157

From Naive to Scientific Understanding of Motion and its Causes

Alessandro Ascari¹, Federico Corni¹, Gabriele Ceroni², Hans U. Fuchs³

¹ University of Modena and Reggio Emilia, Italy

² University of Bologna, Italy

³ Zurich University of Applied Sciences at Winterthur, Switzerland

Abstract

The difference in the descriptions of motion phenomena made by pupils in the first grades of secondary school and physicists is quite evident. Conceptual metaphors hidden in language suggest that there is continuity between the conceptual structure involved in the description and the interpretation of motion of experts and laypersons. In this paper the presence of such a continuity is shown through a metaphor analysis of linguistic expressions from both kind of people.

Keywords

physics education; language; conceptual metaphor; continuity

1. Introduction

We know from literature (DiSessa, 1993; McCloskey, Caramazza, & Green, 1980) that students face difficulties in studying motion and its causes. We argue that if we want to address this problems, we have to investigate the conceptualization of motion.

We are going to investigate the conceptual structure involved in the description of motion of laypersons, i.e. the students, and of experts, i.e. teachers, scientists, physicists. We argue that some kind of continuity should be present between these two kinds of conceptualization and that physics education should be built on it.

In the first part of this article we are going to illustrate how it is possible to understand how the concept of motion is constructed in human mind. A theory that relates mind and language is presented starting from the works of Lakoff, Johnson, Turner and Fauconnier.

In the second part we will show the analyses carried on two different sources of language, the first representing the scientific conceptualization, the second the lay one.

In the last part the evidences and the results of the analyses are presented and discussed.

2. A theory of mind

In cognitive linguistic, conceptual metaphor is defined as understanding one conceptual domain (target domain) in terms of another conceptual domain (source domain). Lakoff, Johnson and Turner underline the deep and strong connection between language and mind. According to these authors, the nature of the conceptual structure that we use to think, speak and act is figurative. As a consequence of this, conceptual metaphors play an important role in structuring knowledge. They are systematic in that there is a fixed correspondence between the structure of the domain to be understood (e.g., death) and the structure of the domain in terms of which we are understanding it (e.g., departure). We usually understand them in terms of common experiences. They are largely unconscious, though attention may be drawn to them. Their operation in cognition is almost automatic. And they are widely conventionalized in language, that is, there are a great number of words and idiomatic expressions in our language whose meanings depend upon those conceptual metaphors (Lakoff & Turner, 1989). Metaphor is no longer seen as a mere linguistic and aesthetic feature: the cognitive role of metaphor emerges in the process of structuring and acquiring new knowledge. In synthesis, a *concept* is *constituted* by the *metaphor* (Lakoff & Johnson, 1980).

Moreover, according to Fauconnier and Turner, in human mind there are entire network of projections between conceptual spaces leading to what have been known as *conceptual integration networks* (Fauconnier & Turner, 1998, 2002; Fauconnier, 1994, 1997).

As a consequence of this, we can understand the way we think, our conceptualization of motion, looking at the way we speak, in particular at the conceptual metaphors implied in the language we use to talk and to describe motion.

We have to make a distinction between metaphor and metaphoric linguistic expressions: the latter is what we hear or read when somebody uses a metaphor, the former is a figure of the mind, we might say the actual concept. We will show an example in order to evidence the difference.

Heat flows through the walls of the building

is the metaphorical expression of the metaphor:

HEAT IS A FLUID SUBSTANCE

We will use this convention in order to differentiate the conceptual metaphors from the metaphorical expressions.

3. Language analyses

In order to compare the two forms of conceptualization of motion we selected two sources of sentences about motion: the first volume of "The Feynman lectures on Physics" (Feynman, 1965) as a source of scientific language and recordings of college students enrolled in physics courses collected in the paper "Common sense concepts about motion" by Halloun and Hestenes as a source of lay language (Halloun & Hestenes, 1985).

We looked for the sentences containing the word "force" and we tried to see the underlying conceptual metaphor. We constructed the categories of conceptual metaphors in a recursive way in order to have the more general and encompassing ones. We developed the conceptual metaphors categorization starting from the Force Dynamic Gestalt theory (Fuchs, 2007), image schemas (Johnson, 1990) and event structures (Lakoff & Johnson, 1999).

Here we present the list of metaphors involved in the description of the word "force".

- 5. FORCE IS A SUBSTANCE-LIKE QUANTITY
 - 1. FORCE IS A PRODUCT
 - 2. FORCE IS A QUANTITY
 - 3. FORCE IS A POSSESSION
- 6. FORCE IS AN AGENT
 - 1. FORCE IS A COMPULSION
 - 2. FORCE IS A RESISTANCE
- 7. FORCE IS A MEDIUM
- 8. FORCE IS A PATH
 - 1. FORCE IS A LINE
 - 2. FORCE IS A CONNECTION
- 9. FORCE IS A SCALE
- 10. FORCE IS BALANCE

The complete list of categorized sentences is presented in the following tables (1-6). The first observation is that sentences coming from both expert and lay language are metaphorical expressions contained in all these categories.

Besides that, we also found some differences in the metaphorical expressions coming from the two sources.

 Table 1. FORCE IS A SUBSTANCE-LIKE QUANTITY expressions

Conceptual metaphor sub-category	Feynman expressions	Students expressions
FORCE IS A	This potentiality for <u>producing</u> a force is	The speed <u>creates</u> a force.
PRODUCT	called an electric field.	The force behind it <u>coming from</u> the
	A <u>source</u> of the force.	throw.

Force Is A Quantity	<u>How much</u> force would there be? More or less force is required.	As it goes down, the force of gravity increasesand that's why the speed
	There is very little force at any	increases
	appreciable distance.	until [gravity] equals this <u>amount</u> of
		force.
		It provides the ball with more and more
		force as it goes down.
FORCE IS A	A spinning top <u>has</u> the same weight as a	If the mass of block X is greater than <u>the</u>
POSSESSION	still one.	<u>force [of pull] of Y</u> , block X stays in
	The weight <u>of</u> the atom.	placeit could not be moved.
	These forces are <u>within</u> the nuclei of	[The moving body] <u>has</u> still <u>got</u> some
	atoms.	force <u>inside.</u>

FORCE IS A PRODUCT conceptual metaphor (Table 1) tells us that force could be "produced". The possible "producers" in Feynman expressions are the basic interactions between objects, i.e. electrical and gravitational, while in students expressions the "producers" are speed and aspects of motion.

In FORCE IS A QUANTITY metaphorical expressions (Table 1), Feynman only speaks about the intensity of force, while in students' language we find expressions that are related to the concept of momentum or energy of a moving object.

Finally, the metaphorical expressions of FORCE IS A POSSESSION (Table 1) in Feynman are only about weight, while in laypersons we have expressions involving moving objects, devices that produce movement (i.e. a cannon), and more abstract concepts as power, inertia and velocity.

Conceptual metaphor sub- category	Feynman expressions	Students expressions
(unsorted)	The first charge will <u>feel</u> a certain reaction force.	There is not a force [acting on] <u>on</u> the ball.
		Gravity means the same force <u>pulls</u> on different objects.
FORCE IS A	Because of the action of a force, the velocity	A force only <u>starts</u> the motion.
COMPULSION	changes.	A force <i>is just changing</i> the direction of
	The force which <u>controls</u> , let us say, Jupiter in going around the sun.	motion.
Force Is A Resistance	It is a question of electrical forces <u>against</u> which we are working. No tangential force is needed <u>to keep</u> a planet in its orbit.	A force has nothing to do with the speed, it only has to <u>keep</u> the ball moving.

Table 2. FORCE IS AN AGENT expressions

Table 3. FORCE IS MEDIUM expressions

Feynman expressions	Students expressions
We shall have to <u>hold</u> the piston <u>down by</u> a certain	That maximum speed is always equal to the
force.	force <u>you apply.</u>
The gas <u>exerts</u> a jittery force.	

Table 4. FORCE IS A PATH expressions

Conceptual	Feynman expressions	Students expressions
metaphor		
sub-category		

FORCE IS A	The force <u>in the vertical direction</u> due to	The ball goes out <i>in the direction</i> of the
LINE	gravity.	resultant [of the forces].
	The force <u>is directed along</u> the line	
	joining the planet to the sun.	
FORCE IS A	The true nature of the forces between the	none
CONNECTION	atoms.	

Table 5.	FORCE IS A	SCALE	expressions
	1 01101 1011	SCHEE	•

Feynman expressions	Students expressions
The force <u>weakens</u> as we go higher.	none
he more massive a thing is, the <u>stronger</u> the force	
required to produce a given acceleration.	

Feynman expressions	Students expressions
If the force between them were not balanced.	none
Talk only about <u>excess</u> forces.	
All the internal forces will balance out.	

Some metaphorical expressions found in Feynman are not present in students expressions, but we think this could be due to the set of data chosen for this purpose. We are almost sure that similar sentences could be found in students expressions if only we could have a larger collection.

The metaphorical sentences in lay language often involved the terms "speed" or "velocity". In order to deepen our investigations we repeated the same analysis for the sentences containing these two words. The conceptual metaphors we found are listed below.

- SPEED IS A SUBSTANCE
 - SPEED IS A POSSESSION
 - SPEED IS A QUANTITY
- SPEED IS A LOCATION
 - SPEED IS A LEVEL
 - SPEED IS A SCALE
- SPEED IS AN AGENT
 - SPEED IS A FORCE
 - SPEED IS A MAKER

Table 7 collects the categorization of the metaphorical sentences found in both set of data.

Conceptual metaphor category	Conceptual metaphor sub- category	Feynman expressions	Students expressions
SPEED IS A	SPEED IS A	<i>Motion <u>of</u> a body.</i>	Its speed remains constant.
SUBSTANCE	POSSESSION	If she kept going <u>with</u> the same speed.	<u>Their</u> speed gets greater and greater.
		The velocity of the falling ball.	Both should <u>have</u> the same speed.
	SPEED IS A	[] if we <u>increase</u> the speed of the	Its velocity keeps <u>increasing</u> .
	QUANTITY	atoms.	The speed is <u>smaller</u> .
			A new speed <u>bigger than</u> the one it had before.
SPEED IS A	SPEED IS A	<u>At</u> what speed is the radius	The ball must go <u>at</u> constant
LOCATION	LEVEL	increasing?	speed.
		She is going <u>at</u> that speed. Some car can <u>get from</u> rest <u>to</u> 60 miles an hour.	They can <u>reach</u> a speed limit.
	SPEED IS A	It speeds <u>up</u> .	It speeds <u>up</u> for a short while.
	SCALE	The car was slowing <u>down</u> . <u>High</u> speeds.	It slows <u>down</u> .
SPEED IS AN	SPEED IS A	none	The <u>force</u> due to the air
AGENT	Force		overcomes the initial velocity. The force of velocity.
	SPEED IS A Maker	none	The speed <u>creates</u> a force.

Table 7. Speed and Velocity metaphors and metaphorical expressions

All the expressions belonging from the two sources fitted all these categories with only one exception. Metaphorical expressions belonging to SPEED IS AN AGENT can only be found in students language.

4. Results and conclusions

This metaphor analysis is a powerful and sensible tool that allows us to investigate the conceptual structure that both scientists and students use to understand and to explain phenomena.

The first important result is that the metaphorical expressions coming from both lay and expert language share the majority of the metaphors. This allows us to claim that there is continuity between the two kind of language.

We also revealed a metaphorical and conceptual mismatch involving velocity and speed. In the analysis we discovered that SPEED IS AN AGENT is a conceptual metaphor only present in lay language (students). Therefore we could say that speed (and velocity) is perceived and conceptualized as an agent only by laypersons (students), while this is not true for scientists and experts (Feynman).

Another important result is that some aspects coming from the Force Dynamic Gestalt theory, such as quantity, quality, intensity (Fuchs, 2007) are present in the metaphorical expressions. Moreover they are not completely differentiated in lay language.

The presence of continuity tells us that it is possible to teach starting from the knowledge pupils have already developed during their previous experiences: we could use conceptual metaphor as a basis for developing a physics curriculum.

Physics teachers should be aware of the conceptual metaphors and how they relates and overlap in order to create comprehension (i.e. conceptual integration networks). In this sense we could say that an education based on conceptual metaphors could help students to be aware of them in order to understand and relate the aspects involved in the interpretation of motion and its causes.

In order to do so further analysis should be done in order to reveal the logical connections and the dependencies between concepts involved in the description of motion (momentum, energy). A refined analysis should be done taking different language sources, both oral and written.

References

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105–225. Fauconnier, G. (1994). Mental Spaces: Aspects of Meaning Construction in Natural Language. Cambridge, UK: Cambridge University Press.

Fauconnier, G. (1997). Mappings in Thought and Language. Cambridge, UK: Cambridge University Press. Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cognitive Science, 22(2), 133–187. doi:10.1016/S0364-0213(99)80038-X

Fauconnier, G., & Turner, M. (2002). The way we think. New York, NY: Basic Books.

Feynman, R. P. (1965). The Feynman Lectures on Physics; Vol. I. American Journal of Physics (10th ed., Vol. 33, p. 750). Addison Wesley. doi:10.1119/1.1972241

Fuchs, H. U. (2007). From Image Schemas to Dynamical Models in Fluids, Electricity, Heat, and Motion. An Essay on Physics Education Research. Winterthur, Switzerland. Retrieved from https://home.zhaw.ch/fuh/LITERATURE/Literature.html

Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(November), 1056–1065. doi:10.1119/1.14031

Johnson, M. (1990). The Body in the Mind. Chicago: University of Chicago Press.

Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. The Embodied Mind and its Challenge to Western Basic Books.

Lakoff, G., & Turner, M. (1989). More Than Cool Reason: A Field Guide to Poetic Metaphor. Chicago: University of Chicago Press. Retrieved from http://books.google.it/books?id=pz9TveJ5N5QC

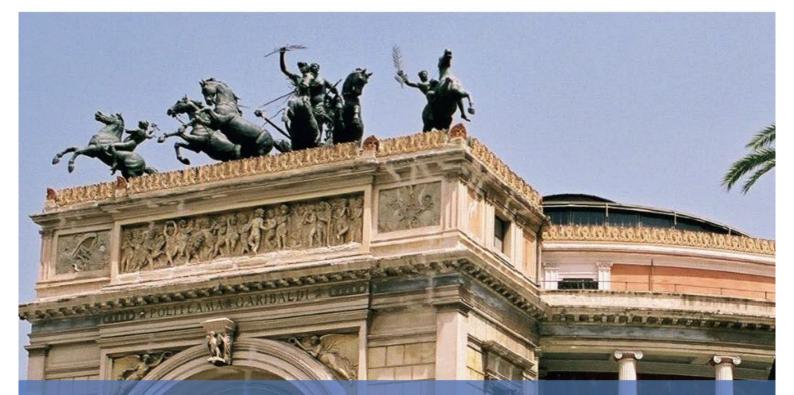
McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: naive beliefs about the motion of objects. Science (New York, N.Y.), 210(4474), 1139–41. doi:10.1126/science.210.4474.1139

Affiliation and address information

Alessandro Ascari Doctoral School in Humanities Department of Communication and Economics University of Modena and Reggio Emilia viale Antonio Allegri, 9 42121 Reggio Emilia Italy e-mail: alessandro.ascari@unimore.it

Federico Corni Department of Education and Humanities University of Modena and Reggio Emilia viale Antonio Allegri, 9 42121 Reggio Emilia Italy e-mail: federico.corni@unimore.it

Gabriele Ceroni CIS - International Centre for the History of Universities and Science Department of Philosophy and Communication University of Bologna via Zamboni, 38 40126 Bologna Italy email: gabriele.ceroni@studio.unibo.it


Hans U. Fuchs IAMP - Institute of Applied Mathematics and Physics School of Engineering Zurich University of Applied Sciences 8401 Winterthur Switzerland email: hans.fuchs@zhaw.ch

MPTL Multimedia in Physics Teaching and Learning

UNIVERSITA' DEGLI STUDI DI PALERMO

Teaching/Learning Physics: Integrating Research into Practice

PROCEEDINGS OF THE GIREP - MPTL 2014 INTERNATIONAL CONFERENCE

Dipartimento di Fisica e Chimica EDITORS C. Fazio and R.M. Sperandeo Mineo

MPTL Multimedia in Physics Teaching and Learning

TEACHING/LEARNING PHYSICS: INTEGRATING RESEARCH INTO PRACTICE

EDITORS

Claudio Fazio and Rosa Maria Sperandeo Mineo

Teaching/Learning Physics: Integrating Research into Practice

Proceedings of the GIREP-MPTL 2014 International Conference held in Palermo, Italy, July 7 - 12, 2014

> Organized by: Groupe Internationale sur l'Enseignement de la Physique (GIREP) Multimedia in Physics Teaching and Learning (MPTL)

With the support of: International Union for Pure and Applied Physics (IUPAP) European Physical Society - Physics Education Division

The papers included in this volume are a selection of the contribution presented at the Conference. Each paper was reviewed by at least two anonymous referees expert in the field of Physics Education and/or History, Philosophy of Science, Multimedia and ICTs in Physics Education.

© Copyright Università degli Studi di Palermo First edition: 30th June 2015 Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo (Italy) ISBN: 978-88-907460-7-9

GIREP/MPTL 2014 International Conference Committees

Scientific Advisory Committee

Rosa Maria Sperandeo-Mineo, Università di Palermo, Italy Luisa Cifarelli, Vice-President of EPS (European Physical Society) and President of SIF (Società Italiana di Fisica) Costas P. Constantinou, University of Cyprus, Cyprus Wolfgang Christian, Davidson College, USA Leos Dvorak, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic Ton Ellermejer, The Foundation Centre for Microcomputer Applications (CMA), Amsterdam, The Nederlands Francisco Esquembre, Universidad de Murcia, Spain Claudio Fazio, Università di Palermo, Italy Raimund Girwidz, University of Ludwogsburg, Germany Tomasz Greczyo, University of Wroclaw, Poland Claudia Haagen-Schuetzenhoefer, Austrian Educational Competence Centre, University of Vienna, Austria Robert Lambourne, The Open University, UK Ian Lawrence, Institute of Physics, United Kingdom Bruce Mason, University of Oklahoma, USA. Marisa Michelini, Università di Udine, Italy Eduardo Montero, Escuela Superior Politècnica del Litoral, (Ecuador) Cesar Eduardo Mora Ley, Instituto Politècnico Nacional, Mexico Hideo Nitta, Tokyo Gakugei University, JAPAN Wim Peeters, DKO vzw (work) and PONTOn vzw (ceo), Belgium Mauricio Pietrocola, School of Education, University of São Paulo, Brazil Gorazd Planinsic, University of Ljubljana, Slovenia Mehmet Fatih Taşar, Gazi Űniversitesi, Turkey Dean Zollmann, Kansas State University, USA

Program Committee

Francisco Esquembre, President of MPTL; Marisa Michelini, President of GIREP. Rosa Maria Sperandeo Mineo, Chair of the Conference, Università di Palermo, Italy Claudio Fazio, Chair of the Local Organizing Committee, Università di Palermo, Italy

Local Organizing Committee

Claudio Fazio, Università di Palermo, Italy Rosa Maria Sperandeo-Mineo, Università di Palermo, Italy Benedetto di Paola, Università di Palermo, Italy Onofrio Rosario Battaglia, Università di Palermo, Italy Nicola Pizzolato, Università di Palermo, Italy Giovanni Tarantino, Miur, Italy Antonia Giangalanti, Miur, Italy

Table of contents

Preface	1
1. General Talk Papers	
CONSIDERING PHYSICS KNOWLEDGE AS A CULTURE. AN APPROACH TO PHYSICS CURRICULUM MATCHING INTERESTS AND NEEDS OF CONTEMPORARY LEARNERS Igal Galili	5
HOW CAN THE LEARNING OF PHYSICS SUPPORT THE CONSTRUCTION OF STUDENTS' PERSONAL IDENTITIES? Olivia Levrini	19
RESEARCH-BASED INTERACTIVE SIMULATIONS TO SUPPORT QUANTUM MECHANICS LEARNING AND TEACHING Antje Kohnle	29
SUPPORTING TEACHERS USE AND ASSESSMENT OF INQUIRY BASED SCIENCE EDUCATION IN CLASSROOM PRACTICE Eilish Mcloughlin, Odilla Finlayson	41
POTENTIALLY MEANINGFUL TEACHING UNITS (PMTUS) IN PHYSICS EDUCATION	47
THINKING THE CONTENT FOR PHYSICS EDUCATION RESEARCH AND PRACTICE Laurence Viennot	61
2. Physics Teaching/Learning at Primary Level and Teacher Education	
TEACHING ABOUT ENERGY USING COOPERATIVE LEARNING: AN IMPLEMENTATION AND ITS EVALUATION IN A TEACHER TRAINING DEGREE Arantza Rico	83
EARLY CHILDHOOD SCIENCE EDUCATION IN AN INFORMAL LEARNING ENVIRONMENT Enrica Giordano, Sabrina Rossi	91
USING VIDEOS AND VIDEO EDITING SOFTWARE WITH PRE-SERVICE TEACHERS FOR OUR MODERN PRIMARY SCIENCE CLASSROOMS Maeve Liston	99
METHODS BASED ON NON-FORMAL-LEARNING AND EMOTION-BASED LEARNING FOR TEACHING PHYSICS IN PRIMARY AND LOWER SECONDARY SCHOOLS Silvia Merlino, Rosaria Evangelista, Carlo Mantovani	109
THE PERSISTENCE OF THE ALTERNATIVE CONCEPTIONS: THE CASE OF THE UNIPOLAR MODEL Abdeljalil Métioui, Louis Trudel	117
THE ROLE OF SCIENTIFIC MUSEUMS IN PHYSICS AND ASTRONOMY EDUCATION COURSES FOR PRE-SERVICE PRIMARY SCHOOL TEACHERS Ornella Pantano, Sofia Talas, Valeria Zanini	129
THE EDUCATION OF PRE-SERVICE PRIMARY SCHOOL TEACHERS FOR TEACHING PHYSICS AS PART OF THE SCIENCE CURRICULUM IN SLOVENIA Jerneja Pavlin, Mojca Čepič	137
3. Physics Teaching and Learning at Secondary Level	
PROBABILITY AND AMOUNT OF DATA Corrado E. Agnes	149
FROM NAÏVE TO SCIENTIFIC UNDERSTANDING OF MOTION AND ITS CAUSES	157
HIGH SCHOOL STUDENTS FACE THE MAGNETIC VECTOR POTENTIAL: SOME RELAPSES IN THEIR LEARNING AND TIPS FOR TEACHERS DEALING WITH ELECTROMAGNETISM Sara R. Barbieri, Marco Giliberti	165
RESPONSIBLE RESEARCH AND INNOVATION IN SCIENCE EDUCATION: THE IRRESISTIBLE	175
Eugenio Bertozzi, Claudio Fazio, Michele Antonio Floriano, Olivia Levrini, Roberta Maniaci, Barbara Pecori, Margherita Venturi, Jan Apotheker	

WORKSHOP: TIPS AND TRICKS TO MAKE TRADITIONAL LABORATORY MORE MINDS-ON AND INQUIRY Ed van den Berg	183
PLAYING WITH (SUPER)HYDROPHOBICITY: AN INTERDISCIPLINARY EXPERIMENTAL SEQUENCE ON PHYSICAL PROPERTIES OF WATER Assunta Bonanno, Giacomo Bozzo, Federica Napoli, Peppino Sapia	193
EXPLAINING PHENOMENA SCIENTIFICALLY AND IDENTIFYING SCIENTIFIC ISSUES IN	201
A DYNAMICAL MODEL FOR THE ROLLING CYLINDER	209
AN ALTERNATIVE APPROACH TO THE BOLTZMANN DISTRIBUTION THROUGH THE CHEMICAL POTENTIAL Michele D'Anna, Georg Job	217
IMPLEMENTATION OF A PROPOSAL TO TEACH QUANTUM MECHANICS CONCEPTS FROM FEYNMAN'S MULTIPLE PATHS APPLIED TO THE LIGHT María De Los Angeles Fanaro, María Rita Otero, Mariana Elgue	225
SECONDARY STUDENTS' VIEWS ABOUT SCIENTIFIC INQUIRY	233
DEVELOPMENT OF TEACHING MATERIALS: A COURSE FOR GEOMETRICAL OPTICS FOR LOWER SECONDARY STUDENTS Claudia Haagen, Martin Hopf	241
SIMPLE EXPERIMENTS SUPPORTING CONCEPTUAL UNDERSTANDING OF BODY COLOUR Claudia Haagen	249
A SUPERFICIAL TEXTBOOK PRESENTATION OF THE GENEVA LAKE EXPERIMENT FOR	257
ON THE VERDICT OF THE GERMAN PHYSICAL SOCIETY AGAINST THE <i>KARLSRUHE</i>	267
THERMOLAB - SIMULATING THERMAL PROCESSES BY SIMULATING GIBBS ENSEMBLES Oliver Frisius, Friedrich Herrmann, Michael Pohlig,	275
HOW SECONDARY SCHOOL STUDENTS CONCEPTUALIZE INFRARED RADIATION - MATTER INTERACTION? FINDINGS FROM A RESEARCH STUDY AND IMPLICATIONS FOR AN INSTRUCTIONAL DESIGN María Isabel Hernández, Raquel Ríos, Roser Pintó	281
IS IT DIFFICULT TO MOTIVATE OUR STUDENTS TO STUDY PHYSICS?	289
STUDENTS' MISCONCEPTIONS REGARDING EVERYDAY THERMAL PHENOMENA	297
A PLATFORM TO SUPPORT CO ₂ EMISSIONS MAPPING ON THE AEGEAN SEA ISLANDS Barbara Kasselouri, Harry Kambezidis, Alexis Kaselouris, Dimitrios Zevgolis	305
PHYSICS TEACHERS' INVENTIONS FAIR – CONFERENCE AND SOURCE OF TEACHING IDEAS Zdeňka Koupilová, Leoš Dvořák	319
HIGH SCHOOL STUDENTS' MISCONCEPTIONS IN ELECTRICITY AND MAGNETISM AND SOME EXPERIMENTS THAT CAN HELP TO REDUCE THEM Vera Koudelkova, Leos Dvorak	323
KINEMATICS CONCEPTS AT DIFFERENT REPRESENTATION LEVELS – A MUTUAL INFORMATION APPROACH Clemens Wagner, Andreas Lichtenberger, Andreas Vaterlaus	329
GUIDING STUDENTS TO COMBINE PARTIAL LAWS OF ENERGY CONSERVATION Paul S. W. M. Logman, Wolter H. Kaper and Ton L. Ellermeijer	339
A NEW PHYSICS CURRICULUM FOR A VOCATIONAL SCHOOL	347
TEACHING THE BASIC CONCEPTS OF THE SPECIAL RELATIVITY IN THE SECONDARY SCHOOL IN THE FRAMEWORK OF THE THEORY OF CONCEPTUAL FIELDS OF VERGNAUD	355

Maria Rita Otero, Marcelo Arlego, Fabiana Prodanoff	
TEACHERS' VIEWS ABOUT THE IMPLEMENTATION OF AN INTEGRATED SCIENCE	367
Valeria Poggi, Italo Testa, Cristina Miceli	
VACUUM: ITS MEANING AND ITS EFFECTS THROUGHOUT EXPERIMENTAL ACTIVITIES	373
DETERMINATION OF THE EARTH RADIUS BY MEASURING THE ANGULAR HEIGHT	379
Alexander Kaplinsky, Konstantin Rogozin, Alexey Sorokin, Darya Shakhvorostova, Alexander Wolf	
IMPLEMENTATION OF PEER INSTRUCTION IN CZECH SCHOOLS	383
HOW DOES EPISTEMOLOGICAL KNOWLEDGE ON MODELLING INFLUENCE STUDENTS' ENGAGEMENT IN THE ISSUE OF CLIMATE CHANGE? Giulia Tasquier	387
AN OPEN INQUIRY RESEARCH-BASED TEACHING-LEARNING SEQUENCE ABOUT THE CAUSE . OF SEASONS	399
Italo Testa, Gianni Busarello, Silvio Leccia, Emanuella Puddu, Arturo Colantonio	40.5
IMPACT OF A DISCUSSION METHOD ON HIGH SCHOOL STUDENTS' UNDERSTANDING OF KINEMATICAL CONCEPTS Louis Trudel, Abdeljalil Métioui	407
4. Physics Teaching and Learning at University Level	
THE BRACED STRING, DISPERSION AND POLARIZATION	
HOW CLOSE CAN WE GET WAVES TO WAVEFUNCTIONS, INCLUDING POTENTIAL?	429
HOW CAN FUTURE EUROPEAN PHYSICS STUDIES LEAD TO INNOVATIVE COMPETENCES AND STIMULATE ENTREPRENEURIAL BEHAVIOUR? Hendrik Ferdinande	437
INVESTIGATING PHYSICS TEACHING AND LEARNING AT UNIVERSITY Jenaro Guisasola, Mieke De Cock, Stephen Kanim, Lana Ivanjek, Kristina Zuza, Laurens Bollen, Paul Van Kampen	443
VIDEO ANALYSIS BASED TASKS IN PHYSICS	453
Peter Hockicko, Katarína Pažická	
IMPROVING STUDENTS' UNDERSTANDING BY USING ONGOING EDUCATION RESEARCH TO REFINE ACTIVE LEARNING ACTIVITIES IN A FIRST-YEAR ELECTRONICS COURSE Alexander P. Mazzolini, Scott A. Daniel	461
TEACHING ELECTROSTATICS THROUGH PROJECT-BASED LEARNING Carlos Collazos, Cesar Mora, Ricardo Otero, Jaime Isaza	469
MULTIPLE BOUNCES OF DIFFERENT MATERIAL BALLS IN FREE FALL Armando C. Perez Guerrero Noyola, Fernando Yañez Barona	477
AN INQUIRY-BASED APPROACH TO THE FRANCK-HERTZ EXPERIMENT Dominique Persano Adorno, Nicola Pizzolato	485
PHYSICAL MODELLING: A DIFFERENT APPROACH TO TEACH NON-PHYSICS MAJORS Estela M. Puente Leos, Marcos Ley Koo	493
THE NATURE OF STUDENTS' REASONING PROCESSES IN TASKS INVOLVING THE CONCEPT OF ANGULAR ACCELERATION Graham Rankin	499
ACTIVE LEARNING IN OPTICS: A WORKSHOP David R. Sokoloff	503
EVALUATION FOR UNDERGRADUATE PROGRAMS: THE CASE OF THE BS APPLIED PHYSICS IN THE UNIVERSITY OF SAN CARLOS Cherile Obate- Yap, Enriqueta D. Reston	515
INVESTIGATING STUDENT IDEAS ON THE CONNECTION BETWEEN FORMAL STRUCTURES AND CONCEPTUAL ASPECTS IN QUANTUM MECHANICS Giacomo Zuccarini, Marisa Michelini	523
5. ICT and Multi-Media in Physics Education	
OPERATING SYSTEM INDEPENDENT PHYSICS SIMULATIONS	533

INTERACTIVE WHITEBOARD (IWB) AND CLASSROOM RESPONSE SYSTEM (CRS): HOW CAN TEACHERS USE THESE RESOURCES? Assunta Bonanno, Giacomo Bozzo, Federica Napoli, Peppino Sapia	539
THE USES OF INTERACTIVE WHITEBOARD IN A SCIENCE LABORATORY	551
PREPARING PRE-SERVICE TEACHERS TO INTEGRATE TECHNOLOGY INTO INQUIRY-BASED SCIENCE EDUCATION: THREE CASE STUDIES IN THE NETHERLANDS Trinh-Ba Tran, Ed van den Berg, Ton Ellermeijer, Jos Beishuizwen	559
LEARNING ASSESSMENT ABOUT THE MOON'S SYNCHRONOUS ROTATION MEDIATED COMPUTATIONAL RESOURCE Adriano L. Fagundes, Tatiana da Silva,Marta Feijó Barroso	575
USING TECHNOLOGY TO PROVIDE AN INTERACTIVE LEARNING EXPERIENCE	583
USE YOUR HEAD - IN FOOTBALL AND IN PHYSICS EDUCATION	591
FORMATION OF KEY COMPETENCIES THROUGH INFORMATION AND COMMUNICATION TECHNOLOGY Tomasz Greczylo, Ewa Dębowska	601
COMPARING METHODS OF MEASUREMENT OF FRICTION WITH SIMPLE EQUIPMENT AND WITH DATA-LOGGERS Kamila Hrabovská, Libor Koníček, Libuše Švecová, Karla Barčová	609
IMPLEMENTATION OF AN IN-SERVICE COURSE ON INTEGRATION OF ICT INTO INQUIRY BASED SCIENCE EDUCATION: A CASE STUDY IN SLOVAKIA Zuzana Ješková, Trinh-Ba Tran, Marián Kireš and Ton Ellermeijer	617
iMOBILE PHYSICS: A RESEARCH AND DEVELOPMENT PROJECT FOR TEACHING AND LEARNING WITH SMARTPHONES AND TABLET PCS AS MOBILE EXPERIMENTAL TOOLS Pascal Klein, Jochen Kuhn, Andreas Müller	629
WHAT IS LIGHT? FROM OPTICS TO QUANTUM PHYSICS THROUGH THE SUM OVER PATHS APPROACH Massimiliano Malgieri, Pasquale Onorato, Anna De Ambrosis	639
REPORT AND RECOMMENDATIONS ON MULTIMEDIA MATERIALS FOR TEACHING	
CHAOTIC BEHAVIOUR OF ZEEMAN MACHINES AT INTRODUCTORY COURSE OF MECHANICS Péter Nagy, Péter Tasnádi	657
ASSESSMENT OF STUDENT CONSTRUCTED MODELS ON TOPICS RELEVANT TO HEAT AND TEMPERATURE SYSTEMS Christiana Th. Nicolaou, Bert Bredeweg, Constantinos P. Constantinou, Jochem Liem	667
ROLLING MOTION: EXPERIMENTS AND SIMULATIONS FOCUSING ON SLIDING FRICTION FORCES Pasquale Onorato, Massimiliano Malgieri, Anna De Ambrosis	675
TEACHING OPTICS WITH A VIRTUAL MACH-ZEHNDER INTERFEROMETER: AN ANALYSIS OF A COLLABORATIVE LEARNING ACTIVITY Alexsandro Pereira de Pereira, Fernanda Ostermann	683
USING LEARNING MANAGEMENT SYSTEM TO INTEGRATE PHYSICS COURSES WITH ONLINE ACTIVITIES: A CASE STUDY Edlira Prenjasi, Shpresa Ahmetaga	691
DESIGN, TRAINING EXERCISES AND FEEDBACK IN AN ONLINE LEARNING ENVIRONMENT ABOUT ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Stefan Richtberg, Raimund Girwidz	697
REMOTE AND VIRTUAL LABORATORIES AS PART OF ONLINE COURSES	
ON-LINE COURSEWORK FOR STUDENTS OF OPTICS	
DESIGNING AN EDUCATIONAL METHODOLOGY TO TEACHING THERMAL EQUILIBRIUM USING ICT Rubén Sánchez Sánchez	719

THE PHOTOELECTRIC EFFECT AND STUDY OF THE DIFFRACTION OF LIGHT: TWO NEW EXPERIMENTS IN UNILABS VIRTUAL AND REMOTE LABORATORIES NETWORK Juan P. Sánchez, Jacobo Sáenz, Luis de la Torre, Carmen Carreras, Manuel Yuste, Rubén Heradio , Sebastián Dormido	727
TRAINING AND ASSESSMENT OF EXPERIMENTAL COMPETENCIES FROM A DISTANCE:	733
PERFORMANCE TASK USING VIDEO ANALYSIS AND MODELLING TO PROMOTE K12 EIGHT PRACTICES OF SCIENCE Loo Kang Wee, Tze Kwang Leong	743
6. In-service and Pre-service Teacher Education	
PROJECT BASED LEARNING FOR TEACHER EDUCATION IN BRAZIL'S STATE WITH THE LOWEST LITERACY RATE Marcos H. Abreu de Oliveira, Mara F. Parisoto, Robert Fischer	753
THE EUROPEAN TEMI PROJECT INVOLVES ITALIAN TEACHERS: FIRST OUTCOMES	759
INTERACTIVE METHODOLOGIES IN PHYSICS TEACHER TRAINING OF IN A CONTEXT OF CURRICULUM INNOVATION: THE PEER INSTRUCTION METHOD Marcelo A. Barros and Marina V. Barros	767
HOW EXPERIMENTAL RESOURCES IN PHYSICS TEACHING FACILITATE CONCEPTUAL LEARNING? Carlos Buitrago, Maria M. Andrés	775
INERTIAL AND NON-INERTIAL FRAMES: WITH PIECES OF PAPER AND IN AN ACTIVE WAY Leos Dvorak	783
"ELIXIR FOR SCHOOLS" – A NEW INITIATIVE SUPPORTING CZECH PHYSICS TEACHERS Irena Dvorakova, Leos Dvorak	791
EFFECTS OF GENDER AND TEACHING PRACTICE IN AN OUT-OF-SCHOOL LEARNING LAB ON ACADEMIC SELF-CONCEPT OF PRE-SERVICE PHYSICS TEACHERS Markus Elsholz, Susan Fried, Thomas Trefzger	795
REVISITING DERIVATIVES IN PHYSICS WITH PRE-SERVICE PHYSICS TEACHERS IN K-12 CLASSES Olga Gioka	803
IN-SERVICE AND PRE-SERVICE TEACHER EDUCATION IN IBSE – THE ESTABLISH APPROACH Zuzana Ješková, Marián Kireš, Eilish McLoughlin, Odilla Finlayson, Christina Ottander, Margareta Ekborg	811
THE INFLUENCE OF MATHEMATICAL REPRESENTATIONS ON STUDENTS' CONCEPTUALIZATIONS OF THE ELECTROSTATIC FIELD Ricardo Karam, Terhi Mäntylä	819
UNDERSTANDING AND EXPLAINING EQUATIONS FOR PHYSICS TEACHING Ricardo Karam, Olaf Krey	827
INVESTIGATION OF A REFLECTIVE PEDAGOGY TO ENCOURAGE PRE-SERVICE PHYSICS TEACHERS TO EXPLORE ARGUMENTATION AS AN AID TO CONCEPTUAL UNDERSTANDING Greg Lancaster, Rebecca Cooper	835
TOWARDS A PCK OF PHYSICS AND MATHEMATICS INTERPLAY	843
RESEARCH BASED ACTIVITIES IN TEACHER PROFESSIONAL DEVELOPMENT ON OPTICS	853
EXPLORING SLIDING FRICTION: AN INQUIRY-BASED EXPERIENCE FOR PRE-SERVICE SCIENCE TEACHERS Vera Montalbano	863
WAVE-PARTICLE COMPLEMENTARITY: TEACHING QUANTUM PHYSICS WITH A VIRTUAL MACH-ZEHNDER INTERFEROMETER Jader da Silva Neto, Cláudio José H. Cavalcanti, Fernanda Ostermann	871
THE PROFILES APPROACH TO TEACHING AND LEARNING PHYSICS IN SLOVENIA	879
THE ROLE OF MATHEMATICS FOR PHYSICS TEACHING AND UNDERSTANDING	889
SCIENCE TEACHERS' TRANSFORMATIONS WHEN IMPLEMENTING INQUIRY-BASED TEACHING-LEARNING SEQUENCES	897

Alessandro Zappia, Silvia Galano, Luigi Smaldone, Italo Testa	
TEACHER AND PROFESSIONAL DEVELOPMENT IN IBSE AND ASSESSMENT	907
Marián Kireš, Zuzana Ješková, Eilish McLoughlin, Odilla Finlayson, Margareta Ekborg, Christina Ottander	
7 Dhusing Tarahing and Learning in Informal Softings	
7. Physics Teaching and Learning in Informal Settings	
DEVELOPMENT OF STUDENTS' INTEREST IN PARTICLE PHYSICS AS EFFECT OF	915
PARTICIPATING IN A MASTERCLASS Kerstin Gedigk, Gesche Pospiech	
	022
"GOOD VIBRATIONS" - A WORKSHOP ON OSCILLATIONS AND NORMAL MODES	923
CHAOS THEORY AND ITS MANIFESTATIONS: AN INFORMAL EDUCATIONAL ACTIVITY	931
TO EXPLAIN CHAOS TO STUDENTS	<i>))1</i>
Valeria Greco, Salvatore Spagnolo	
MULTIMEDIA SOFTWARE "ARCHIMEDES AND HIS WORK": A DEEPENING PATH IN	937
THE ARKIMEDEION MUSEUM OF SIRACUSA	
Silvia Merlino, Marco Bianucci, Carlo Mantovani, Roberto Fieschi	
PHYSICS COMPETITIONS FOR LEARNERS OF PRIMARY SCHOOLS IN SLOVENIA	949
Barbara Rovšek, Robert Repnik	
A SINGING WINE GLASS AS AN INSTRUMENT FOR TEACHING ACOUSTICS	955
José A. Zárate Colin, Marisol Rodríguez Arcos, Karina Ramos Musalem, Estela M. Puente Leos, Marcos Ley Koo	
INFORMAL TEACHING OF PHYSICS AT A HUNGARIAN SCIENCE CENTER	965
Péter Mészáros	
8. History and Philosophy of Science in Physics Education	
RECASTING PARTICLE PHYSICS BY ENTANGLING PHYSICS, HISTORY AND PHILOSOPHY	973
Eugenio Bertozzi, Olivia Levrini	15
THE DISCOVERY OF X-RAYS DIFFRACTION: FROM CRYSTALS TO DNA. A CASE-STUDY TO	979
PROMOTE UNDERSTANDING OF THE NATURE OF SCIENCE AND OF ITS INTERDISCIPLINARY	
CHARACTER	
Francesco Guerra, Matteo Leone, Nadia Robotti	
A TEACHING DROBOGAL ON ELECTROGERATICS DAGED ON THE HIGTORY OF SCHENGE	
A TEACHING PROPOSAL ON ELECTROSTATICS BASED ON THE HISTORY OF SCIENCE	987
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS	987
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró	
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró	
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder	999
 THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	999
 THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	999 1011
 THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	999 1011
 THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	999 1011
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	9999 1011 1021
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	9999 1011 1021
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE: A CASE STUDY ABOUT THE BOLTZMANN FACTOR Onofrio R. Battaglia, Benedetto Di Paola	999101110211029
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE: A CASE STUDY ABOUT THE BOLTZMANN FACTOR Onofrio R. Battaglia, Benedetto Di Paola AN AMERICAN INSTRUCTOR IN AN UPPER-LEVEL ITALIAN PHYSICS CLASS	999101110211029
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	9991011102110291041
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	9991011102110291041
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE: A CASE STUDY ABOUT THE BOLTZMANN FACTOR Onofrio R. Battaglia, Benedetto Di Paola AN AMERICAN INSTRUCTOR IN AN UPPER-LEVEL ITALIAN PHYSICS CLASS Gerald Feldman TEACHER CHANGE IN IMPLEMENTING A RESEARCH DEVELOPED REPRESENTATIONCONSTRUCTION PEDAGOGY	9991011102110291041
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE: A CASE STUDY ABOUT THE BOLTZMANN FACTOR Onofrio R. Battaglia, Benedetto Di Paola AN AMERICAN INSTRUCTOR IN AN UPPER-LEVEL ITALIAN PHYSICS CLASS Gerald Feldman TEACHER CHANGE IN IMPLEMENTING A RESEARCH DEVELOPED REPRESENTATION CONSTRUCTION PEDAGOGY Peter Hubber, Gail Chittleborough	 999 1011 1021 1029 1041 1049
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE: A CASE STUDY ABOUT THE BOLTZMANN FACTOR Onofrio R. Battaglia, Benedetto Di Paola AN AMERICAN INSTRUCTOR IN AN UPPER-LEVEL ITALIAN PHYSICS CLASS Gerald Feldman TEACHER CHANGE IN IMPLEMENTING A RESEARCH DEVELOPED REPRESENTATIONCONSTRUCTION PEDAGOGY	 999 1011 1021 1029 1041 1049
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY	 999 1011 1021 1029 1041 1049 1059
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY	 999 1011 1021 1029 1041 1049 1059
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES'	 999 1011 1021 1029 1041 1049 1059 1071
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	 999 1011 1021 1029 1041 1049 1059 1071
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY	 999 1011 1021 1029 1041 1049 1059 1071
THROUGH THE READING OF HISTORICAL TEXTS AND ARGUMENTATIVE DISCUSSIONS Marina Castells, Aikaterini Konstantinidou, Josep Maria Cerveró NATURE OF SCIENCE IN SCIENCE EDUCATION: FROM 'TENETS' TO 'THEMES' Andre F. Pinto Martins, Jim Ryder 9. Pedagogical Methods and Strategies THE ROLE OF TEACHING SCAFFOLDING IN INQUIRY-BASED LEARNING OF BLACK-BOXED ELECTRIC CIRCUITS Wheijen Chang INTEGRATED STEM IN SECONDARY EDUCATION: A CASE STUDY Jolien De Meester, Heidi Knipprath, Jan Thielemans, Mieke De Cock, Greet Langie, Wim Dehaene A QUANTITATIVE METHOD TO ANALYSE AN OPEN ANSWER QUESTIONNAIRE:	 999 1011 1021 1029 1041 1049 1059 1071 1079

TEACH THEM Marie Snetinova, Zdeňka Koupilová, USING ROLE-PLAYING GAME IN A VIRTUAL LEARNING ENVIRONMENT FOR A NEW APPROACH TO PHYSICS CLASSROOM LESSONS Annalisa Terracina, Massimo Mecella	1095
List of Referees	
Author Index	1107

Preface

The conference has been organised by the Groupe International de Recherche sur l'Enseignement de la Physique [GIREP] and the Multimedia in Physics Teaching and Learning [MPTL] group and it has been sponsored by the International Commission on Physics Education [ICPE] – Commission 14 of the International Union for Pure and Applied Physics [IUPAP], the European Physical Society – Physics Education Division [EPS-PED], the Latin American Physics Education Network [LAPEN] and the Società Italiana di Fisica [SIF].

The theme of the conference, **Teaching/Learning Physics: Integrating Research into Practice**, underlines aspects of great relevance in contemporary science education. In fact, during the last few years, evidence based Physics Education Research provided results concerning the ways and strategies to improve student conceptual understanding, interest in Physics, epistemological awareness and insights for the construction of a scientific citizenship. However, Physics teaching practice seems resistant to adopting adapting these findings to their own situation and new research based curricula find difficulty in affirming and spread, both at school and university levels. The conference offered an opportunity for in-depth discussions of this apparently wide-spread tension in order to find ways to do better.

The purpose of the GIREP-MPTL 2014 was to bring together people working in physics education research and in physics education at schools from all over the world to allow them to share research results and exchange their experience.

About 300 teachers, educators, and researchers, from all continents and 45 countries have attended the Conference contributing with 177 oral presentations, 15 workshops, 11 symposia, and around 60 poster presentations, together with 11 keynote addresses (general talks).

After the conference, 147 papers have been submitted for the GIREP-MPTL 2014 International Conference proceedings. Each paper has been reviewed by at least two reviewers, from countries that are different to those of the authors and on the basis of criteria described on the Conference web site. Papers were subsequently revised by authors according to reviewers' comments and the accepted papers are reported in this book, divided in 8 Sections on the basis of the keywords suggested by authors. The other book section (actually, the first one) contains the papers that six of the keynote talkers sent for publication in this Proceedings Book.

We would like to thank all the authors that contributed with their papers to the realization of this book and all the referees that with their criticism helped authors to improve the quality of the papers.

Palermo, 30th June 2015

Rosa Maria Sperandeo Mineo and Claudio Fazio