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ABSTRACT

The aim of this paper is to consider a modification of a block

coordinate gradient projection method with Armijo linesearch

along the descent direction in which the projection on the fea-

sible set is performed according to a variable non Euclidean

metric. The stationarity of the limit points of the resulting

scheme has recently been proved under some general assump-

tions on the generalized gradient projections employed. Here

we tested some examples of methods belonging to this class

on a blind deconvolution problem from data affected by Pois-

son noise, and we illustrate the impact of the projection opera-

tor choice on the practical performances of the corresponding

algorithm.

Index Terms— Constrained optimization, gradient pro-

jection methods, alternating algorithms, nonconvex optimiza-

tion.

1. INTRODUCTION

Block descent methods are useful when one addresses a gen-

eral optimization problem

min
x∈Ω

f(x), (1)

in which the constraint set, as in several relevant applications,

has a separable structure, i.e. Ω = Ω1 × ... × Ωm, with

Ωi ⊆ R
ni ,

∑m

i=1 ni = n, so that any x ∈ Ω can be block

partitioned as x = (x1, ...,xm).
Such methods are based on the idea of performing successive

minimizations over each block, as in the classical nonlinear

Gauss-Seidel method [1]:

x
(k+1)
i ∈ arg min

x∈Ωi

f(x
(k+1)
1 , ...,x

(k+1)
i−1 ,x,x

(k)
i+1, ...,x

(k)
m ).

(2)
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However, the convergence of this approach is not ensured

without quite restrictive convexity assumptions (see [1, 2])

and, in addition, computing an exact minimum of f , even if

restricted to a single block, can be impractical.

On the other side, inspired by the idea of (2), effective meth-

ods able to handle general nonconvex problems and with

global convergence properties can be designed [3, 4]. In

particular, in [3] the author proposed a cyclic block gradient

projection method, based on inexact solutions of subproblems

(2) obtained by exploiting the sufficient decrease property of

the Armijo linesearch [1]. In a recent paper [5], this approach

has been further developed, allowing generalized projections

with variable parameters choice. In this work we consider

three instances of projections belonging to this class and we

apply the resulting schemes to a large-scale problem in as-

tronomy, namely the blind deconvolution of stellar images

acquired by a ground-based telescope. Future work will in-

clude the convergence analysis of the proposed scheme for

Kurdyka-Łojasiewicz functions [6–8].

2. CYCLIC BLOCK GENERALIZED GRADIENT

PROJECTION METHOD

We begin this section by defining the set D(Ω) of the func-

tions d : Ω × Ω → R≥0 which are convex, continuously

differentiable and such that

d(x,y) = 0 ⇔ x = y (3)

for all x,y ∈ Ω. Given an array of parameters σ ∈ S ⊆ R
q

and a function dσ ∈ D(Ω), we denote by H(f,Ω, S) the set

of the metric functions defined as

hσ(x,y) = ∇f(y)T (x− y) + dσ(x,y) (4)

and, for any hσ ∈ H(f,Ω, S), we define the associated gen-

eralized gradient projection operator p( · ;hσ) : Ω → Ω as

p(x;hσ) = argmin
z∈Ω

hσ(z,x) ∀x ∈ Ω. (5)

Examples of metric functions which can be rewritten in the

form (4) are:



a) the standard Euclidean projection p(x;hσ) = PΩ(x −
σ∇f(x)), obtained by choosing

dσ(x,y) =
1

2σ
‖x− y‖2, σ > 0; (6)

b) the scaled Euclidean projection, considered for example

in [9, 10], corresponding to the choice

d(α,D)(x,y) =
1

2α
(x− y)TD−1(x− y). (7)

In this case the array of parameters σ is given by the pair

(α,D), where α ∈ R>0 and D ∈ R
n×n is a symmetric

positive definite matrix;

c) the Bregman distance associated to a strictly convex func-

tion b : Ω → R, which is defined as

dσ(x,y) =
1

σ
(b(x)− b(y)−∇b(y)T (x−y)), σ > 0.

(8)

In order to formally introduce our method for problem (1),

we choose the metric function hσ ∈ H(f,Ω, S), where S =
S1 × ... × Sm, Si ⊂ R

qi , such that the parameter σ can be

partitioned as σ = (σ1, ...,σm). Moreover, we define hσ so

that it is separable over the m blocks with respect to its first

variable, i.e.

hσ(x,y) =

m∑

i=1

hi
σi
(xi,y) (9)

=

m∑

i=1

∇if(y)
T (xi − yi) + di

σi
(xi,yi),

where the functions di
σi

belong to D(Ωi) (i = 1, ...,m) and

are chosen e.g. as in (6)–(8). It is easy to see that the metric

function hσ defined in (9) belongs to H(f,Ω, S) and the asso-

ciated generalized gradient projection can be also partitioned

by blocks as

p(x;hσ) =




p1(x;h
1
σ1

)
...

pm(x;hm
σm

)


 ,

where

pi(x;h
i
σi
) = arg min

zi∈Ωi

hi
σi
(zi,x).

The resulting cyclic block generalized gradient projection

method is outlined in Algorithm 1.

The convergence result for this scheme has been proved

in [5]. For sake of completeness, we report the statement of

the main theorem.

Theorem 1 Let {x(k)}k∈N be the sequence generated by Al-

gorithm 1 and assume that x̄ is a limit point of {x(k)}k∈N.

Then x̄ is a stationary point for problem (1).

Algorithm 1 Cyclic block generalized gradient projection

method

Define a compact set S and a metric function hσ ∈
H(f,Ω, S) as in (9). Choose x(0) ∈ Ω, the upper bounds

for the inner iterations numbers L1, ..., Lm and β, δ ∈ (0, 1).
FOR k = 0, 1, 2, ...

FOR i = 1, ...,m

Set x
(k,0)
i = x

(k)
i

Choose the inner iterations number L
(k)
i ≤ Li

FOR ℓ = 0, ..., L
(k)
i − 1

Choose the parameter σ
(k,ℓ)
i ∈ Si

Set x̃
(k,ℓ)=(x

(k+1)
1 , ...,x

(k+1)
i−1 ,x

(k,ℓ)
i , ...,x

(k)
m )

Compute the descent direction

d
(k,ℓ)
i = pi

(
x̃
(k,ℓ); hi

σ
(k,ℓ)
i

)
− x

(k,ℓ)
i

Set d̃
(k,ℓ)

=(0, ...,0,d
(k,ℓ)
i , ...,0)

Compute the linesearch parameter λ
(k,ℓ)
i = δmk,l ,

where mk,l is the smallest non-negative integer

such that

f(x̃(k,ℓ) + λ
(k,ℓ)
i d̃

(k,ℓ)
) ≤ f(x̃(k,ℓ))

+ βλ
(k,ℓ)
i ∇f(x̃(k,ℓ))T d̃

(k,ℓ)

Set x
(k,ℓ+1)
i = x

(k,ℓ)
i + λ

(k,ℓ)
i d

(k,ℓ)
i

END

Set x
(k+1)
i = x

(k,L
(k)
i

)
i

END

END

3. POISSON BLIND DECONVOLUTION

In the Poisson image blind deconvolution problem, the basic

assumption is that the available data g ∈ R
n is a realization

of a Poisson random variable whose mean is ω∗ ⊗ x∗ + be,

where ω∗ ∈ R
n is an unknown point spread function (PSF),

⊗ denotes the convolution operator (periodic boundary condi-

tions are assumed here), b is a positive parameter representing

the background radiation, e ∈ R
n is the vector of all ones and

x∗ ∈ R
n is the image we would like to recover. In the fol-

lowing, we will assume that the PSF ω∗ is normalized to one.

Following a maximum likelihood approach, one can consider

the optimization problem

min
x∈Ωx,ω∈Ωω

KL(x,ω), (10)



where KL(x,ω) is the Kullback–Leibler divergence

KL(x,ω) =

n∑

i=1

gi log

(
gi

(ω ⊗ x)i + b

)
(11)

+ (ω ⊗ x)i + b− gi,

and introduce regularization by solving it approximately

through the early stopping of an iterative procedure.

As concerns the feasible sets, we consider non-negativity and

flux conservation for the image x, while for the PSF ω we im-

pose non-negativity, normalization to 1 and an upper bound s
which can be estimated in the case of adaptive optics devices

from the knowledge of the so-called Strehl ratio (SR), i.e.

the ratio of peak diffraction intensity of an aberrated versus

perfect waveform (see e.g. [11]). These constraints in a blind

deconvolution framework have been used e.g. in [12–14] and

allow good reconstructions even in presence of a large scale

nonconvex problem as (10). The resulting sets are then given

by

Ωx = {x ∈ R
n | x ≥ 0,

n∑

i=1

xi =

n∑

i=1

gi − nb},

Ωω = {ω ∈ R
n | 0 ≤ ω ≤ s,

n∑

i=1

ωi = 1}.

We consider a realistic simulation in the astronomical field

by a) generating a 512 × 512 image x∗ of a cluster of 100

stars with different magnitudes (brightest value ≈ 3.2 · 107,

dimmest value ≈ 4.2 · 106); b) convolving it with a PSF

ω∗ (SR = 0.81) mimicking the response of a single mirror

of the large binocular telescope (LBT); c) adding a realistic

background radiation (b ≈ 2.6 · 104); and d) corrupting the

resulting blurred image with Poisson noise. In Figure 1 we

report both the PSF used in this experiment and the simulated

measured image. The reconstruction algorithms are instances

of Algorithm 1 where the projection is defined by means of

the three choices detailed in section 2, whose main features

are detailed below.

Scaled gradient projection (SGP). The scaled Euclidean

projection (7) has been proposed in [10] within the so-called

scaled gradient projection method and allowed a notable

acceleration of the same method employing the standard

Euclidean projection (6), as remarked in several recent pa-

pers [13, 15–21]. Here we adopt, at each iteration k, the

following diagonal scaling matrix

[Dk]ii = max

{
1

µ
,min

{
µ,x(k)

}}
, (12)

where µ is a prefixed threshold. The steplength parameter

αk is then computed by the adaptive alternation of the scaled

Barzilai–Borwein (BB) rules as proposed in [10]. If the scal-

ing matrix is set equal to the identity we recover the usual

gradient projection (GP) method.

Gradient method with Bregman projection (GBP). A fur-

ther instance of projections belonging to the family described

in section 2 corresponds to the choice of the metric (4) with

related distance-like function dσ defined in (8), where b(x) =∑n

i=1(xi + γ) log(xi + γ), with γ > 0, is the “regularized

entropy” [22]. The resulting projection operator (5) is given

by

[p(x, hσ)]i = max
{
(xi + γ)e−σ∇if(x) − γ, 0

}
.

The steplength parameter σ is adaptively computed at each

iteration in the following way. First, we observe that, by the

Taylor expansion of the exponential function, we have

(xi + γ)e−σ∇if(x) = (xi + γ)− qi(σ)(xi + γ)∇if(x),

where qi(σ) =
∑∞

j=0(−1)j σj+1

(j+1)!∇if(x)
j . The term

qi(σ) can be explicitly expressed also as qi(σ) = (1 −
e−σ∇if(x))/∇if(x) when ∇if(x) 6= 0, qi(σ) = σ when

∇if(x) = 0. Then, the GBP method can be considered also

as an approximated scaled gradient method employing the

following scaling matrix

[Dk]ii(σ) = (x
(k)
i + γ)qi(σ). (13)

Thus, it is reasonable to determine the steplength parameter

according to the quasi-Newton approach

min
σ∈[σmin,σmax]

‖Dk(σ)
−1s(k) −w(k)‖2,

min
σ∈[σmin,σmax]

‖s(k) −Dk(σ)w
(k)‖2,

where s(k) = x(k) − x(k−1) and w(k) = ∇f(x(k)) −
∇f(x(k−1)). The previous one-dimensional minimum prob-

lems can be easily solved (for example by means of the

fminbnd Matlab function), giving two possible values

for the steplength σk. In our experiments, we adopt the

same adaptive alternation strategy applied in [10] for the two

Barzilai-Borwein rules.

Following the suggestion in [13], we used L
(k)
1 = L1 = 50

(k ∈ N) inner iterations for the image step, L
(k)
2 = L2 = 1

(k ∈ N) iteration for the PSF step, a constant image as x(0)

and the autocorrelation of the ideal PSF of LBT as ω(0). The

outer iterations have been arbitrarily stopped at 3000.

In Figure 2 we show the reconstruction of the PSF provided

by the three approaches together with the horizontal and ver-

tical central cuts of the pictures compared with those of the

target PSF. Moreover, in Figure 3 we plotted the reconstruc-

tion errors and the decrease of the objective function versus

the number of iterations, where for the PSF we used the stan-

dard root mean square error (RMSE) ‖ω(k) − ω∗‖/‖ω∗‖
while for the image we computed the RMSE for each star

|x
(k)
i − x∗

i |/|x
∗
i | (i = 1, ..., 100) and then calculated the

mean of the 100 resulting values. From the results obtained



Fig. 1. Star cluster test problem: original PSF (left) and blurred and noisy image (right). Both images are in log scale.
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Fig. 2. PSF for the star cluster test problem. First row: reconstructions with GP (left), SGP (middle) and GBP (right) in log

scale. Second row: horizontal and vertical central cuts of original and restored PSFs (red and black plots coincide).

in this test problem, we can conclude that the choice of the

projection strongly affects the behaviour of the minimiza-

tion algorithm, and the consequences are emphasized in the

case of nonconvex objective function with multiple stationary

points. The SGP and GBP choices seem to be attracted by

the same limit point, even if going through different paths.

With these approaches the reconstructions are very satisfac-

tory, since both the image and the PSF are restored with an

error below 1%. On the contrary, the standard projection in

Euclidean norm leads to a significantly different pair (x,ω),
with a higher precision in recovering the correct magnitude

of the stars coupled with a worse reconstruction of the PSF

(RMSE > 20%), as clearly attested also by the plots shown

in the second row of Figure 2.
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