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Abstract 

In the present work sparse-based methods are applied to the analysis of hyperspectral images with 

the aim at studying their capability of being adequate methods for variable selection in a 

classification framework. The key aspect of sparse methods is the possibility of performing variable 

selection by forcing the model coefficients related to irrelevant variables to zero. In particular, two 

different sparse classification approaches, i.e. sPCA+kNN and sPLS-DA, were compared with the 

corresponding classical methods (PCA+kNN and PLS-DA) to classify Arabica and Robusta coffee 

species. Green coffee samples were analyzed using near infrared hyperspectral imaging and the 

average spectra from each hyperspectral image were used to build training and test sets; furthermore 

a test image was used to evaluate the performances of the considered methods at pixel-level. In our 

case, sparse methods led to similar results as classical methods, with the advantage of obtaining 

more interpretable and parsimonious models. An important result to highlight is that variable 

selection performed with two different sparse classification approaches converged to the selection 

of same spectral regions, which implies the chemical relevance of those regions in the 

discrimination of Arabica and Robusta coffee species. 
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1.INTRODUCTION 

Hyperspectral imaging (HSI) combines classical spectroscopic systems with imaging devices in 

order to obtain both spectral and spatial information from a sample. The resulting hyperspectral 

images are three dimensional data arrays, often referred to as datacubes, where each pixel contains 

one spectrum [1]. Each hyperspectral image can be formed by thousands to millions of spectra, and 

each spectrum can be composed by more than 100 wavelengths. Consequently, when dealing with 

such a big amount of data a multivariate approach is necessary in order to extract the relevant 

information contained in the datacube. For this purpose, classical multivariate data analysis 

techniques have been adapted to the elaboration of hyperspectral images showing great potential 

and benefit for extracting the desired information [2, 3]. 

The large amount of data contained in the datacube represents at the same time both an advantage 

and a drawback of HSI. On one hand, the large amount of pixels contained in each image allows a 

detailed representation of the analyzed sample; on the other hand, it is necessary to face data 

handling issues such as storage problems and long computational times [4]. 

Therefore, data reduction is frequently needed in order to preserve only the useful information 

contained in high-dimensional data [5, 6]. When dealing with many images, the most common way 

to perform data reduction consists of extracting the average spectra form each image or from user-

defined Regions of Interest (ROI), to be used for further analysis on the whole dataset. In this 

manner, data reduction is performed in the {x, y} spatial dimensions, without affecting the spectral 

dimension, . 

Alternatively, the spectral dimension can be reduced by selecting only the informative wavelengths, 

without loss of relevant features. As in the case of point-wise NIR spectroscopy, the identification 

of the spectral variables that provide useful information (and the resulting elimination of the signal 

regions containing noise and information not pertinent to the problem at hand) can lead to better 

results in classification or calibration issues, and simplifies the chemical interpretation of the 

results. Moreover, in the specific case of hyperspectral imaging, the selection of spectral variables is 

essential for the identification of key wavelengths in the development of multispectral imagining 

systems for on-line applications or for portable devices. 

In some situations variable selection can be simply based on a deep knowledge of the spectroscopic 

properties of a sample, but the use of appropriate algorithms based on multivariate statistics 

generally leads to better results [7]. 

To this aim, many variable selection techniques have been proposed in the literature, such as 

interval-Partial Least Squares (iPLS) [8-10], Genetic Algorithms (GA) [11], and Wavelet 
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Transform (WT) [12, 13], which work in different manners and are suitable for different 

applications. 

Though very effective, these methods often require long computational times and the optimization of 

many parameters or, as in the case of iPLS, the selected regions strongly depend upon the defined 

interval size. Sparse methods have been developed in order to face problems concerning calibration 

or classification of high-dimensional data, mostly in the field of bioinformatics where the variables 

usually consist of thousands of genes. Sparse methods have been widely applied also in statistic 

learning [14], analysis of biological data [15], metabolomics [16] and genomics [17]. Some 

applications of sparse methods to spectroscopic data in the field of food analysis and control are 

also available in the literature, for example concerning food-borne bacterial species [18], white 

wines discrimination [19] or virgin olive oil adulteration [20]. 

Generally, the term sparse refers to a matrix in which most of the elements are equal to zero. In the 

case of sparse methods the term sparse refers to the estimated parameter vector of a model, e.g. a 

regression vector, which is forced to contain many zeros. The main idea of sparse methods is to 

reduce the influence of the noise contained in irrelevant variables by forcing the model coefficients 

related to those variables to be equal to zero, consequently performing variable selection. Classical 

methods, like e.g. PCA or PLS, usually do not set the contribution of uninformative variables to 

zero, but only to a small absolute value. Therefore, if many variables have small contributions, their 

global influence could be considerable and lower the predictive ability of the model [21]. 

In general, sparsity is achieved by adding a penalty term to a given objective function in order to 

induce some model coefficients to be equal to zero. The level of sparsity to induce in the model is a 

user-defined parameter that needs to be optimized, for example by minimizing the cross validation 

error in a similar manner as for selection of number of components. Therefore, sparse methods 

require two parameters to be tuned, but once the optimal sparsity and dimensionality of the model is 

optimized , they allow performing classification (or regression) and variable selection at the same 

time. 

Several sparse versions of classical methods have been developed for data exploration, regression 

and classification problems. Principal Component Analysis (PCA) is the most used chemometric 

tool for data exploration. This has originated several sparse variants of PCA (sPCA), where sparsity 

is induced both on the score and loading vectors [22-24], or only on the loading vectors [25-27]. For 

regression purposes, sparse versions of Partial Least Squares (sPLS) have been proposed by Chun 

and Keles, which make use of the elastic net approach [28], and by Lê Cao et al., whose method is 

instead based on the Lasso penalty [29]. Lê Cao et al. also proposed an extension of their sPLS for a 
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sparse version of Partial Least Squares Discriminant Analysis (sPLS-DA) [30], while Clemmensen 

et al. proposed a sparse version of Linear Discriminant Analysis [31]. 

Moreover, in the literature some research studies are reported where sparse methods are compared 

with other variable selection methods [18, 32] demonstrating the potential of sparse methods as a 

stable variable selection strategy. 

In this context, the aim of the present work is to show a practical application of sparse methods such 

as sPCA-kNN [33] and sPLS-DA [30], which have been also compared with the corresponding 

non-sparse methods (PCA+kNN and PLS-DA) in terms of classification performances and model 

interpretability. In particular, sparse methods were applied in order to perform spectral variable 

selection on NIR hyperspectral images, with the aim of differentiating Arabica and Robusta green 

coffee beans. Arabica (Coffea arabica) and Robusta (Coffea canephora) coffee are the two main 

species used for the preparation of commercial coffee beverages, both alone or in blends. Due to its 

better taste and aroma, Arabica coffee is of higher quality than Robusta coffee, but it is more 

difficult to grow, even in function of its lower resistance to plant diseases, and therefore it is more 

expensive [34]. 

Classical point-wise NIR spectroscopy has been widely used to discriminate Arabica and Robusta 

species, both on green coffee [35, 36] and roasted coffee [37, 38]. Moreover some research works 

have been also reported where hyperspectral imaging is used to characterize these coffee species 

[39, 40]. For these reasons, in the present work green coffee samples were analyzed with NIR-HSI 

and the hyperspectral images were elaborated in order to test the ability of two different sparse 

classification methods, i.e., sparse PCA coupled with k-Nearest-Neighbors (sPCA+kNN) and sparse 

PLS-DA (sPLS-DA), to discriminate Arabica and Robusta coffee. Both these sparse classification 

methods allowed to perform classification and variable selection at the same time, leading to the 

identification of the informative NIR regions involved in the discrimination. The performances of 

the two sparse methods and their corresponding classical (non-sparse) counterparts (PCA+kNN and 

PLS-DA) were compared. 

 

2. THEORY 

2.1 Classical methods 

As a first, very simple approach to discriminate between the average spectra obtained from the 

hyperspectral images acquired on Arabica and Robusta coffee samples, Principal Component 

Analysis (PCA) [41] was used in conjunction with k-Nearest-Neighbors (kNN) [42]. In PCA+kNN, 

firstly a PCA model is computed on the average spectra matrix and then the PCA scores are used 
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for kNN classification. In this manner, a data compression technique is coupled with a simple and 

robust classification tool. The number k of nearest neighbors to consider in kNN classification and 

the number of principal components are user-defined parameters. 

Moreover, also Partial Least Squares Discriminant Analysis (PLS-DA) [44] was considered as an 

alternative classification method, since it is a fast linear method often leading to optimal 

performances. In this case, the proper number of latent variables of the model has to be selected for 

example by maximizing the classification efficiency in cross validation. 

 

2.2 Sparse methods 

Sparse methods are extensions of classical methods in which the parameter vectors of a model are 

forced to contain many zeros by adding a penalty term to the objective function of the considered 

method [21]. The algorithms used in this work for sPCA and sPLS-DA apply the Least absolute 

shrinkage and selection operator (Lasso) approach [45] to induce sparsity on the model coefficients.  

In the following sections only a brief description of sPCA and of sPLS-DA algorithms is given; for 

a more detailed explanation the reader is referred to [33] and [30]. 

 

2.2.1 sPCA + kNN 

Sparse Principal Component Analysis (sPCA) is a PCA-based model in which sparsity is induced 

on the model parameters: scores, loadings or both of them. Several algorithms were proposed to 

calculate sPCA models where sparsity is induced on the loadings; the one used in this work is 

Alternating Shrunken Least Squares (ASLS) [33]. 

The ASLS algorithm, for a fixed number of components A, estimates a sparse PCA solution of the 

following objective function: 

 arg min 𝑻,𝑷(‖𝑿 − 𝑻𝑷𝑻‖𝐹
2 ) (1) 

subject to 

 ||𝒑𝒊||1
1 ≤ 𝑐  and ||𝒑𝒊||2

2 = 1 (1 ≤ 𝑖 ≤ 𝐴) (2) 

where ||. ||𝐹
2  is the squared Frobenius norm of the matrix (sum of squared elements), T is the scores 

matrix, pi are the columns of the normalized loadings matrix P for the i
th

 component, and c is the L1 

norm constraint on each loading vector. Therefore, the L1 norm constraint (||𝒑𝒊||1
1 ≤ 𝑐) applied on 

each normalized (||𝒑𝒊||2
2 = 1) loading vector gives a sPCA model with sparse loadings.  

The value of the scalar c (from here onwards referred to as sparsity constraint) controls the sparsity 

level of the model: the lower is c the higher is the sparsity induced on the loadings. In particular, the 

sparsity constraint may range between 1 (which corresponds to only one active variable for each 
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component) and the square root of the number of variables; if c is equal to the square root of the 

number of variables, which is the maximum allowed value, the loading values converge to those 

obtained with PCA. However, in practice convergence to non-sparse models can be reached with 

sparsity constraint values lower than the square root of the number of variables, depending on the 

nature of the analyzed dataset. The ASLS algorithm calculates simultaneously all the components 

by iterating between scores and loadings until convergence in a way that the L1 norm constraint is 

fulfilled for each component. 

Unlike PCA, in sPCA the loading vectors are not orthogonal and the sparse principal component 

(sPC) directions change according to the number of sPCs used to calculate the model. Since all the 

sPCs are estimated simultaneously, sPCA may give different loading vectors with different non-

zero variables according to the number of components used to build the model, even for the same 

value of the sparsity constraint (see section 4.1).Therefore, it is evident that in sPCA the choice of 

the proper combination of the tuning parameters, i.e., number of sPCs and sparsity constraint, is a 

crucial point in model construction in order to have an efficient and robust model. 

Since sPCA is an unsupervised technique, it is necessary to couple it with a classifier (e.g. kNN) in 

order to obtain an estimate of the classification performance which can be used to tune the model 

parameters. In general, the choice of the optimal sparse parameters should be addressed to the best 

compromise between sparsity (i.e. as less variables as possible) and model performance (i.e. high 

efficiency), in order to keep the lowest possible the number of useful spectral variables that lead to 

stable models with satisfactory classification results. 

 

2.2.2 sPLS-DA 

The algorithm used to perform Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) [30] 

is an extension of Sparse Partial Least Squares regression (sPLS) [29] applied to classification 

problems. Similarly to PLS-DA, sPLS-DA is based on the use of PLS regression for discriminant 

purposes, but a Lasso penalty is added to the model parameters in order to constrain some 

coefficients to be equal to zero. 

In particular, the sPLS algorithm used in this work is based on the PLS-SVD approach [47]. Given 

a descriptor matrix X with size {n, m} and a response matrix Y with size {n, q}, the PLS-SVD 

approach is based on SVD decomposition of the cross product 𝑴 = 𝑿𝑻𝒀, as follows: 

 𝑴 = 𝑼∆𝑽𝑻 (3) 

where the column vectors of U and V correspond to the PLS loadings vectors of X and Y, 

respectively. In the same manner as PLS-DA, Y is a dummy matrix containing the binary class 
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vectors. The cross product M is calculated as expressed in Equation 3 only for the first latent 

variable (h=1); for the subsequent components (h = 2, … ,H) the cross product is calculated on the 

previously deflated Xh-1 and Yh-1 matrices. Indeed the algorithm, in an iterative way, minimizes the 

squared residuals between the current cross product and the estimated loading vectors and, 

moreover, adds the Lasso penalty to the X loading vector uh; subsequently Xh and Yh are calculated 

by a deflation step from matrices Xh-1 and Yh-1. Therefore, the first couple of singular vectors uh and 

vh (where either ‖𝒖𝒉‖2
2 = 1 or ‖𝒗𝒉‖2

2 = 1) are the initial estimate of the iterative algorithm which 

solves the following optimization problem: 

 arg min 𝒖𝒉,𝒗𝒉
(‖𝑴𝒉 − 𝒖𝒉𝒗𝒉

𝑻‖
𝐹

2
+ 𝜆‖𝒖𝒉‖1

1) (4) 

where ||. ||𝐹
2  is the squared Frobenius norm of the matrix (sum of squared elements), and λ is a 

penalty parameter which applies the Lasso componentwise on the loading vectors. Sparsity is 

induced on the PLS loadings, and consequently on the regression coefficients used to predict 

unknown samples, therefore thanks to the sPLS-DA approach it is possible to perform both 

classification and variable selection in one step, by forcing to zero the coefficients of noisy or 

uninformative variables. 

Conversely to sPCA, in sPLS-DA the sparse latent variables are orthogonal to each other, and their 

directions do not depend upon the number of components used to calculate the model, due to the 

deflation step performed before calculating each component. 

As in sPCA, there are two parameters to tune in sPLS-DA: the number of sparse latent variables 

(sLVs) and the penalty term λ. Since the sparsity induced on the model is related to the value of λ, 

for practical reasons the algorithm has been implemented by the authors in a way to define directly 

the number of variables to select for each sLV, rather than λ [30]. 

 

3. MATERIALS AND METHODS 

3.1 Coffee samples 

Samples of green coffee beans of Arabica and Robusta species were provided by a local coffee 

roasting company. Thirty three green coffee batches were considered in this study, coming from 

different geographical areas and subjected to different processing methods to separate the seed form 

the fruit. Despite the different sources of variability in the samples, we focused on the 

discrimination between Arabica and Robusta coffee species, regardless of processing method or 

geographical origin. 

On the whole, 33 samples were collected in the industrial plant during a period of 6 months: 18 

samples of Robusta and 15 samples of Arabica. Each sample consisted of about 500 g of beans that 
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were sampled in order to be as representative as possible of the corresponding batch, and were 

stored in a sealed package until the day of analysis. From each sample, three aliquots of 70 g of 

randomly selected beans were kept, and two images were acquired, changing the arrangement of the 

beans between the two images. This procedure was repeated in a different day to check the day-to-

day variability. All the samples were acquired in random order and the packages were sealed again 

and stored at room temperature between the different acquisition days. Therefore, for each sample 

12 hyperspectral images (= 2 measurement sessions × 3 aliquots × 2 repeated acquisitions) were 

obtained, leading to a dataset composed by 396 hyperspectral images (33 samples × 12 images). 

 

3.2 Image acquisition 

The hyperspectral images were acquired using a desktop NIR Spectral Scanner (DV Optic), using a 

reflectance imaging based spectrometer Specim N17E, coupled to a Xenics XEVA 2608 camera 

(320 × 256 pixels) and working in the 955-1700 nm spectral range with a spectral resolution of 5 

nm. All the images were acquired using as background a black silicon carbide sandpaper sheet, 

which is characterized by a very low and constant reflectance spectrum [47]. Moreover, a 99% 

reflectance standard and two ceramic tiles with two different grayscale tones and intermediate 

reflectance values were included in the images. 

The raw data were converted into reflectance values using an instrumental calibration based on the 

high reflectance standard reference and on dark current [48]. Furthermore, in order to reduce the 

variability among images over time, an additional internal calibration was performed [49], based on 

the average reflectance values of the reflectance standard, of the two ceramic tiles and of the black 

silicon carbide sandpaper. 

Then, before further analysis, from each image the pixels related to the black sandpaper background 

were removed using a thresholding procedure. To this aim, based on the preliminary evaluation of 

some sample images, the most discriminant wavelength was identified by maximizing the Fisher 

ratio between background spectra and sample spectra. In this manner, at 1050 nm, all the pixels 

below the threshold value of 0.1 reflectance units were identified as background and removed. 

 

3.3 Data analysis 

After background removal, from each image the average spectra were calculated obtaining a dataset 

consisting of 396 spectra (33 samples × 12 images for each sample) and 150 variables. The acquired 

samples were then split into 24 training samples (288 spectra) including 11 Arabica and 13 Robusta 

coffee samples, and 9 test samples (108 spectra) including 4 Arabica and 5 Robusta coffee samples. 
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The considered classification methods require to tune the model parameters such as number of 

components (PCs or LVs) and , in addition, the degree of sparsity for sPCA+kNN and sPLS-DA. 

In the present work, different sPCA and sPLS-DA models were constructed on a training set 

considering different combinations between sparsity (referred as sparsity constraint for sPCA+kNN 

and number of selected variables on each component for sPLS-DA) and number of components. 

For PCA+kNN, and in particular for sPCA+kNN cross validation could be computationally too 

intensive to tune the model parameters. In fact, for each tested model and for each deletion group, it 

is necessary to recalculate the distances between objects in the PCs space. Therefore, to overcome 

this problem, the optimal dimensionality of the PCA model was defined using a monitoring set, i.e. 

a fixed subset of objects left out from the training set. In this manner the training set was further 

split into a smaller training set of 17 samples (8 Arabica and 9 Robusta, 204 spectra) and in a 

monitoring set of 7 samples (3 Arabica and 4 Robusta, 84 spectra). The selection of the monitoring 

set was done by randomly selecting a given number of coffee samples of both classes, and taking 

care to include the average spectra of all the replicated and repeated images of each selected coffee 

sample. 

Conversely, in the case of PLS-DA and sPLS-DA, the proper number of latent variables and, for 

sPLS-DA, the number of variables to select on each sLV, was optimized considering the efficiency 

of the corresponding classification model calculated on the initial training set. In particular, 

contiguous blocks cross-validation was performed using 4 deletion groups, each one containing the 

average spectra of all the replicated and repeated images of 6 samples. 

Moreover, in order to visually evaluate the classification performances at the pixel level for both 

non-sparse and sparse models, one image of Arabica coffee and one of Robusta coffee taken from 

the test samples were merged together in order to create a test image. In this manner, since the test 

image is made of two images, one for each class, it was possible to know the class belonging of the 

single coffee beans and thus to obtain a quantitative evaluation of the predictive ability of the 

models. 

Before calculating the classification models, the spectra were preprocessed using Standard Normal 

Variate followed by first derivative and mean center. 

The classification performances were defined using efficiency (EFF), which is the geometric mean 

between sensitivity (SENS) and specificity (SPEC), i.e.: 

 𝐸𝐹𝐹 = √𝑆𝐸𝑁𝑆 × 𝑆𝑃𝐸𝐶 (5) 
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where sensitivity is the percentage of objects of each class accepted by the class model and 

specificity is the percentage of objects of the other classes correctly rejected by the class model 

[43]. 

Data analysis was performed using PLS_Toolbox (v. 7.5, Eigenvector Research Inc., USA) for 

PCA+kNN and PLS-DA; while sPCA+kNN and sPLS-DA were computed with ad-hoc routines 

written in Matlab language (ver. 7.12, The Mathworks Inc., USA) (For sPCA+KNN routine, visit 

http://models.life.ku.dk/sparsity. sPLS-DA routine was kindly provided by Dr. Ewa Szymanska. 

Further details are provided in reference [50]). The data were analysed using a personal computer 

running with Windows 8.1-64 bit and equipped with an Intel Core® i7-3632QM CPU @ 2.20GHz 

processor and 6.00 GB RAM. 

 

4. RESULTS AND DISCUSSION 

In order to compare both the sparse methods with the corresponding classical methods and all the 

four classification methods altogether, the following sections are organized as follows: sections 4.1 

and 4.2 report the comparison of PCA+kNN with sPCA+kNN and of PLS-DA with sPLS-DA, 

respectively. Each one of these two sections first reports the discussion about the choice of the 

proper model parameters and the results obtained with the selected models, evaluated at the image-

level using the average image spectra; the sparse and not-sparse models are then compared each 

other based on the relevant spectral features (loadings for PCA+kNN and sPCA+kNN in section 4.1 

and loadings for PLS-DA and sPLS-DA in section 4.2), and finally the models are compared at the 

pixel-level by means of the test image. In the last section (4.3), sparse and not-sparse PCA-based 

models are compared with the corresponding PLS-DA-based ones, both at the image-level (results 

on the average image spectra) and at the pixel-level (prediction of the test image); sPCA+kNN and 

sPLS-DA are then compared each other in terms of selected spectral regions. Finally, the different 

classification methods are also evaluated in terms of computation time. 

 

4.1. PCA+kNN and sPCA+kNN 

Different sPCA models were calculated in order to evaluate the influence of both the sparsity 

constraint values and of the number of principal components on the number of selected variables 

and on the kNN classification efficiency (evaluated on the monitoring set samples). In particular, all 

the combinations from 2 to 5 sPCs with sparsity constraint values ranging from 1 to 12 with step 

equal to 0.25 were tested, for a total of 180 models. The maximum value considered for the sparsity 

constraint, c, was set equal to 12, since this value is approximately equal to the square root of the 
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number of spectral variables of the dataset (150). For all the evaluated models the number of k 

nearest neighbors in kNN has been set equal to 5 after some preliminary tests. 

Figure 1.a reports the evolution of the percentage of non-zero variables in the loading vectors when 

increasing the sparsity constraint from 1 (high sparsity) to 10 (i.e., to the minimum sparsity 

constraint value at which results converged to those of the corresponding non-sparse models), and 

employing a different number of sPCs (from top to bottom). For example, the trend of the 

percentage of variables selected for sPC1 as a function of the sparsity constraint (blue dashed lines) 

shows significant variations with changing the number of sPCs from 2 to 5 (from top to bottom). 

The optimal condition should be a compromise between high model stability and low number of 

non-zero variables. Figure 1.b reports the evolution of the classification efficiency values calculated 

on the calibration and on the monitoring set as a function of the sparsity constraint c, and employing 

a different number of sPCs. For the lowest values of the sparsity constraint (corresponding to 

extremely high sparsity induced on the loadings), the efficiency values calculated on the monitoring 

set (green dash-dot line) show a great variability with small changes of c, which means that the 

model is very unstable. Moreover, the higher the number of sPCs included in the model (from the 

top plot to the bottom plot in Figure 1.b) the higher is the c value which is necessary to reach stable 

conditions. For example, when using 2 sPCs a stable situation is reached with a sparsity constraint 

value equal to 3.5, while with 4 sPCs the value of c must be at least equal to 5.5. 

Therefore, comparing the classification efficiency trends reported in Figure 1.b, the best 

sPCA+kNN model was chosen as the one calculated using 2 sPCs and a sparsity constraint equal to 

3.5, that corresponds to 21% of the variables set to zero.  
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Figure 1. Variation in the sPCA+kNN models of (a) percentage of selected variables and of (b) classification efficiency 

for the calibration and the monitoring sets, as a function of different values of the sparsity constraint and of the number 

of principal components. 

 

This model was then used to predict the samples of the external test set, obtaining a classification 

efficiency value equal to 100%. 

The comparison between the performance of PCA+kNN and sPCA+kNN is reported in Table 1. 

The results obtained for the calibration and for the monitoring sets are comparable for both 



13 
 

methods, but sPCA led to a much higher classification efficiency for the test set, which confirms the 

importance of forcing to zero the coefficients related to uninformative variables. 

 

 PCA + kNN sPCA + kNN PLS-DA sPLS-DA 

N° PCs / LVs 2 2 3 2 

N° variables 150 32 150 20 

Efficiency 

Calibration 
100.0 99.5 100.0 99.4 

Efficiency 

Monitoring set / CV 
98.9 98.9 97.8 99.3 

Efficiency 

Prediction 

Test set 91.3 100.0 100.0 100.0 

Test 

image 
90.6 86.9 85.0 80.2 

Table 1. Classification results from non-sparse (PCA+kNN and PLS-DA) and sparse (sPCA+kNN and sPLA-DA 

models. 

 

PCA and sPCA models have the same dimensionality in terms of number of PCs, but the number of 

spectral variables selected with sPCA is definitely lower (21% variables selected in sPCA). As it is 

shown in Figure 2, there is a substantial convergence between the most relevant bands of the PCA 

loadings and the non-zero variables selected in sPCA. Indeed, the variables corresponding to the 

larger values of the PCA loading coefficients are also selected as active variables on the sparse 

loading vectors. Moreover, variables with a great influence on both PC1 and PC2 in the PCA model 

are generally selected on only one sparse principal component. In particular, the spectral regions 

selected by sPCA are related to the C-H aromatic second overtone (1143 nm) and combination band 

(1446 nm), to the O-H first overtone of aliphatic (1410 nm) and aromatic alcohol (1420 nm), and to 

the C-H aliphatic second overtone (1195-1225 nm) [52]. 



14 
 

 

Figure 2. Loading vectors of (a) PCA and (b) sPCA models 

 

Furthermore, the performance of the selected sPCA+kNN model was also evaluated at pixel level 

using the test image, and the results were compared with those obtained with PCA+kNN (last row 

of Table 1). The prediction results are also reported under the form of images in Figure 3.a for 

PCA+kNN and in Figure 3.b for sPCA+kNN, where the pixels predicted as belonging to Arabica 

coffee are represented in red color, while those predicted as Robusta coffee are represented in green 

color. 

Figure 3 shows that, by a qualitative point of view, the results obtained with PCA+kNN and with 

sPCA+kNN are analogous, since the overall classification of the beans is correct in both cases. The 

different efficiency values reported in Table 1 are due to some pixel misclassifications ascribable to 

the round shape of the beans and the presence of the center-cut, whose effects are slightly more 

evident in sPCA+kNN than in PCA+kNN. Therefore the sparse model are more sensitive to the 

noise caused by the morphology of the beans and this fact is shown in the difference image in 

Figure 3.c, where the pixels correctly predicted with both methods are represented in blue color, the 

pixels misclassified in both methods are represented in purple color and those predicted in different 

classes are represented in yellow color. In particular, the percentage of pixels correctly predicted in 

both methods is equal to 84%, the percentage of pixels misclassified in both methods is equal to 7% 
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and the percentage of pixels differently predicted is 9%; 6% of which is correctly predicted only by 

PCA+kNN while 3% is correctly predicted only by sPCA+kNN. 

 

Figure 3. Prediction on the test image of the best (a) PCA+kNN and (b) sPCA+kNN models and (c) difference image 

between the two images od PCA+kNN and sPCA+kNN models. Each image reports on the left the group of Arabica 

coffee beans, and on the right the group of Robusta coffee beans. In (a) and (b) the pixels predicted as belonging to 

Arabica coffee are reported in red color, while those predicted as belonging to Robusta coffee are represented in green 

color; in (c) the pixels correctly predicted in both methods are represented in blue color, the pixels misclassified in both 

methods are represented in purple color while those predicted in different classes are represented in yellow color. 

 

4.2. PLS-DA and sPLS-DA 

Cross validation was used for both PLS-DA and sPLS-DA in order to define the proper number of 

latent variables of the models and, for sPLS-DA, also to identify the optimal number of non-zero 

variables for each sLV. For this purpose, different sPLS-DA models were built considering a 

number of sLVs ranging from 1 to 7 and a number of selected variables for each sLV ranging from 

5 up to 150 (same number of variables for each sLV); the performance of the models calculated 

considering each combination of the two parameter values was evaluated in terms of efficiency in 

cross validation. 

The two model parameters were optimized considering the best compromise between high model 

performance (high cross validation efficiency) and low model dimensionality, this latter being 

estimated both in terms of number of sLVs and of number of active variables for each sLV. 

Figure 4 shows the surface response of the cross validation efficiency values as a function of the 

number of sLVs and of the number of variables selected for each sLV. In particular, for a number of 

selected variables equal to 150, the reported results are exactly coincident with those of the (non-
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sparse) PLS-DA model, where the optimal dimensionality is equal to 3 LVs, corresponding to a 

cross validation efficiency value equal to 97.82%. Conversely, in high sparsity conditions, i.e. when 

the number of selected variables is small (e.g. from 5 to 35), the optimal number of latent variables 

is equal to 2. Moreover, from Figure 4 it is also possible to observe that, when the number of sLVs 

is high, the models tend to stabilize, giving cross-validation values close to 100%. However, 

considering the optimal compromise between a parsimonious model and high efficiency values, the 

best sPLS-DA model was chosen in correspondence to 2 sLVs and with the number of variables to 

select for each sLV set to 10, which corresponds to a local maximum in the surface response. In this 

situation the CV efficiency is equal to 99.3% and the corresponding sparse loading vectors have a 

total of 20 active variables out of 150. 

 

Figure 4. Surface response of cross validation efficiency as a function of the number of LVs and of the number of 

variables selected for each LV. 

 

Table 1 reports the comparison between PLS-DA and sPLS-DA model performances in calibration, 

cross validation and prediction of the test set samples. In particular, the efficiency values calculated 

in calibration and prediction of the test set are almost the same, while sPLS-DA shows slightly 

better performances in cross validation. Moreover, sPLS-DA retains only 20 non-zero variables out 

of 150. 

The loading vectors of the selected PLS-DA and sPLS-DA models are reported in Figure 5.a and 

5.b, respectively. The spectral regions related to the aromatic (around 1143 nm) and aliphatic 

(1195-1225 nm) C-H second overtone have relevant influence both on the PLS-DA model and on 

the sPLS-DA one, and with a similar pattern. Moreover, in the sparse loading vectors also the 

region between 1400 nm and 1430 nm has been selected, which is related to the O-H first overtone 

and to the C-H combination bands. Interestingly, the sPLS-DA model does not select the extreme 
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spectral regions, where high absolute values were observed instead for the PLS-DA loadings 

vectors on LV 2 and LV 3 (and partially also for the PCA loading vectors in Figure 2.a), which 

could be ascribable to border distortions due to the first derivative preprocessing. 

 

Figure 5. Loading vectors of (a) PLS-DA and (b) sPLS-DA models. 

 

Also in this case a pixel-level classification of the test image was obtained for both PLS-DA and 

sPLS-DA models, and the results are reported in Figure 6.a and Figure 6.b as a false-color image, 

where the pixels predicted as belonging to Arabica coffee are represented in red color and the pixels 

predicted as belonging to Robusta coffee in green color. Comparing the right parts of Figure 6.a and 

6.b (Robusta coffee beans), it is possible to notice that for both PLS-DA and sPLS-DA the same 

Robusta coffee bean is misclassified; moreover, in sPLS-DA there is one more Robusta bean whose 

classification is uncertain. Analogous considerations can be drawn for the left parts of the two 

images, where ambiguous results have been obtained for two coffee beans. In general, the 

performance of the sPLS-DA model is slightly lower than the performance of the PLS-DA model; 

this is also confirmed by the efficiency values reported in Table 1 and by the comparison reported 

in Figure 6.c, where the pixels correctly predicted in in both methods are represented in blue color, 

the pixel misclassified in both methods are represented in purple color while, those predicted in 

different classes are represented in yellow color. In particular, the percentage of pixels correctly 

predicted with both methods is equal to 76%, the percentage of pixels misclassified in both methods 

is equal to10% and the percentage of pixels differently predicted is equal to 14%, 9% of which is 

correctly predicted only by PLS-DA and 5% is correctly predicted only by sPLS-DA. Similarly to 
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the case of sPCA+kNN, Figure 6.c shows that the sparse model is more sensitive to the round shape 

and to the presence of the center-cut of the beans. 

 

Figure 6. Prediction on the test image of the best (a) PLS-DA and (b) sPLS-DA models and (c) difference image 

between the two images of PLS-DA and sPLS-DA models. Each image reports on the left the group of Arabica coffee 

beans, and on the right the group of Robusta coffee beans. In (a) and (b) the pixels predicted as belonging to Arabica 

coffee are reported in red color, while those predicted as belonging to Robusta coffee are represented in green color; in 

(c) the pixels correctly predicted in both methods are represented in blue color, the pixels misclassified in both methods 

are represented in purple color while those predicted in different classes are represented in yellow color. 

 

4.3 Comparison between methods 

The comparison between the results reported in Table 1 shows that the classification performances 

calculated in calibration and on the monitoring set or on cross validation are almost the same for 

PCA+kNN and PLS-DA, both considering non-sparse and sparse models. Concerning the 

prediction of the test set samples, there is an improvement of efficiency from PCA+kNN to 

sPCA+kNN, while for both PLS-DA and sPLS-DA the efficiency is equal to 100%. As far as the 

pixel-level prediction of the test set image is concerned, PCA+kNN shows better performances than 

PLS-DA, and in both cases the sparse model is slightly worse than the full model. However the 

bean-wise classification is correct both on PCA+kNN and sPCA+kNN, while some 

misclassifications occur in PLS-DA and sPLS-DA. The best performances of PCA+kNN on the test 

image could be explained by the fact that kNN is a distance-based classifier able to handle non-

linear boundaries between classes, while PLS-DA establishes a linear threshold. Since images are 

made of thousands of pixel spectra, these have a much greater variability than the average image 
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spectra, and some overlapping between classes of pixels may occur. In these conditions, kNN 

proves to be a more robust method than PLS-DA. 

Regarding variable selection performed by sparse methods, sPLS-DA led to a slightly more 

parsimonious model including 20 active variables, with respect to the 32 non-zero variables selected 

by sPCA+kNN. However, comparing the sparse loadings from the sPCA+kNN model (Figure 2.b) 

with those of the sPLS-DA model (Figure 5.b), it is evident that there is a substantial convergence 

of the spectral regions selected by the two different approaches, which confirms the reliability of 

these sparse methods in highlighting the chemical differences between the two considered classes. 

Finally, a comparison between the different classification methods was also done in terms of time 

needed for model calculation and for prediction of the test image. For sparse methods a longer 

computational time is necessary to tune the proper sparsity parameters (i.e., sparsity constraint for 

sPCA+kNN and number of variables for each LV for sPLS-DA), since all the combinations 

between number of components and sparsity parameter must be evaluated. For example, in the case 

of sPCA+kNN, 45 different sparsity constraint values and 4 different number of PCs were tested; 

on the whole 180 (=45×4) models were thus calculated and used to predict the monitoring set 

samples, which required 86.6 s. However, once the model parameters are tuned, the time necessary 

to calculate the model and use it for prediction are the same for both sparse and non-sparse 

methods. Moreover it is important to highlight that for sparse methods the model construction 

involves also variable selection by setting to zero the uninformative variable coefficients, and this 

process requires the same computational time as classical (non-sparse) methods. Considering again 

the example of sPCA+kNN, the average time necessary to calculate a single model was 0.4 s, and 

the time necessary to predict the test image was 13.5 s; these values are essentially the same as 

those for PCA+kNN. In general, kNN classifier is more computationally intensive than PLS-DA, 

since it requires the calculation of the distances between each test object and each training object, 

and their comparison. This is particularly evident in the case of image predictions at the pixel level, 

since an image is made of thousands to millions of pixels. In fact for the test image (about 12400 

segmented pixels) the time required for PCA+kNN and sPCA+kNN was about 13.5 s, while for 

PLS-DA and sPLS-DA it was less than 0.1 s. 

 

5. CONCLUSIONS 

In the present work we explored the possibility to use sparse methods, such as sPCA+kNN or sPLS-

DA, both in order to classify hyperspectral images of Arabica and Robusta green coffee beans, and 

to select spectral regions relevant for the discrimination between the two classes. 
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Compared to classical methods, the corresponding sparse methods led to the analogous or even 

better classification results, evaluated both at the image level and at the pixel-level.  

However, sparse methods allowed performing variable selection at the same time as classification, 

giving much more parsimonious models and enhancing the interpretability in chemical terms of the 

results, within a reasonable computational time. In particular, the feature selection made with two 

different sparse classification approaches converged to the same spectral regions, which confirms 

the chemical relevance of the selected wavelengths. 

Furthermore, the high classification efficiency values obtained with sparse methods highlighted the 

possibility to use the narrow selected spectral regions for the implementation of multispectral 

systems, to be used for on-line process control applications.  
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