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Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous

deterministic diffusion are rare. Here, we introduce a simple non-chaotic model in terms of an

interval exchange transformation suitably lifted onto the whole real line which preserves distances

except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is

designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and

anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated

to be analyzed from first principles, simplified models are needed to identify the minimal

ingredients generating the different transport regimes. For our model, which we call the slicer map,

we calculate all its moments in position analytically under variation of a single control parameter.

We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to

superdiffusion under parameter variation. Our results may help to understand the delicate

parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in

different parameter regions the transport properties of our simple model match to different classes

of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal

billiards to a single anomalous stochastic process. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926621]

Consider equations of motion that generate dispersion

of an ensemble of particles as the dynamics evolves in

time. A fundamental challenge is to develop a theory for

predicting the diffusive properties of such a system start-

ing from first principles, that is, by analyzing the micro-

scopic deterministic dynamics. Here, we introduce a

seemingly trivial toy model that, analogously to polygonal

billiards, exhibits dispersion but is not chaotic in terms of

exponential sensitivity with respect to initial conditions.

We show that our simple map model generates a surpris-

ingly non-trivial spectrum of different diffusive proper-

ties under parameter variation.

I. INTRODUCTION

How macroscopic transport emerges from microscopic

equations of motion is a key topic in dynamical system

theory and nonequilibrium statistical physics.1–7 While

microscopic chaos, characterized by positive Lyapunov

exponents, typically leads to Brownian motion-like

dynamics by reproducing conventional statistical physical

transport laws, for weakly chaotic dynamical systems where

the largest Lyapunov exponent is zero the situation becomes

much more complicated.3,8,9 Such non-trivial dynamics is

relevant for many topical applications like, for example,

nanoporous transport.10–14 In the former case the mean

square displacement (MSD) of an ensemble of particles

grows linearly in the long time limit, hx2i � tc with c¼ 1

defining normal diffusion. In the latter case one typically

finds anomalous diffusion with c 6¼ 1, where for c< 1 one

speaks of subdiffusion, for c> 1 of superdiffusion.8,9,14,15

To our knowledge only a few deterministic dynamical

systems are known exhibiting all three regimes of subdiffu-

sion, normal diffusion, and superdiffusion under parameter

variation. Examples of one-dimensional maps are a Pomeau-

Manneville like model where anomalous diffusion originates

from an interplay between different marginally unstable fixed

points.16 The climbing sine map displays exactly three differ-

ent diffusive regimes with c¼ 0, 1, 2 corresponding to peri-

odic windows and chaotic regions connected to period

doubling bifurcations and crises.17,18 For the two-dimensional

standard map numerical evidence exists for a transition from

sub- to superdiffusion generated by a mixed phase space.19

Least understood is diffusion in two-dimensional polygonal

billiards,3,8,12,13,20–22 see Fig. 1 for an example. By definition
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these systems exhibit linear dispersion of nearby trajectories

with zero Lyapunov exponents for typical initial conditions,

hence non-chaotic behavior. However, they nevertheless gen-

erate highly non-trivial dynamics due to complicated topolo-

gies yielding pseudohyperbolic fixed points and

pseudointegrability. For this reason they are sometimes called

pseudochaotic.3,8 A line of numerical work on periodic polyg-

onal billiard channels revealed sub-, super-, and normal diffu-

sion depending on parameter variation.12,13,23–26 Rigorous

analytical results are so far only available for periodic wind-

tree models supporting an extremely delicate dependence of

diffusive properties on variation of control parameters.27,28

For the mathematical derivations it has been exploited that po-

lygonal billiards can often be reduced to interval exchange

transformations (IETs), see also Refs. 29–31. These are one-

dimensional maps generalising circle rotations which cut the

original interval into several subintervals by permuting them

non-chaotically. Both polygonal billiards and IETs are known

to exhibit highly non-trivial ergodic properties, and in general

there does not seem to exist any theory to understand the com-

plicated diffusive dynamics of such systems from first princi-

ples. Random non-overlapping wind-tree models and related

maps, on the other hand, enjoy a kind of stochasticity which

appears analogous to the dynamically generated randomness

of chaotic systems, leading to sufficiently rapid decay of cor-

relations and good statistical properties. Consequently, these

models have been found to yield normal diffusion that is

indistinguishable from Brownian motion.32,33 In contrast, per-

iodic polygonal billiards have very long lasting dynamical

correlations and poor statistical properties, which are associ-

ated with very sensitive dependence of their transport proper-

ties on the details of their geometry.12

These difficulties to understand diffusion in polygonal

billiards on the basis of dynamical systems theory are paral-

leled by difficulties in attempts to approximate their diffusive

properties by stochastic theory: There still appears to be a

controversy in the literature of whether continuous time ran-

dom walk theory and L�evy walks, fractional Fokker-Planck

equations or scaling arguments should be applied to under-

stand their anomalous diffusive properties, with different

approaches yielding different results for the above exponent

c of the MSD.3,8,21,34 While all these theories are based on

dynamics generated from temporal randomness, spatial ran-

domness leads yet to another important class of stochastic

models, called random walks in random environments,

which yields related types of anomalous diffusion: An im-

portant example in one dimension is the L�evy Lorentz gas

where the scatterers are randomly distributed according to a

L�evy-stable probability distribution of the scatterer positions.

This model has been studied both numerically and analyti-

cally revealing a highly non-trivial superdiffusive dynamics

that depends in an intricate way on initial conditions and the

type of averaging.35–37 This work is related to experiments

on L�evy glasses where similar behavior has been observed.38

Motivated by the problem of understanding diffusion in

polygonal billiards, in this paper we propose a seemingly

trivial non-chaotic map by which we attempt to mimic the

dynamics illustrated in Fig. 1: Shown is a beam of point

particles and how it splits due to the collisions at the singu-

larities (corners) of a polygonal billiard channel. This mech-

anism is intimately related to the connection between

polygonal billiards and IETs referred to above. We thus try

to capture this slicing dynamics by introducing a specific

IET defined on a one-dimensional lattice, see Fig. 2. Here,

the loss of particles propagating further in one direction is

modeled by introducing a deterministic rule following a

power law for the jumps from unit cell to unit cell.

This simple non-chaotic model, which we call the slicer

map, generates a surprisingly rich spectrum of diffusive

dynamics under parameter variation that includes all the dif-

ferent diffusion types mentioned above. We mention in pass-

ing that it provides another example where normal diffusion

is obtained from non-chaotic dynamics. However, differently

from the cases of Refs. 32, 33 and analogously to periodic

polygonal billiards, it is completely free of randomness. Our

simple model might help to understand why the type of dif-

fusion in polygonal billiards is so sensitive under parameter

variation. It might also shed some light on the origin of the

difficulty to model polygonal billiard dynamics as a simple

stochastic process.

Our paper is organized as follows: In Section II, we

define the slicer model and analytically calculate its diffusive

FIG. 1. Example of a polygonal billiard channel in which single point par-

ticles scatter elastically with sawtooth walls.3,12,20,21 Shown is how a beam

of particles is split by the corners of the billiard while propagating.

FIG. 2. Space-time plot illustrating the action of the one-dimensional slicer

map Sa for a¼ 1/3 defined by Eqs. (1) and (2), where m (horizontal axis)

denotes space and n (vertical axis) time: Shown is the diffusive spreading of

points that at n¼ 0 are uniformly distributed on the unit interval centered

around m¼ 0. As the map is one-dimensional the columns are only a guide

to the eye. This map is designed to mimic the mechanism of beam-splitting

in polygonal billiards depicted in Fig. 1.
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properties. To the end of this section, we study our model

analytically and illustrate it numerically for a parameter

value that is characteristic for the dynamics. In Section III,

we compare the deterministic slicer dynamics with existing

stochastic models of anomalous diffusion. Section IV con-

tains concluding remarks.

II. THE SLICER DYNAMICS

A. Theory

Consider the unit interval M:¼ [0, 1], the chain of such

intervals bM :¼ M �Z, and the product measure bl :¼ k �dZ

on bM, where k is the Lebesgue measure on M and dZ is the

Dirac measure on the integers. Denote by pM and pZ the pro-

jections of bM on its first and second factors. Let x be a point

in M, bX ¼ ðx;mÞ a point in bM, and bMm :¼ M � fmg the m-th

cell of bM. Subdivide each bMm in four sub-intervals, sepa-

rated by three points called “slicers”

f1=2g � fmg; f‘mg � fmg; f1� ‘mg � fmg;

where 0<‘m< 1/2 for every m 2 Z.

The slicer model is the dynamical system ð bM; bl; SÞ
which, at each time step n 2N, moves all sub-intervals

from their cells to neighbouring cells, implementing the rule

S : bM ! bM defined by

S x;mð Þ ¼
x;m� 1ð Þ if 0 � x < ‘m or

1

2
< x � 1� ‘m;

x;mþ 1ð Þ if ‘m � x � 1

2
or 1� ‘m < x � 1:

8>><>>:
(1)

For every a> 0, let us introduce the family of slicers

La ¼ ‘j að Þ;1� ‘j að Þ
� �

: ‘j að Þ ¼ 1

jjj þ 21=a
� �a ; j 2Z

( )
: (2)

The slicer map is denoted by Sa if all slicers of Eq. (1)

belong to La: ‘m¼ ‘m(a). Obviously, for every a> 0, Sa pre-

serves bl and is not chaotic: Its Lyapunov exponent vanishes,

as different points in bM neither converge nor diverge from

each other in time, except when separated by a slicer in

which case their distance jumps. This is like for two particles

in a polygonal billiard where one of them hits a corner of the

polygon while the other continues its free flight, see Fig. 1.

But the separation points constitute a set of zero bl measure,

hence they do not produce positive Lyapunov exponents.

The dependence of the dynamical rule Eq. (1) on the

coarse grained position in space m is a crucial aspect of the

slicer model, which distinguishes it from ordinary IETs. That

the slicers get closer and closer to the boundaries of the cells

when the absolute value of m grows is meant to reproduce,

in a one-dimensional setting, what is illustrated in Fig. 1:

The corners of periodic polygonal billiards split beams of

particles into thinner and thinner beams as they travel further

and further away from their initial cell. In two dimensions

this operation is fostered by the rotations of the beams of

particles, something that is not possible in a single dimen-

sion. This thinning mechanism due to slicing is mimicked by

the power law dependence in Eq. (2). In effect this means

that our slicer particles perform a deterministic walk in a

L�evy potential. This quite trivial setting has, as we shall see,

rather non-trivial consequences. The power law dependence

is a mere assumption at this point in order to define our

model. It would have to be developed further to move the

slicer map closer to actual polygonal billiard dynamics.

The diffusive properties of the slicer dynamics will be

examined by taking an ensemble of points bE0 in the central

cell bM0 ¼ M � f0g and studying the way Sa spreads them inbM. One finds that in n time steps the points of bE0 reach bMn

and bM�n, and that the cells occupied at time n have odd

index if n is odd, and have even index if n is even.

More precisely, taking

Pn ¼ fj 2 Z : j is even and jjj � ng;
Dn ¼ fj 2 Z : j is odd and jjj � ng; (3)

we have

Sn
a
bM0 ¼ [

j2Pn

ðRj � fjgÞ if n is even ;

Sn
a
bM0 ¼ [

j2Dn

ðRj � fjgÞ; if n is odd ; (4)

where Rj � fjg � bMj, and Rj � M is an interval or a union of

intervals if bE0 ¼ bM0, with Ri \ Rj ¼1 if i 6¼ j.
Let d�0 :¼ bq0ðbXÞdbl be a probability measure on bM with

density

bq0ðbXÞ ¼ 1; if bX 2 bM0

0; otherwise:

(
(5)

This measure evolves under the action of Sa describing the

transport of an ensemble of points initially uniformly distrib-

uted in bM0. In the following we will always adopt this initial

setting, which mimics a d-function like initial condition as is

common in standard diffusion theory, adapted to a lattice by

filling a unit cell in it. If the initial condition were confined

within bMm with m 6¼ 0, nothing would change qualitatively.

However, if we would fill a unit cell non-uniformly with par-

ticles, e.g., by choosing points close to the boundary of a

cell, clearly we would observe very different dynamics.

Hence, there is dependence of the outcome on the initial

measure as is typical for IETs. Here, we characterize its dy-

namics by choosing a sufficiently “nice” initial measure.

Requiring conservation of probability, the evolution �n

of �0 at time n is given by �nðbRÞ ¼ �0ðS�n
a
bRÞ for every meas-

urable bR � bM. Its density is given by

bqnðbXÞ ¼ 1 if bX 2 Sn
a
bM0

0 otherwise :

(
(6)

In the line above Eq. (6) S�n
a is intended in the set-theoretical

sense, since S�1
a X is not a single point, in general. However,

restricting to the specific initial condition given by cell bM0,

and to the part of bM that the points initially in bM0 reach at

any finite time n, the preimage of a point is a single point

and the inverse of the map is defined as follows: Consider

the evolution of the initial distribution bN ðnÞ ¼ Sn
a
bM0;

073113-3 Salari et al. Chaos 25, 073113 (2015)
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n ¼ 0; 1; 2; 3;…, and define the maps Tn ¼ SajbN ðnÞ : bN ðnÞ !
bN ðnþ1Þ

(we drop a from Tn for the sake of notation). These

maps are surjective. They are also injective. Indeed, supposebx1; bx2 2 bN ðnÞ yields Tnðbx1Þ ¼ Tnðbx2Þ, then pMðTnðbx1ÞÞ
¼ pMðTnðbx2ÞÞ ¼: n and, since Sa does not change the first

component of any point bx (i.e., pMðSðbxÞÞ ¼ pMðbxÞÞ, we have

that also pMðbx1Þ ¼ pMðbx2Þ ¼ n. But in bN ðnÞ there is only one

point with first component n for any n 2 (0, 1), thus bx1 ¼ bx2.

The map that gives the evolved distribution at time n is

Sa;n :¼ Tn�1 � Tn�2 � � � � � T0 : bM0 ! bM; (7)

and the dynamics is given by the family of invertible maps

fSa;ngn2N. Obviously S
�1
a;n ¼ T�1

0 � � � � � T�1
n�2 � T�1

n�1. Since

pMðTnðbxÞÞ ¼ pMðbxÞ, for any A � bNn we have kðpMðTnðAÞÞÞ
¼ kðpMðAÞÞ, where k is the Lebesgue measure. In the same

way if A � bN ðnþ1Þ
, then kðpMðT�1

n ðAÞÞÞ ¼ kðpMðAÞÞ. From

this it follows that if A � bN ð0Þ, then kðpMðSnðAÞÞÞ ¼
kðpMðAÞÞ and if A � bN ðnÞ then kðpMðS�1

a;nðAÞÞÞ ¼ kðpMðAÞÞ.
In other words, maps fSa;ngn2N preserve the Lebesgue

measure and bl is also invariant w.r.t. the same family of

maps.

Apart from being formally precise with defining the

inverse for our model, it is interesting to conclude that S–1

depends on the initial condition. More physically speaking,

this appears to be a consequence of the spatial translational

symmetry breaking with respect to the different slicer posi-

tions in the different cells. The lack of a more general defini-

tion of S�1 implies in turn that the slicer map is not time

reversible invariant in the sense of the existence of an invo-

lution,1–3 however, we do not need the latter property for our

calculations.

Consider now the sets

bRj :¼ Sn
a
cM0 \ bMj � Sa;nðcM0Þ \ bMj; j ¼ �n;…; n; (8)

which constitute the total phase space volume occupied at

time n in cell bMj. Their measure

Aj :¼ blðbRjÞ ¼ kðpMðbRjÞÞdZðjÞ ¼ kðpMðbRjÞÞ; (9)

equals the probability �nð bMjÞ of cell j at time n: as bl is

fSa;ngn2N-invariant and Sa;n are invertible, we have

Aj ¼ blðbRjÞ ¼ blðS�1
a;nðbRjÞÞ ¼ blðcM0 \S

�1
a;nðcMjÞÞ

¼ �0ðS�1
a;nðcMjÞÞ ¼ �0ðS�n

a
cMjÞ ¼ �nð bMjÞ ;

and
Pn

j¼�n Aj ¼ blð[n
j¼�nS

�1
a;nð bM0Þ \ bMjÞ ¼ blðS�1

a;nðcM0ÞÞ
¼ blðcM0Þ ¼ 1. Indeed, S�1

a;nðcM0Þ \ bMj ¼1 for jjj > n and

[1j¼�1 bMj ¼ bM. In other words, the Aj’s define a probability

distribution which coincides with �nðp�1
Z Þ and, thus, is a

marginal probability distribution of �n. Starting from the

“microscopic” distribution �n on bM, we can now introduce

its coarse grained version qG
n as the following measure on

the integer numbers Z: For every time n 2N, the coarse

grained distribution is defined by

qG
n ðjÞ ¼

Aj if j 2 f�n;…; ng;
0 otherwise:

(
(10)

A�n and An are called traveling areas, Aj is called sub-travel-
ing area if jjj < n.

Remark 1. From the definition of Sa and the initial con-

dition Eq. (5), we have Aj¼A�j for all j 2 Z. Thus, qG
n ðjÞ is

even, qG
n ðjÞ ¼ qG

n ð�jÞ, and all its odd moments vanish.

The coarse grained distribution will be used to describe

the transport properties of the coarse grained trajectories

fpZðSn
a
bX0Þgn2N � Z, with bX0 2 bM0. This way qG

n becomes

the discrete analog of the mass concentration used in ordi-

nary and generalized diffusion equations for systems that are

continuous in time and space.9,15 Accordingly, we can define

a discrete version of the MSD as

hDbX2

ni :¼
Xn

j¼�n

Ajj
2; (11)

for qG
n , where j is the distance travelled by a point in bMj at

time n. Then, for c 2 [0, 2] let

Ta cð Þ :¼ lim
n!1

hDbX2

ni
nc

: (12)

If TaðctÞ 2 ð0;1Þ for ct 2 [0, 2], ct is called the transport

exponent of the slicer dynamics, and Ta(c
t) yields the gener-

alized diffusion coefficient.9,15

Remark 2. Due to symmetry the mean displacement

hDbXni :¼
Pn

j¼�n Ajj vanishes at all n, hence there is no drift

in the slicer dynamics.

Note that Aj equals the width of the interval Rj, which is

determined by the position of the slicers in the j-th cell, once

a is given. Therefore, Aj can be computed directly from Eq.

(2). For the traveling areas we have

An ¼ ‘n�1 ¼
1

jnj � 1þ 21=a

 !a

¼ A�n; (13)

while for the non vanishing sub-traveling areas we have

Aj ¼ ‘jjj�1 � ‘jjjþ1 ¼
1

jjj � 1þ 21=a
� �a � 1

jjj þ 1þ 21=a
� �a :

(14)

For even n> 2 this implies

qG
n jð Þ ¼

2 ‘0 � ‘1ð Þ ; for j ¼ 0

‘j2k�1j � ‘j2kþ1j ; for jjj ¼ 2k; k ¼ 1;…;
n� 2

2
‘jn�1j ; for jjj ¼ n

0 ; elsewhere;

8>>>>><>>>>>:
(15)

while for odd n> 3 it implies
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qG
n jð Þ ¼

‘j2kj � ‘j2kþ2j ; for jjj ¼ 2k þ 1; k ¼ 0;…;
n� 3

2
‘jn�1j ; for jjj ¼ n

0 ; elsewhere:

8>>><>>>:
(16)

Remark 3. Using Eq. (2) in Eqs. (15), (16) for large n, one

obtains that the tail of the distribution (large j) goes (inde-

pendently of the parity of n) like qG
n ðjÞ � 2a=jjjaþ1

Ifjjj<ng,
i.e., qG

n has heavy tails. Note that for a 2 [0, 2) these tails

correspond exactly to the ones of a L�evy stable distribution.9

However, for j¼6n the probability is much larger,

qG
n ðnÞ � 1=jnja.

We are now prepared to prove the following result:

Proposition 1. Given a 2 (0, 2) and the uniform initial

distribution in bM0, we have

Ta cð Þ ¼

þ1 if 0 � c < 2� a
4

2� a
if c ¼ 2� a

0 if 2� a < c � 2;

8>><>>: (17)

hence the transport exponent ct takes the value 2� a with

hDbX2

ni � n2�a. For a¼ 2 the transport regime is logarithmi-

cally diffusive, i.e.,

hDbX2

ni � log n; (18)

asymptotically in n.

Proof. Because of the symmetry of qG
n let us consider

only the cells bMj with j 2N, so to obtain

Ta cð Þ ¼ 2 lim
n!1

1

nc

Xn

j¼0

Ajj
2 ¼ 2 lim

n!1

1

nc

Xn�1

j¼0

Ajj
2 þ Ann2

0@ 1A:
(19)

Because of Eq. (13), the travelling area yields

lim
n!1

n2

nþ 21=a � 1ð Þa �
1

nc
¼

1 if 0 � c < 2� a

1 if c ¼ 2� a

0 if 2� a < c � 2:

8><>: (20)

For the sub-travelling areas, by introducing Qn :¼Pn�1
j¼0 Ajj

2, we will show below that

lim
n!1

Qn

nc
¼

1 if 0 � c < 2� a
a

2� a
if c ¼ 2� a

0 if 2� a < c � 2:

8>><>>: (21)

Remark 4. Note that the traveling and the sub-traveling

areas produce exactly the same scaling for the MSD. We

will come back to this fact in Section III. This result can also

be obtained by calculating the second moment of the proba-

bility distributions of these two different areas directly from

the expressions given in Remark 3 above.

To prove Eq. (21), consider that the series Qn assumes a

different form depending on whether n is even or odd. If it is

even and larger than 2 we have

Qn¼
Xn�1

j¼0;j2Pn

Ajj
2¼4

Xn2�1

j¼1

1

2jþ21=a�1
� �a� 1

2jþ21=aþ1
� �a" #

j2:

(22)

This sum has a telescopic structure that allows us to rewrite

it as

Qn ¼ 4
Xn2�1

j¼1

2j� 1

2j� 1þ 21=a
� �a � n� 2ð Þ2

n� 1þ 21=að Þa : (23)

Let Rn be the first term of Qn. Introducing

f ðjÞ :¼ 2j�1

2j�1þ21=að Þa, we can write

Rn ¼ 4
Xn2�1

j¼1

2j� 1

2j� 1þ 21=a
� �a ¼ 4

Xn2�1

j¼1

f jð Þ: (24)

The derivative

f 0 jð Þ ¼ 2 2 1� að Þjþ 21=a þ a� 1
� �

2jþ 21=a � 1
� �aþ1

(25)

shows that f is increasing for 0< a� 1, while for 1< a< 2, f
grows for j< j (a) and decreases for j> j(a), with

jðaÞ ¼ ð1� a� 21=aÞ=2ð1� aÞ. For 0< a� 1 f is strictly

increasing, henceðn
2
�1

0

f xð Þdx �
Xn2�1

j¼1

f jð Þ �
ðn

2

1

f xð Þdx: (26)

We have to distinguish two cases, a< 1 and a¼ 1. In the first

case, we have

ð n
2
�1

0

f xð Þdx ¼ 1

2

n� 3þ 21=að Þ2�a

2� a
� 21=a � n� 3þ 21=að Þ1�a

1� a

"

þ 21=a � 1ð Þ1�a � 21=a � aþ 1

2� að Þ 1� að Þ

�
(27)

and

ð n
2

1

f xð Þdx ¼ 1

2

n� 1þ 21=að Þ2�a

2� a
� 21=a � n� 1þ 21=að Þ1�a

1� a

"

þ 21=a þ 1
� �1�a

� 21=a þ a� 1ð Þ
2� að Þ 1� að Þ

#
; (28)

therefore taking the n!1 limit we have

lim
n!1

1

nc

ðn
2
�1

0

f xð Þdx ¼

1 if 0 � c < 2� a

1

2 2� að Þ if c ¼ 2� a

0 if 2� a < c � 2

8>>>><>>>>: (29)

and
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lim
n!1

1

nc

ðn
2

1

f xð Þdx ¼

1 if 0 � c < 2� a

1

2 2� að Þ if c ¼ 2� a

0 if 2� a < c � 2:

8>>><>>>: (30)

For a¼ 1 the two integrals differ, but the bounding limits

coincide. Therefore, one obtains

lim
n!1

Rn

nc
¼ lim

n!1

4

nc

Xn2�1

j¼1

f jð Þ ¼

1 if 0 � c < 2� a

2

2� a
if c ¼ 2� a

0 if 2� a < c � 2:

8>>><>>>:
(31)

If 1< a< 2, f decreases for j> j(a). Hence, introducing
�ja ¼ bjðaÞc, where bxc is the integer part of x, Rn can be

expressed as

Rn ¼ 4
X�ja

j¼1

f jð Þ þ
Xn2�1

j¼�jaþ1

f jð Þ

0@ 1A: (32)

Dividing by nc and taking the n ! 1 limit, the first term

vanishes for all c> 0 while the second term can be treated as

above to obtain the same as Eq. (31). Recalling Eq. (23), this

eventually implies Eq. (21). For odd n, one proceeds

similarly.

In summary, the MSD grows like hDbX2

ni � n2�a for a 2
(0, 2), and the trivial slicer map Sa enjoys all power law regimes

of normal and anomalous diffusion as a varies in (0, 2).

Remark 5. From Eq. (2) it follows trivially that for a! 0
we have ‘j ¼ 1=2; 8j 2 Z. This means that everywhere on the
slicer lattice half unit intervals are mapped onto half unit inter-
vals in neighbouring cells in the same direction of the previous
jump generating purely ballistic motion. Consequently for

a¼ 0 the MSD grows like hDbX2

ni � n2 ðn!1Þ.
Repeating the previous reasonings by computing the

correspondingly different integrals for a¼ 2 for a uniform

initial distribution in bM0 we find that

T2ðcÞ ¼
þ1 if c ¼ 0

0 if 0 < c � 2:

(
(33)

The upper and lower bounds of the integrals corresponding

to Eq. (26) feature leading logarithmic terms, which yields

Eq. (18).

Remark 6. By an analogous calculation, or alterna-
tively by looking at the second moment of the probability dis-
tributions, cf. Remark 4 above, one can see that for a> 2

hDbX2

ni ! const: ðn!1Þ: (34)

That is, in terms of the MSD localisation sets in, although
from the definition of the slicer map it is intuitively not clear
why this should happen.

These results can now be generalised by calculating the

asymptotic behavior of the higher moments DbXp

n of qG
n ,

hDbXp

ni ¼
Xn

j¼�n

Ajj
p: (35)

Theorem 2. For a 2 (0, 2] the moments hDbXp

ni with
p> 2 even and initial condition uniform in bM0 have the as-
ymptotic behavior

hDbXp

ni � np�a; (36)

while the odd moments (p¼ 1, 3,…) vanish.

Proof. We want to compute the limit

L a; pð Þ :¼ lim
n!1

1

nc
hDbXp

ni ¼ lim
n!1

1

nc

Xn

j¼�n

Ajj
p: (37)

As observed in Remark 2, the symmetry of qG
n implies that

the sums with odd p to vanish. For the even moments it suffi-

ces to consider the positive j’s,

L a; pð Þ ¼ lim
n!1

2

nc

Xn�1

j¼0

Ajj
p þ Annp

0@ 1A: (38)

We now prove that

lim
n!1

1

nc

Xn�1

j¼0

Ajj
p ¼

1 if 0 � c < p� a
a

p� a
> 0 if c ¼ p� a

0 if c > p� a:

8>><>>: (39)

In order to do so, for even n let us introduce

Pn :¼
Xn�1

j¼0;j2Pn

Ajj
p

¼ 2p
Xn2�1

j¼1

1

2jþ 21=a � 1
� �a � 1

2jþ 21=a þ 1
� �a" #

jp: (40)

A simple induction procedure leads to

Pn ¼ 2p �
Xn2�2

j¼0

jþ 1ð Þp � jp

2jþ 1þ 21=a
� �a � n� 2ð Þp

n� 1þ 21=að Þa

¼ Rn �
n� 2ð Þp

n� 1þ 21=að Þa ; (41)

which defines Rn in terms of addends of the form

f jð Þ ¼ jþ 1ð Þp � jp

2jþ 1þ 21=a
� �a ¼Xp

k¼1

p
k

� �
jp�k

2jþ 1þ 21=a
� �a (42)

with derivatives given by

f 0 jð Þ ¼
Xp

k¼1

p

k

 !
2 p� k � að Þjþ p� kð Þ 1þ 21=að Þ
� �

2jþ 1þ 21=a
� �aþ1

jp�k�1

¼
Xp

k¼1

fk jð Þ; ð43Þ
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where

fk jð Þ ¼ p
k

� �
2 p� k � að Þjþ p� kð Þ 1þ 21=að Þ
� �

2jþ 1þ 21=a
� �aþ1

jp�k�1 :

(44)

For 0< a� 1 and all j> 0 we have fk(j)> 0 for k¼ 1,…,

p� 1, while fp(j) < 0. Because jfpðjÞj < f1ðjÞ; f 0 is positive

and f increases for all j> 0. For 1< a� 2 and p¼ 3, one has

f ðjÞ ¼ ð3j2 þ 3jþ 1Þ=ð2jþ 1þ 21=aÞa, which is increasing

for j> 0, while for p	 4 one obtains fk(j)> 0 for k¼ 1,…,

p� 2, and fp�1(j), fp(j)< 0. Because jfp�1ðjÞ þ fpðjÞj
< f1ðjÞ þ f2ðjÞ, f(j) is increasing for j> 0, even for 1< a� 2.

Therefore, our sum is bounded from above and below by

ðn
2
�2

0

f xð Þdx <
Xn2�2

j¼0

f jð Þ <
ðn

2
�1

1

f xð Þdx; (45)

for all a 2 (0, 2]. Taking the limit as done previously, we

eventually obtain

lim
n!1

Rn

nc
¼

1 if 0 � c < p� a
p

2p p� að Þ
if c ¼ p� a

0 if c > p� a;

8>>>><>>>>:
lim

n!1

Pn

nc
¼

1 if 0 � c < p� a
a

p� a
if c ¼ p� a

0 if c > p� a;

8>>><>>>: (46)

for all a 2 (0, 2]. If n is odd one proceeds similarly to obtain

the same result.

For the travelling area Eq. (13) we have

lim
n!1

Annp ¼ lim
n!1

np

nþ 21=a � 1ð Þa �
1

nc

¼
1 if 0 � c < p� a

1 if c ¼ p� a

0 if c > p� a:

8>><>>: (47)

Hence, the same scaling for traveling and sub-traveling

regions, as pointed out for the second moment in Remark 4,

holds for all higher moments. We thus conclude that

L a; pð Þ ¼

1 if 0 � c < p� a
p

p� a
if c ¼ p� a

0 if c > p� a;

8>>><>>>: (48)

so that the large n behavior of the even moments is given by

hDbXp

ni � np�a.

B. Example

In this subsection, we illustrate the diffusive transport

generated by the slicer map Sa for a representative value of

a. For this purpose, we plot the probability distribution using

our exact analytical results and compare it to an asymptotic

approximation. We then draw cross-links to diffusive trans-

port in a polygonal channel.

As an example, let us consider the case a¼ 1/3. Why we

choose this particular value is explained further below. Here,

we have ‘jð1=3Þ ¼ 1=ðjjj þ 8Þ1=3
, and the asymptotic behav-

ior of the MSD is given by hDbX2

ni � n5=3, cf. Proposition 1.

This means that S1=3 is superdiffusive with ct¼ 5/3 and gen-

eralized diffusion coefficient T1=3¼ 12/5. From Theorem 2

the moments of S1=3 higher than the second have the

behavior

hDbXp

ni � np�1=3 : (49)

The coarse grained distribution for even n reads, see Eqs.

(15) and (16),

qG
n mð Þ¼

1

2
� 1ffiffiffi

93
p ; form¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ73
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþ93
p ; form¼ 2k; k¼ 2;…;

n�2

2

1ffiffiffiffiffiffiffiffiffiffi
nþ73
p form¼ n

0; otherwise ;

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(50)

while for odd n we have

qG
n mð Þ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
2kþ83
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþ103
p ; for m¼2kþ1;k¼2;…;

n�3

2
;

1ffiffiffiffiffiffiffiffiffiffi
nþ73
p for m¼n

0; otherwise:

8>>>>><>>>>>:
(51)

Figure 3 shows the marginal probability distribution function

qG
n ðmÞ at fixed even n for m> 0, including the last value

qG
n ðnÞ which is much larger than the values for m close to n.

The negative branch of the distribution can be recovered by

symmetry.

Because asymptotically qG
n goes like

qa
n mð Þ ¼

Ca

mþ 21=að Þaþ1
; m < n;

0 ; m > n;

8><>: (52)

where Ca is a normalization constant, Fig. 3 compares the

numerical values of qG
n with our asymptotic result for

q1=3
n ðmÞ and C1=3¼ 1. Apart from the peak at qG

n ðnÞ due to

the traveling area, which is covered by Eqs. (50) and (51),

the asymptotic behavior of both results is clearly the same.

Note that the spike at m¼ n is analogous to the one found in

Refs. 36 and 37.

The choice of a¼ 1/3 is motivated by results on diffu-

sion in the sawtooth polygonal channel studied in Ref. 12.
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The channel geometry is analogous to the one shown in Fig.

1 except that there are no flat wall sections between any two

triangles. The angle between one side of a triangle and the

wall base line has been chosen to p/4. Simulations for this

particular case yielded a transport exponent of about ct¼ 5/3,

cf. Table I in Ref. 12. This result is surprising, as naively one

would have expected irrational polygons to generate trans-

port close to diffusion, and rational polygons to exhibit trans-

port close to ballistic. From this perspective the case of p/4

angles should have been perfectly ballistic, while it turned

out to be substantially slower than all other irrrational cases

with parallel walls reported in Ref. 12. This suggests that the

main mechanism generating diffusion in this channel may

have less to do with whether respective polygons are rational

or irrational but rather how precisely they slice a beam of

diffusing particles as modelled by our slicer dynamics. Fig. 2

indicates that in this case diffusion may be slowed down due

to an increasing fraction of orbits being localized by not con-

tributing to diffusion. This reminds of similar findings for

polygonal billiard channels presented in Ref. 26.

We remark that results completely analogous to Fig. 3

are obtained for any other value of 0< a< 2. This implies

that for a¼ 1 our system generates a very strange type of

normal diffusion with a non-Gaussian probability distribu-

tion. For 1< a< 2, it is furthermore surprising that ballistic

peaks representing traveling regions are present while the

model as a whole exhibits subdiffusion. We are not aware of

results in the literature where subdiffusive dynamics with

coexisting traveling regions has been observed.

III. A SIMPLE STOCHASTIC MODEL OF SLICER
DIFFUSION?

Since deterministic dynamical systems often generate a

type of randomness, it is frequently attempted to match their

dynamics to simple stochastic processes for understanding

their transport properties.1–5 However, as we pointed out in

the introduction, for diffusion in polygonal billiards such a

stochastic modeling turned out to be surprisingly non-triv-

ial.3,8,21,22 Motivated by this line of research, in this section

we relate the slicer diffusion to known stochastic models of

anomalous diffusion.

We first summarize our main results for diffusive trans-

port generated by our non-chaotic slicer map under variation

of the control parameter 0� a� 2. In the limit of n!1 we

have

1. a¼ 0: ballistic motion with MSD hDbX2

ni � n2

2. 0< a< 1: superdiffusion with MSD hDbX2

ni � n2�a

3. a¼ 1: normal diffusion with linear MSD hDbX2

ni � n

4. 1< a< 2: subdiffusion with MSD hDbX2

ni � n2�a

5. a¼ 2: logarithmic subdiffusion with MSD hDbX2

ni � log n

6. a> 2: localisation in the MSD with hDbX2

ni � const:

Additionally, Theorem 2 gives information about the

asymptotic behavior of all higher order even moments scal-

ing as hDbXp

ni � np�a in the long time limit for p> 2 and

0< a� 2.

As recently highlighted in Refs. 39, 40, there do not

seem to exist too many stochastic models exhibiting a transi-

tion from subdiffusion over normal diffusion to superdiffu-

sion under parameter variation: We are aware of a specific

continuous time random walk (CTRW) model,16 (general-

ized) elephant walks,39,40 and generalized Langevin equa-

tions (gLe) including fractional Brownian motion.41–43 For

these models one can easily check that there is no simple

matching between their diffusive properties and the above

scenario representing slicer diffusion. That is, the scaling of

the MSD with parameters by switching between all diffusive

regimes is generically different from the slicer dynamics,

and/or more than one control parameter is needed to change

the diffusive properties. However, for both the CTRW and

the gLe there is a partial matching to the slicer diffusion in

specific diffusive regimes to which we come back below.

Meaning so far we are not aware of any stochastic model

that (asymptotically) reproduces the slicer diffusion by

exhibiting all the different diffusive regimes listed above

under single parameter variation.

For all the stochastic models just mentioned the dynam-

ics is generated by temporal randomness, that is, random var-

iables are drawn in time from given probability distributions.

A second fundamental class of stochastic models is defined

by spatial randomness of the positions of scatterers with a

point particle moving between them. An important example

is the one-dimensional stochastic L�evy Lorentz gas

(LLg):35–37 Here, a point particle moves ballistically

between static point scatterers arranged on a line from which

it is either transmitted or reflected with probability 1/2. The

distance r between two consecutive scatterers is a random

variable drawn independently and identically distributed

from a L�evy distribution

k rð Þ � brb
0

1

rbþ1
; r 2 r0;þ1½ Þ ; (53)

FIG. 3. Log-log pot of the marginal probability distribution for the slicer

map S1=3 as a function of the position of the m-th cell at fixed time n¼ 105.

qG
n ðmÞ denotes the coarse grained distribution obtained from our exact ana-

lytical results Eqs. (50) and (51) (continuous line). It is compared with the

asymptotic analytical approximation qa
nðmÞ, Eq. (52) (dotted line). Apart

from the values at m¼ n, where qG
n has a spike due to the travelling area, the

asymptotic functional forms coincide.
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where b> 0 and r0 is a cutoff fixing the characteristic length

scale of the system. The LLg shares a basic similarity with

the slicer map in that its scatterers are positioned according

to the same asymptotic functional form as the slicers, see

Eq. (2). On the other hand, the slicer positions are determin-

istic while the LLg scatterers are distributed randomly. In

more detail, the slicers amount to transition probabilities for

nearest neighbour jumps on a periodic lattice that decrease

by a power law while in the LLg the jumps follow a power

law distribution with trivial transition probabilites at random

scatterers. Finally, the slicer dynamics is discrete in time

while the LLg is a time-continuous system.

From these facts, it follows that there exists an intricate

dependence on initial conditions in the LLg that is not pres-

ent that way in the slicer map: The LLg diffusive properties

depend on whether a walker starts anywhere on the line,

which means typically between two scatterers, called equi-

librium initial condition, or exactly at a scatterer, called non-

equilibrium initial condition.36,37 In Ref. 36, bounds for the

MSD have been calculated in both cases. Interestingly, the

lower bound for equilibrium initial conditions was obtained

from CTRW theory on which we will elaborate further

below.

The results for nonequilibrium conditions have been

improved in Ref. 37 based on simplifying assumptions by

which asymptotic results for the position probability distribu-

tion of the moving particle could be calculated. It was shown

that the LLg only displays superdiffusion, which as in the

slicer map is governed by traveling (in Ref. 37 called sub-

leading) and sub-traveling (in Ref. 37, called leading) contri-

butions. However, while in the slicer map both these

contributions scale in the same way for the MSD, cf. Remark

4, for the LLg they yield different scaling laws depending on

the order of the moment p and the control parameter b.

These different regimes are deeply rooted in the different

physics of the system featuring an intricate interplay between

different length scales. As a consequence, the LLg MSD dis-

plays three different regimes with an exponent determined

by three different functions of b, cf. Eq. (3) in Ref. 37. All

higher order moments could also be calculated for the LLg.

Very interestingly, Eq. (13) in Ref. 37 and all even moments

of the slicer map, cf. Theorem 2, exactly coincide by a piece-

wise transformation between b 2 (0, 3/2] and a 2 (0, 1]. In

other words, for every b in Ref. 37 it suffices to fix the

slicer’s parameter a so that one of the moments (e.g., the sec-

ond) matches, to match all other moments as well.46 Then,

the asymptotic form of the moments hrpðtÞi for all p> 0 is

given by

hrp tð Þi �

t
p

1þb ; if b < 1; p < b

t
p 1þbð Þ�b2

1þb ; if b < 1; p > b

t
p
2 ; if b > 1; p < 2b� 1

t
1
2
þp�b ; if b > 1; p > 2b� 1:

8>>>>>><>>>>>>:
(54)

Surprisingly they can be matched with the slicer moments in

Eq. (36) by taking

a ¼

b2= 1þ bð Þ if 0 < b � 1

b� 1=2 if 1 < b � 3

2

1 if b >
3

2
:

8>>>>><>>>>>:
(55)

This means that by using the above transformation both

processes are asymptotically indistinguishable from the

viewpoint of these moments, meaning the slicer map gener-

ates a kind of LLg-type walk in the superdiffusive regime if

the available information on the system (the observables)

include the moments only. On the other hand, the transfor-

mation is piecewise which reflects the different functional

forms for the exponent of the moments in the LLg while for

the slicer map only one such functional form exists. Indeed,

it is well known that the moments carry only partial informa-

tion on the properties of (anomalous) transport phenomena,

and that knowledge of correlations is necessary to distin-

guish one class of stochastic processes from another.9,14

Another interesting fact within this context is that for

the traveling region alone (called ballistic contribution in

Ref. 36) the MSD of the LLg scales as �t2�b in continuous

time t, as was shown in Ref. 36. Formally, this result matches

exactly to the MSD of the slicer map of �n2�a as calculated

in Proposition 1. Note also that the slicer positions generate

a probability distribution for the sub-traveling region of

qG
n ðjÞ � jjj

�a�1
, see Remark 2, which matches to k(r) of the

LLg Eq. (53).

We now comment on similarities and differences of the

slicer diffusion with CTRW theory. For equilibrium initial

conditions in the LLg it was shown that for 1<b< 2 the

MSD is bounded from below by �t3�b.36 However, this is

exactly the result for a L�evy walk modeled by CTRW

theory.16 Even more, results for all higher L�evy walk CTRW

moments were recently calculated to �tpþ1�b for p> b, see

Eq. (18) in Ref. 44. With b¼ 1þ a the slicer superdiffusion

thus formally (also) matches to L�evy walk diffusion defined

by CTRW theory. On the other hand, from a conceptual

point of view a CTRW is constructed very differently from

both the LLg and the slicer map dynamics. Hence, it is not

very clear why a CTRW mechanism should apply in both

these cases. Another remark is that for the superdiffusive re-

gime of the slicer diffusion of 0� a< 1 the frozen L�evy dis-

tribution according to which the transition probabilities have

been defined does not belong to the parameter regime for

which such distributions are stochastically stable in the sense

of a generalized central limit theorem,9,15 which holds only

for 1< a� 3. This points again at a crucial difference

between slicer dynamics and CTRW theory, where for the

latter the resulting probability distributions are stochastically

stable. Our discussion suggests that there is a more intricate

interplay between the L�evy potential we want to mimic, the

dynamics we use to obtain it, and the power law distributions

we generate from it.

We conclude this section by a remark on a curious simi-

larity between the slicer diffusion in the subdiffusive regime

and Gaussian stochastic processes. It was shown in Refs. 41,

42, and 45 that for a gLe with power law memory kernels for
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friction and/or noise the MSD exhibits a transition from a

constant over � log n to subdiffusion in the long time limit.

Especially, for an overdamped gLe with Gaussian noise gov-

erned by a power law anti-persistent memory kernel ��t�c

the MSD was calculated to �t2�c for 1< c< 2, �log t for

c¼ 2 and �const. for c> 2.45 Formally these results match

exactly to the slicer MSD for 1< a, cf. Proposition 1.

However, this overdamped gLe does not exhibit any super-

diffusion. And as the probability distributions generated by

such a gLe are strictly Gaussian in the long time limit there

is, again, a clear conceptual mismatch to the slicer dynamics:

In the gLe the subdiffusion is generated from power law

memory in the random noise (by calculating the MSD via

the Taylor-Green-Kubo formula41,42,45) while for the slicer

map the anomalous dynamics was calculated from non-

Gaussian probability distributions. We remark that so far

nothing is known about the correlation decay in the slicer

dynamics; for the LLg it is very complicated.35 Hence, while

formally there might be a similar mechanism in gLe and

slicer dynamics for generating subdiffusion, again, conceptu-

ally these dynamics are very different.

To summarize this section, to our knowledge currently

there is no stochastic model that fully reproduces the slicer

diffusion. The superdiffusive slicer regime formally matches

to diffusion known from L�evy walks, as reproduced both by

the LLg and CTRW theory, although in detail the parameter

dependences for the MSD generated by both models are dif-

ferent. The subdiffusive regime formally matches to what is

generated by a gLe with power law correlated Gaussian

noise. Conceptually all these stochastic models are very dif-

ferent from the slicer model, hence any similarity is purely

formal and not supported from first principles. Based on this

analysis it is tempting to conclude that one may need a corre-

lated CTRW model to stochastically reproduce the slicer

diffusion, or perhaps alternatively a simple L�evy Markov

chain model.

The reason why we elaborated so explicitly on a possi-

ble stochastic modeling of the slicer dynamics is that our

analysis might help to understand the reason for the contro-

versy of how to stochastically model diffusion in polygonal

billiards.3,8,21,22 With the slicer map we are trying to capture

a basic mechanism generating diffusion in these systems.

However, as we showed above, the slicer diffusion seems to

share features with generically completely different stochas-

tic models depending on parameter variation. This might

help to explain why different groups of researchers came to

contradicting conclusions for modeling diffusion in polygo-

nal billiards (not from first principles) by applying different

types of stochastic processes.

IV. CONCLUDING REMARKS

In search of mathematically tractable deterministic mod-

els of normal and anomalous diffusion, which may shed light

on the minimal mechanisms generating different transport

regimes in non-chaotic systems, we have introduced a new

model which we called the slicer map. This map mimics in a

one dimensional space main features that distinguish

periodic polygonal billiards from other models of transport,

namely, the complete absence of randomness and of positive

Lyapunov exponents, and a sequence of splittings of a beam

of particles due to collisions at singularities of the billiard

walls. As observed in Refs. 12, 13, and 23–26, in these cases

the geometry determines the transport law, differently from

standard hydrodynamics in which the geometry only yields

the boundary conditions. Therefore, the rule according to

which the polygonal scatterers are distributed in space plays

a crucial role. Here, we have investigated the case of a

specific deterministic rule modeling diffusion in polygonal

billiards.

In our one-dimensional slicer model Sa the effect of the

billiard geometry, which “slices” beams of particles ever

more finely further and further away from the origin, is

produced by the rate at which the size of the slices decreases

with the position, i.e., by the value of a single control param-

eter a. For instance, a¼ 1/3 yields for the MSD and for the

even higher order moments hDbX2ðnÞi � n
5
3 and hDbXpðnÞi

� n
3p�1

3 for long times. As we have discussed, the n5=3 behav-

ior coincides with the asymptotic MSD estimated numeri-

cally for a periodic polygonal channel made of parallel walls

which form angles of 90
 [Refs. 12 and 13] for which one

would naively expect ballistic behaviour.

It seems there do not exist too many models, neither in

terms of deterministic nor stochastic dynamics, that exhibit

sub-, super-, and normal diffusive regimes under single

parameter variation. The slicer map adds a new facet to this

rather rare collection, as it generates all these different types

of diffusion in a strictly deterministic and non-chaotic way.

This suggests a mechanism explaining why in computer sim-

ulations of polygonal billiards so many different types of dif-

fusion have been observed under parameter

variation.12,13,23–26 It may also help to explain the severe dif-

ficulties to model diffusion in such systems by a single, suffi-

ciently simple anomalous stochastic process: We have

argued that, depending on the value of its control parameter,

the slicer diffusion matches mathematically to what is gener-

ated by very different classes of stochastic processes, which

is in line with findings for polygonal billiard diffusion.

It would be highly desirable to construct a simple sto-

chastic process reproducing the full range of the slicer diffu-

sion. It would also be important to extract a slicer map from

a given polygonal billiard starting from first principles. This

would enable to check whether a slicing mechanism similar

to the one proposed here in terms of a power law distribution

of slicers is realistic. Correlation functions for the slicer map

need to be calculated in order to fully appreciate its dynam-

ics. And as the slicer map is analytically tractable, our model

invites to play around with variations of the slicer idea for

better understanding the origin of non-chaotic diffusion.
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