes βa, βc and polarization resistance Rp of sprayed coatings 

 

Set 

 

Ecorr  

(mV) 

icorr 

(μA/cm2) 

βa 

(mV/dec.) 

βc 

(mV/dec.) 

Rp 

(Ω∙cm2) 

1 -316 28.6 147 140 1086 

2 -306 19.4 121 135 1435 

3 -320 17.9 151 127 1675 

4 -317 32.1 132 136 907 

5 -328 34.7 149 128 863 

6 -321 35.8 159 138 897 
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Fig. 1 Schematic representation of HVAF torch 

Fig. 2. Cross-sectional structure of HVAF-sprayed Fe-based coatings of SET 1, 2, 3 4, 5 and 

6. SEM (BSE) images 

Fig. 3. Thickness of pass of the coatings (grouped according to powder feeding rate – 1,3,5 75 

g/min and 2,4,6 140 g/min) 

Fig. 4. XRD patterns of HVAF Fe-based coatings (1-6) and powder 

Fig. 5. Equivalent circuit employed for data fitting in EIS measurements 

Fig. 6. EIS measurements, Bode plot of tested coatings 

Fig. 7. ɛ ψ vs. sin
2
ψ plots along direction ϕ = 0° calculated on as_sprayed and polished 

coatings of austenite plane (h k l) = (3 1 1) 

Fig. 8. Open-circuit potential behaviour of the coatings as a function of exposure time in 3.5 

wt.% NaCl solution. Ag/AgCl reference electrode. Stereomicroscopy images of coating 

surfaces after 1000 h exposure are also provided 

Fig. 9. Grazing Incidence X-rays Diffractometry (GID) patterns of coatings 2, 3 and 4 after 

1000 h OCP exposure 

Fig. 10. a) Polarization behavior of HVAF- sprayed coatings and substrate in HCl 0.1M and 

b) magnification of pseudopassivation track of polarization measurement 

Fig.11. Radar diagram of HVAF-sprayed Fe-based coatings. Filled areas correspond to 

sample 3 (violet) and sample 4 (green) 
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HIGHLIGHTS 

 

1. Effect of HVAF process parameters on Fe-based coating properties was studied 

2. Dense coatings with good mechanical properties were manufactured by HVAF 

3. HVAF-sprayed coatings showed high corrosion resistance 


