
18 September 2017

intestazione repositorydell’ateneo

Investigating Power and Limitations of Ensemble Motif Finders Using Metapredictor CE3 / Leoncini, Mauro; Montangero,
Manuela; Panucia Tillán, Karina. - In: CURRENT BIOINFORMATICS. - ISSN 1574-8936. - STAMPA. - 10:2(2015), pp.
124-138.

Original

Investigating Power and Limitations of Ensemble Motif Finders Using Metapredictor CE3

Publisher:

Published
DOI:10.2174/157489361002150518122428

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 11380/1068327 since: 2017-06-16T10:39:26Z

This is the peer reviewd version of the followng article:

Investigating Power and Limitations of Ensemble Motif Finders
using CE3 Metapredictor∗

Mauro Leoncini1,2, Manuela Montangero1,2, and *Karina Panucia Tillán3

1Dept. of Physics, Computer Science, and Mathematics, Univ. of Modena and Reggio Emilia,
Italy. Email: name.surname@unimore.it

2IIT-CNR, Pisa, Italy
3Dept. of Science and Methods for Engineering, Univ. of Modena and Reggio Emilia, Italy.

Email: karina.panuciatillan@unimore.it

Abstract

Ensemble methods represent a relatively new approach to motif discovery that combines the results returned by
“third-party” finders with the aim of achieving a better accuracy than that obtained by the single tools. Besides the
choice of the external finders, another crucial element for the success of an ensemble method is the particular strategy
adopted to combine the finders’ results, a.k.a. learning function.

Results appeared in the literature seem to suggest that ensemble methods can indeed provide noticeable improve-
ments over the quality of the most popular tools available for motif discovery.

With the goal of better understanding potentials and limitations of ensemble methods, we developed a general
software architecture whose major feature is the flexibility with respect the crucial aspects of ensemble methods
mentioned above. The architecture provides facilities for the easy addition of virtually any third-party tool for motif
discovery whose code is publicly available, and for the definition of new learning functions. We present a prototype
implementation of our architecture, called CE3 (Customizable and Easily Extensible Ensemble).

Using CE3, and available ensemble methods, we performed experiments with three well-known datasets. The
results presented here are varied. From the one hand, they confirm that ensemble methods cannot be just considered
as the universal remedy to the difficulty of “in-silico” motif discovery. On the other hand, we found some encouraging
regularities that may help to find a general set up for CE3 (and other ensemble methods as well) able to guarantee
substantial improvements over single finders in a systematic way.

Keywords: DNA binding, ensemble methods, motif discovery, software tool, transcription factor, XML.

1 Introduction
The discovery of Transcription Factor Binding Sites (TFBSs), i.e., functional DNA sequences involved in gene expres-
sion, is an important and challenging problem in molecular biology. As the experimental protocols available for TFBS
discovery are lengthy and costly, the problem has been tackled also from a computational perspective. Mathematical
models of TFBSs have been proposed [1, 2], often termed motifs, and many algorithms designed and implemented in
the last thirty years (see, e.g., [3, 4, 5] and [6] for further references).

Despite such impressive efforts, the prediction accuracy remains low. A relatively recent assessment of thirteen
popular algorithms performed by Tompa et al. [7] has made it clear that no single method performs well (i.e., gives
accurate results) on different datasets, and that it is by no means easy to characterize the inputs for which a method
may give good performances.
∗A preliminary version of this paper appeared in Proc. IWBBIO 2013, Granada (Spain), 18-20 Mar. 2013

1

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE31 LEONCINI M, MONTANGERO M, PANUCIA K

In relatively recent times, a new approach has been pursued with the aim of overcoming the limitations of existing
motif discovery algorithms (here also termed finders). This is based on the idea that accurately combining the results
returned by different finders can lead to better TFBSs predictions than using each finder alone. The tools following this
paradigm are known as ensemble methods (hereafter simply ensembles) [8, 9, 10, 11], or also meta-predictors [12].

A popular reasoning that supports the design of ensembles is a more or less sophisticated voting argument. The
idea is that the likelihood of a DNA stretch being a functional site grows with the number of different motif discovery
algorithms that report that stretch among their findings. The actual procedures adopted to “combine” the finders’
results, often referred to as the learning functions, may vary a lot across different ensembles. Together with the choice
of the used finders (typically third-party, external software tools), the learning functions is the feature that mostly
affects the performance of an ensemble.

All the above cited studies that propose ensemble methods also report the results of a number of experiments
performed of benchmark data. Indeed, the results seem to support the idea that, even putting together low performance
finders, the overall accuracy of an ensemble can be cast to an acceptable level, well above those of the single finders.

We are much more cautious about the power of ensembles. First of all, the observed performance of an ensemble
cannot but strictly depend on the finders it is based on, with different “blends” likely leading to very different results.
If all the component finders fail heavily on a given dataset, it is conceivably hard for the ensemble to come up with
acceptable results. Even assuming that some finders give good results will not guarantee that the poor ones do not
prevail in the ensemble’s eventual answers. Also, though the possibility of deciding the configuration of the ensemble
(which is granted by some, but not all, the available meta-predictors) seems a potential point of strength to exploit,
no general rules have been suggested yet that can be turned into easy set up guidelines for the end-users. A final
observation is that, to the best of our knowledge, no existing ensemble considers the possibility of easily extending
the set of available finders; this prevents the adoption of any new powerful tool that might be possibly proposed in the
literature.

In order to validate our beliefs and to understand more in depth the power and limitations of ensembles, we first
defined and implemented a general ensemble architecture, which we called CE3. CE3 is customizable and extensible to
a previously unpaired extent, allowing for easy addition of external finders and the definition of new learning functions.
Our opinion is that, since a positive correlation must exist among the accuracy of the finders used by an ensemble and
that of the ensemble itself, a clever design should allow for the latter to include any accurate tool that will be possibly
available in the future. At the time of writing, the inclusion of a new finder in CE3, though not completely automatic,
is already quite an easy task, which do not require any programming skill.

We performed a large number of experiments using CE3 as well as other available meta-predictors and standalone
finders. We found striking evidences that a naive use of ensembles do not help to improve the quality of the results
returned by the most accurate standalone finders. Hard datasets for single tools (such as the one proposed by Tompa
and coauthors [7]) remain hard for ensembles as well, even though some small improvements may be observed. On
the positive side, we propose a strategy for finding a subset of finders, among the ones available, which depends on
the dataset under consideration and that often drive CE3 to solutions that are very close to the best achievable ones.

The rest of this paper is organized as follows. In Section 2 we give a description of general ensembles. In Section 3
we describe the current CE3 implementation, with particular emphasis on the tool’s capability of being extensible. In
Section 4 we present and analyze the results obtained in a number of experiments performed with various configu-
rations of CE3; finally, in Section 5 we offer some concluding remarks and discuss future work scheduled on CE3

project.

2 Ensembles General Architecture
Ensembles used for the Motif Discovery Problem (MDP) orchestrate the execution of different de-novo motif finders.
Each finder returns a set of motifs that potentially describe biologically active sites. These are analyzed by the ensem-
ble with the aim of increasing the accuracy of predictions. The general structure of such systems is made of the four
main components listed below and illustrated in Figure 1.

1. External algorithms integration module: ensembles integrate possibly many different (third-party) de-novo find-
ers.

2

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE32 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 1: General architecture of an ensemble.

2. Internal motif representation: motifs returned by the finders are represented uniformly using appropriate data
structures and internal motif handling software.

3. Learning rule: one or more learning techniques are used to discover the most promising motifs among all those
predicted by single finders. This is the component that mostly characterizes (and distinguishes) today’s available
ensembles.

4. Output module: the prediction made by the ensemble is returned to the user in one of the commonly adopted
“external” motif representations (e.g., weight matrices and text logos), possibly with the explicit sites list.

Basically, ensemble methods interface each external tool through a specific wrapper (Figure 1). The motifs pre-
dicted by the external tools are then converted to a unique internal representation defined by the ensemble. The motifs
in this new representation are then analyzed by the learning method(s) with the aim to discover the most promising
results to later report as the output of the ensemble.

It easy to see that the crucial components in the design of ensembles are the included third-party methods and the
adopted learning function. On the one hand, the third-party tools determine the set of motifs that will be predicted by
the ensemble. So, making a proper selection of the finders to be used is a point of strength to exploit, since a careful
combinations of different algorithms may provide substantial improvements in motif predictions. However, ensembles
implemented so far are characterized by a fixed set of finders. Some of them (e.g. MotifVoter [11]) allow the user to
select the particular finders s/he wishes to use in a particular run, however these are again taken from a predefined and
fixed set. While extensions are possible, they are nonetheless difficult to implement by the end user. In fact, if one
wishes to extend an existing ensemble by adding a new motif finding algorithm (say one that adopts a new powerful
search strategy), s/he has to do some non trivial programming work (assuming the source code is available). At the
very least, one has to write code to interact with the new method, i.e., to wrap its execution and parse the returned
results. This clearly needs knowledge of the ensemble internals and some programming skills.

3

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE33 LEONCINI M, MONTANGERO M, PANUCIA K

On the other hand, the choice of the learning function influences the output quality, affecting the prediction of
relevant motifs. Thus, it has to be carefully designed to be able to discover relevant information among all motifs
returned by the selected finders. Ensembles implemented so far are characterized by a specific learning function
devised by the tool’s authors and hence changes are difficult to implement. Here, even greater efforts are requested if
one wishes to add a completely new learning method to the ensemble.

3 CE3 Architecture
Our customizable and extensible ensemble method, called CE3, is obtained by a conceptually simple modification of
the generic ensemble’s structure, as shown in Figure 2. The changes are focused on the two key features of a generic
ensemble, consisting in the introduction of two modules (called wrappers) that allow the inclusion of new motif finding
tools and new learning functions by using quite simple procedures (we are not taking into consideration here the task of
implementing the finding algorithms and learning functions, but only their inclusion in the ensemble). CE3 is written
in Python and is available for dowload at algogroup.unimo.it/software/CE3, while a Web interface is still work
in progress.

Figure 2: CE3 architecture. External algorithms are integrated thanks to a general wrapper and two XML configuration
files. Several (new) learning functions (LF) may be included in the ensemble by means of the Learning Function
Module.

In the following of this section we will first describe the actual CE3 configuration, then we will explain how a user
might extend CE3 with the addition of new finders and/or new learning functions.

4

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE34 LEONCINI M, MONTANGERO M, PANUCIA K

3.1 CE3 Standard Configuration
CE3 comes with a standard configuration that allow users to directly run the ensemble ”as it is”. In the following, we
describe CE3 general ensemble architecture referring to the four main components depicted in Section 2.

3.1.1 External Finding Algorithms

CE3 includes eleven motif finders, namely: Aglam[13], AlignAce [14], BioProspector[15], MotifSampler, [4], MEME
[3],RSAT (oligo-analysis and pattern-assembly)[16], MDscan [17], Weeder[5], Improbizer[18], SPACE[19]
and SeSiMCMC[20]. CE3 allows the user to run any subset of the included finders.

3.1.2 Internal Motif Representation

The execution of the finders provides a set of putative motifs which CE3 internally “rebuilds” in a way that makes
it easy to perform a number of useful operations. In the current CE3 implementation, we use a refined version of
the TAMO MOTIFTOOLS package [21], that provides functions for motif creation (using either sets of sequences or
matrices) as well as methods for scanning sequences using PWMs. The TAMO framework is implemented in Python,
which makes the integration with CE3 very easy.

3.1.3 CE3 Learning Functions

At present, CE3 implements two new learning functions: a voting method (originally inspired by the MotifVoter
learning method) that is CE3 default choice, and a customizable clustering method. Moreover, CE3 contains a re-
implementation of the MotifVoter learning function. To date, learning functions implemented in other existing ensem-
bles are not included. This is mainly due to the fact that source code is not always available and/or full details are not
always given in papers, making re-implementation a hard task and one with the outcomes likely to be criticized. Even
when source code is available, it is not always trivial to isolate the learning method code inside the tool code.

The input to the learning functions is a set of motifs (given in CE3 internal representation) obtained as the union
of the motifs found by running each finder separately on input the set of sequences.

Voting Method Under the voting method, we rank the highest as putative binding sites those DNA stretches that
have been predicted by the largest number of different tools. The method consists of two main steps:

- Site Voting Procedure: Each motif predicted by a finder defines a set of “matches” (i.e., potential binding sites)
in the input sequences. We say that any two sites overlap if their starting positions are shifted by at most 4 bps.
Initially, each site gets at least one vote (by itself), and the vote count is incremented by the total number of
sites belonging to different motifs that overlap it. For each sequence, we only retain the first k most voted sites,
where k is the maximum number of putative TFBS per sequence requested by the user.

- Nucleotide Voting Procedure. For a given site X resulting from the Site Voting step described above, let
support(X) be the set of motif matches that contributed to X’s vote counter; also, let span(X) refer to the
sequence of bps covered by X’s support (i.e., the union, position-by-position, of the base pairs in support(X)).
To each nucleotide b in span(X), the Nucleotide Voting procedure assign a value that equals the number of sites
in support(X) that include b. If M is the maximum value assigned by this procedure, then the final putative
TFBS returned, corresponding to the original site X , is the sequence of consecutive bps in span(X) with value
greater than or equal to bM/2c+1. An example is given in Figures 3.

Customizable Clustering Method This learning method processes the motifs predicted by motif finders based on
the idea of motifs clustering, placing motifs (possibly predicted by different finders) that are similar enough in the
same cluster, and considering each cluster as a motif ensemble prediction. We allow the users to choose among several
clustering options, making this method highly customizable. In its basic implementation, CE3 selects the motif(s) to
be returned according to the following procedure in which, at each step, a few options are available to the user:

5

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE36 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 3: Nucleotide Voting procedure for a site X with span 456-471 and support including at least 4 sites. (a)
Number of votes received by nucleotides from position 456 to position 471. The maximum number of votes received
by nucleotides is M = 4. (b) Nucleotide votes scaled by bM/2c= 2 (only non negative votes are shown). The rectangle
highlights the putative TFBS returned.

1. Compute the similarities of each pair of motifs. Three methods are currently available:

(a) PWM similarity implemented using RSAT’s utility COMPARE-MATRICES [16];

(b) Site overlapping, computed as follows: given motifs M1 and M2, and input sequence set S , let N1(S) and
N2(S) denote the sets of nucleotides in S predicted by M1 and M2, respectively. Similarity is then defined
as

IS (M1,M2) =
|N1(S)∩N2(S)|

min{|N1(S)|, |N2(S)|}
Note that 0≤ IS (M1,M2)≤ 1 and that IS (M1,M2) = 1 if M1 ⊆M2 or M2 ⊆M1; i.e., M1 and M2 are highly
similar when the sites of one include those of the others.

(c) Use our re-implementation5 of a more recent PWM fuzzy integral similarity measure called FiSIM, intro-
duced in [22].

2. Compute motif clusters using the chosen similarity measure. Here again two options (i.e., clustering methods)
are available:

(a) single-linkage clustering, where at each step the closest clusters are merged, starting from singletons and
stopping when the maximum among the desired number of clusters and the number of connected compo-
nents is reached;

(b) single-linkage followed by a refinement based on the detection of a dense core within each cluster.

3. Discard the clusters that do not include motifs determined by at least two different finders, and rank the remain-
ing clusters according to one of the following measures:

(a) average pairwise similarity of cluster members,

(b) number of contributing finders to motifs in cluster,

(c) cluster cardinality.

4. For each cluster, determine the representative motif and the set of binding sites to be given as output. The user
has the possibility to select the representative motif as:

5Original code was apparently not available at the time of our CE3 implementation.

6

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE37 LEONCINI M, MONTANGERO M, PANUCIA K

(a) the one having largest intersection with the other motifs in the cluster;

(b) the one exhibiting the maximum similarity to all the other motifs in the cluster.

The set of output sites is given by the set of binding sites of the representative motif that (partially) overlap a site
of a motif in the same cluster predicted by a different tool (with respect to the one predicting the representative
motif).

MotiveVoter Learning Function We implemented MotifVoter learning function as described in details in [11].

3.1.4 Output Module

CE3 allows the user to choose the number of top scoring motifs to be returned. Given this number, the ensemble output
is a set of putative motifs, given as a set of binding sites or a set of PWMs (optionally supplemented with a text logos).
CE3 also provide optional output information (e.g., statistics).

3.2 CE3 Extensibility
The nice fact about CE3 is that, if the user does not like the choices we made in the standard configuration, s/he can
configure its own version of the ensemble. The user can intervene in the first and third components of the ensemble,
adding new finders and new learning functions in a semiautomatic way, by correctly filling in predefined XML con-
figuration file templates. Extensibility makes CE3 some kind of meta-ensemble that (properly configured) is able to
simulate the behavior of any existing ensemble. Moreover, the user is able to implement variations to existing ensem-
ble or create her/is own, exploiting her/is ideas. Last but not the least, CE3 will never become obsolete because of the
design of new (better performing) finders and/or learning functions, as these can be included in CE3 and keep it up to
date.

In the rest of this section we will explain architectural extensibility design and the procedures to extend CE3.

3.2.1 Motif Finder Inclusion

CE3 interacts with new external motif finders by means of a general wrapper, in order to reduce the implementation of
a dedicated interface to the completion of two XML configuration files. In this way, the addition of the new algorithm
is a much easier semi-automatic process guided by the system which does not require programming abilities.

This wrapper specializes to each external tool using the proper description provided in two predefined XML con-
figuration files, made to capture the necessary information to properly run such algorithms and to read their output. A
finders may be included if it satisfies the following (quite common) constraints:

1. The tool input must be a set of sequences stored as a FASTA file.

2. The tool must run as a command line utility under Unix/Linux operating systems.

3. The tool must produce the output (also) in textual form (to a file or standard output), with well identifiable
“blocks” describing the motifs.

4. The motifs must be described, in the output text, either as sets of sequences (the putative binding sites) or as
Position Weight/Frequency Matrices (often referred to as PWMs).

In general, the design of any wrapper interacting with external algorithms must include code for the sequential
execution of two key functions: (i) Tool running. The external command line tool must be run with the appropriate
parameters using its expected syntax. (ii) Output parsing: the tool’s output must be intercepted and parsed in order to
extract the information required and to build the internal motif representation. CE3 implements these two functions by
means of two XML configuration files templates instantiated by the user and interpreted by the wrapper. An example
is give in Figure 4.

7

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE38 LEONCINI M, MONTANGERO M, PANUCIA K

(i) Tool Running Each motif finder developed so far defines its own set of parameters and command line syntax.
In order to masquerade these diversities, we prepared a template XML configuration file, instances of which describe
the “syntax” required by specific finders. The XML files will then be read and interpreted by the wrapper in order to
synthesize syntactically correct command lines and launch the finders’ execution via standard operating system calls.

The tags defined in the XML configuration file correspond to the fundamental parameters that one can find in
virtually all the available finders. While an accurate choice of such parameters may greatly help in driving the finder
to discover biologically active sites, it is nonetheless true that many users perceive the task of parameter setting as
annoying (actually, they have been sometimes referred to as nuisance parameters [23]). Indeed, one of the possible
advantages of using ensembles consists precisely in changing the way a better accuracy of prediction can be possibly
achieved: from the “fine-grained” tuning of parameters as a function of the particular dataset, to a clever, but fixed
learning function that combines the results of many finders run on an essentially default set up.

The core parameters provided in our XML configuration files are listed below.

input file (in FASTA format), which is clearly mandatory;

motif length (or width) given either as a single value or as a pair of values (an interval);

background information, which can be given as the name of a supported organism, as a set of nucleotide frequencies,
or as a set of probe sequences;

topmotifs, namely the maximum number of motifs to ultimately report to the user, taken among the ones with highest
score;

strand to search for possible sites (positive, negative or both).

Each parameter listed above corresponds to a easily detectable tag in the XML file listed below. The only task left
to the final user is to associate the appropriate values to the right tags and attributes (such information should be easily
retrieved in the tool’s READ ME files).

XML configuration file template:

<tool executable_name="" change_dir="False">
<fasta param=""/>
<width param="" range="0" possible_values="1" values="" />
<background param="" gen_file="0" exec_command="" value="" function=""/>
<topmotifs param="" />
<seed param="" value="" />
<genome param="" value="" />
<strand param="" value="" />
<extra value="" />
<order value="" />

</tool>

Besides the five tags whose meaning has already been described, the file contains: the seed tag to provide seeds
to probabilistic methods (in order to guarantee the possibility of repeating experiments); the genome tag to specify the
genome from which the input sequences came from, if needed; the extra tag gives room for (optional) tool specific
parameters, which will be given as a single unstructured string to be inserted “as is” in the command line; the order
tag is used when the tool command line requires that the input parameters must be provided using a specific order.
The attribute change dir in the tool tag tells the ensemble to move (by means of the unix/linux cd command) to the
tool’s directory before execution.

8

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE39 LEONCINI M, MONTANGERO M, PANUCIA K

(ii) Output Parsing The output produced by different motif finder tools are clearly different from one another:
information provided, adopted format, error and log messages reported, etc., are usually all given according to a
format which is specific for the tool under consideration. Moreover, some tools write results to the standard output,
while others write to a file. In spite of these differences, it is usually easy to detect in the output listing a block of
information describing the candidate motifs. Such blocks of text are well delimited by easily detectable syntactic
markers (since the output is for a human to read). Basing on this feature, we use patterns and regular expression to
make it possible to locate the motif descriptions in the output results.

A predefined XML parse file (listed below) stores the information needed in the parsing phase. In order to fill in
one such file, the user must provide static information rather than working code in a suitable programming language.

XML parse file template:

<parse>
<motif_head> </motif_head>
<binding type="" space="" letters="" order="" start=""></binding>
<motif_end> </motif_end>
<output_file name="" extension="" dir=""> </output_file>
<score type="" key_score="None"> </score>

</parse>

The motif head (resp., motif end) tag stores the leading (resp., trailing) signature of the text block describing
one predicted motif. The binding tag captures the model used to represent the motif in the external tool output
(PWMs or list of binding sites). The output file is used when the output is printed to file. The score tag stores the
score of a specific motif.

Adding a New Finder Algorithm
The process of adding a new finder is now a relatively easy process, in which CE3 gathers information from the user
and performs the following actions:

1. Include the path to the home directory of the new tool in the CE3 path file.

2. Create the XML configuration file: identify the general parameters for the specific tool and associate the proper
parameters to the keywords defined in the XML configuration file.

3. Create the XML parse file: first produce (or otherwise gather) a sample output of the new tool. Check the
format with which the motifs are presented to the user. Isolate one such motif description and the “signatures”
that surround it, also detecting the variable parts. Use these information to fill in the predefined tags of the XML
parse file and to define (through a guided procedure) the regular expressions needed in it.

An example is given in Figure 4, where we show how to include the finding tool Bioprospector to CE3 by means
of the previous procedure and described XML files. The upper part of the figure shows the usage of the tool from
command line: parameters needed to fill the XML configuration file are highlighted and explained. Just below the
instantiated XML configured template file. The lower part of the figure shows a sample from Bioprospector output
listing: the outer (brown) rectangle highlights a text block describing one motif, with all the relevant information
needed to internally rebuild the motif itself. Just below, the instantiated XML parse file. Tags have been filled using
the proper information identified in the output listing. In particular: the motif head and motif end tags are associated
to the delimiters identified (a blank line delimiter is represented by the null tag value); the type attribute of the binding
tag tells that the motif is given as a matrix. The remaining attributes allow the correct matrix scanning: space is the
number of lines between the motif head and the beginning of the matrix; letters orient the sense in which the matrix
is supplied (each line represents one position of the motif); order gives the order in which letters a, c, g, t are
provided; start gives the offset of the first column of the matrix from line beginning. Finally, Patterns ‘I’, ‘F’ and
‘L’ represent regular expressions defined in CE3 to facilitate identification of variable values in the text block: ‘I’ is
used for integer values, ‘F’ for float values and ‘L’ for alphanumeric characters.

9

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE310 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 4: Example: Adding Bioprospector Tool in CE3. Top: Bioprospector usage (command line) and corresponding
XML configuration file. Bottom: Bioprospector output listing (sample) and corresponding XML parse file. The user
contribution is highlighted in blue.

10

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE311 LEONCINI M, MONTANGERO M, PANUCIA K

3.2.2 Module for Learning Function Inclusion

The extensibility of the ensemble concerns also the inclusion of new learning functions. CE3 contains a learning
function wrapper that handles the execution of learning functions and the addition of new ones. This module receives
as input the set of motifs predicted by the motif finders in the previous phase and runs one learning function among
those included in the ensemble (at the user choice).

The module assumes that each function included in the ensemble is stored in a dedicated directory (named after
the function) that contains:

• the function code; i.e., all files implementing the function written in any programming language. Obviously,
implementing the learning function might be a demanding task and clearly requires some programming skills,
but it is nevertheless mandatory if one wishes to add a completely new learning function. What we are discussing
here is the fact that, once the implementation is done, the inclusion in CE3 is quite an easy task. Observe,
however, that CE3 does not force the use of a specific programming language to implement a (new) learning
function.

• a Learning Function configuration XML file describing the function and its parameters:

<learning_function name="">
<description> </description>
<parameter name="" values="" id=""/>
</learning_function>

The tag learning function contains the name given to the learning function, while the tag description
stores a textual description. The tag parameter is used to describe parameters needed by the learning function
(for each parameter, one such tag should be added): the attribute name records the identification name of the
parameter; values stores the default parameter value; id is the parameter name that will be used by the learning
function.

• a Python interface with a predefined class and methods used to run the function:

class execLF:
def __init__(self):

self._motifs = []
self._seqs = []
self._params = {}

def exec_(self):
write invocation command

The Python interface template defines the class execLF containing three basic parameters: the list of motifs
(using the TAMO representation), the list of sequences given as input to the ensemble, and the list of param-
eters needed to invoke the learning function (these parameters will be derived by the module from the XML
configuration file). Function exec () is used to invoke the learning function.

Adding a New Learning Function The process of adding a new learning function, whose code is available (e.g.,
the source code or a compiled library) is now a relatively easy 4-step task.

1. Create a new folder, named after the new function, in a specific directory;

2. store all files corresponding to the new function in the new folder;

11

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE312 LEONCINI M, MONTANGERO M, PANUCIA K

3. create an instance (and store it in the new folder) of the Python interface template: write in function exec ()
the command line that invokes the new learning function;

4. create an instance (and store it in the new folder) of the XML Configuration file by specifying the name of the
learning function, its (textual) description and possibly define the extra parameters used for invocation.

4 Experiments
We performed a number of experiments using three different datasets. As already pointed out in the Introduction, we
had several goals in mind: first we tested CE3 against single motif finders, in order to understand if the very idea
of ensembles is worth being pursued; second, we tested CE3 against other (available) ensembles, looking for clear
evidence that extensibility can indeed be exploited to achieve more accurate results; third, we wished to possibly
find a standard set up for CE3 that would guarantee sufficiently accurate results across different datasets. The results
described in this section give strong enough indications to meet the first two objectives. On the other hand the third
goal seems much more difficult to achieve, as expected, although some general indications have emerged which made
it possible to define a first promising strategy for the CE3 configurations.

4.1 Experimental Settings
We run CE3 under many different configurations, by varying both the set (number and composition) of the underlying
finders and the various learning function options. We run the single finders that are included in CE3 using default
parameters and without performing any pre- or post-processing. This is clearly different from what was allowed in the
Tompa et al.’s assessment, which explains why some results are not consistent with those reported in [7].

We run ensembles for which code was available; in particular, we tested SCOPE [8] and MotifVoter [11]. We
could not retrieve two single motif finders that were originally included in MotifVoter, namely MITRA [24] and
AnneSpec [25], and this might be another reason why our results show some difference with those originally published
in [11]. On the other hand, by using our implementation of MotifVoter’s learning function, we were able to compare
CE3 and MotifVoter using also some finders not originally included in the latter, namely SeSiMCMC, RSAT and
Aglam.

We compared the results obtained using all the main statistics commonly used at nucleotide level, namely: Correla-
tion Coefficient (nCC), Sensitivity (nSn), Positive Predicted Values (nPPV), Performance Coefficient (nPC), computed
as in see [7]. All statistics range in the interval [0,1]: values close to zero are negative predictions, the closer to one
the better.

All experiments were performed on a Dual Core Pentium with 2.7GHz CPUs and 2GB RAM, running
Ubuntu/Linux OS.

4.2 Datasets
E. Coli Dataset This dataset has been created starting from 68 Escherichia Coli regulatory proteins [26]. Data
contain 34 files for each transcription factor and 390 verified bindings sites altogether. Each file includes at least 4 and
at most 49 binding sites, with an average of 11 binding sites per transcription factor. The binding site length range is
between 10 and 48 bps with a mean of 22 bps. Sequence lengths varies from 210 to 248 with a mean of 222 bps. Each
sequence of the dataset includes one instance of the corresponding motif.

TOMPA Dataset Tompa’s dataset files is the well known benchmark used in the assessment of the de-novo motif
finders [7]. It is considered a very hard benchmark, mainly because of the irregularities exhibited by the binding sites
of a same transcription factor, e.g., site lengths ranging from 5 bps to 27 bps. The benchmark is obtained from the
TRANSFAC database, where the final data come from a selection process described in [7]. The dataset contains 52
files with sequences from 4 different organisms: 6 from fly, 8 from yeast, 12 from mouse and 26 from human. Four
additional sequences are included with no planted binding sites. The number of sequences per dataset range from 1 to
35 with an average of 7 sequences; sequence lengths vary from 500 bps to 3000 bps.

12

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE314 LEONCINI M, MONTANGERO M, PANUCIA K

G7 Dataset The overall G7 dataset [27] is composed by 7 real datasets containing sequences from distinct organisms
and binding sites for the following transcription factors: CREB, MEF2, MYOD, SRF, TBP, ERE, CRP and E2F family.
The number of sequences per dataset varies from 17 to 95. The sequence length is 150 bps for the CRP dataset and
200 bps for the others. Motif widths range from 8 to 22 bps with an average of 10.38 bps. Data include 263 binding
sites with an average of 32 binding sites per dataset.

4.3 Results and Discussion
Figures 5, 6, 7, report statistics relative to the following experiments:

• predictions made by single motif finders running in their default configurations;

• predictions made by SCOPE in its default configuration;

• predictions made by CE3 and MotifVoter in their respective “best nCC performing” configurations13;

• predictions made by CE3 and MotifVoter using all eleven finders (in the case of MotifVoter, we use our re-
implementation).

We could not directly compare SCOPE with the other two ensembles by varying the number of finders, because
the former does not allow to select the tools to use. Simple finders and ensembles were asked to return only the top
scoring motif. We also performed the same experiments asking for the five top scoring motifs. Results are not reported
here because the overall picture that emerged was essentially the same.

From the analysis of the results we observe that ensembles in general obtain better accuracies on the combined
statistics (nCC and nPC). On only one dataset we observed a better behavior of a single finder (namely, Improbizier
on the G7 dataset). In fact, as expected, a single good result cannot but be degraded when combined with other results
of lower quality. But the point is that no easily computable criterion is known that guarantee the accuracy of motif
finders a priori, and indeed, essentially all the tools available to date return unsatisfactory results in the majority of
cases.

As for the ensembles, CE3 shows a moderate to important gain in performances over the competitors.
We are aware that the results presented are far from being conclusive. On different datasets the same collection

of finders (both single and ensemble) might produce results leading to radically different judgments. However, the
figures we have provided at least suggest that the ensembles have the capability of granting sensible improvements in
the state of the art of in-silico motif prediction.

Assuming this, a major problem is left open, which has to do with the correct set up of the ensemble for it to
produce at least “close to best possible” results. We stress that Figures 5-7 report the most accurate results among
those obtained by running CE3 (and MotifVoter as well) with possibly very different configurations; and clearly,
when the answer is not known a priori, it is impossible to tell which solution is the best. To make things even more
complicated, we observed large gaps between the best and the worst results obtained in any given dataset (see below
in this Section).

Single finders share the problem of parameter setting, of course, which is clearly magnified on ensembles, due to
the possible choices of component finders and learning function. As already pointed out in Section 4.1, we decided
in the first place to run the single motif finders under default configuration (and to rule out pre- and post-processing
steps), thus restricting the set up problem to the characterizing parameters of ensembles. The “instabilities” of the
observed results are thus only due to variations in the latter parameters, and must be mitigated to make ensembles (and
CE3 in particular) competitive against single finders.

We now briefly summarize some facts that emerged from the experiments described above and, as the result of
an in-depth analysis of these facts, in section 4.3.1 we will propose a strategy that might be useful, under certain
circumstances, to help the user select a good configuration for a particular dataset.

13The best performing configuration has been determined a posteriori, running the ensembles in all possibile configurations and selecting the one
resulting in the best nCC prediction

13

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE315 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 5: Experimental values of the statistics listed in Section 4.1 for the E.Coli dataset. The best nCC performing tool
configuration for MotifVoter (denoted with MV 4) is given by: MEME, MDScan, MotifSampler and Weeder. CE3 4
is the best nCC performing four tool performing. The best nCC performing tool configuration for CE3 (denoted with
CE3 6) is given by: MEME, Alignace, SPACE, RSAT, Motif Sampler, and Weeder. MV 6 is the best nCC performing
six tool configuration. MV 11∗ is our implementation of MotifVoter run with all eleven tools.

• No single blend of motif finders has been able to drive CE3 to acceptable quality results in all the considered
datasets, although some finders, among the most acknowledge ones in the literature, very often participate in the
best performing runs (notably, MEME and Weeder).

• The above observation in turn implies that ensembles adopting a “fixed” set of external finders are likely to fail
in the majority of datasets, unless very accurate fine tuning can be done at the level of the component finders
themselves.

• Running an ensemble with a large set of finders is almost never a winning strategy. Devising three to six good
component finders seems the right way to go. Figure 8 is representative of CE3 behavior when the number of
tools used in the prediction varies from two to eleven. Statistics are taken from the best performing solution
(meaning tool combination) varying the number of executed of tools. Performance values tend to increase up
to 6 (or 7) tools and then start decreasing. The already presented results (Figures 5-7) relative to ensembles
running with all the eleven available tools strengthens this hypothesis.

• The voting learning strategy performed better than the clustering strategy in the large majority of tests.

• Apparently, no single property or group of properties of a given dataset (e.g., site abundance) seems able to
characterize the quality of the results produced by a given configuration, not even properties that can be hardly
known in advance to a de-novo motif discovery software (say, average site length or degree of conservation).

• However, when considering similar datasets (i.e., data coming from close-by organisms; genes with similar
functionalities, possibly involving the same set of transcription factors) we observed that the best performing
configurations were almost identical or varied a little.

14

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE316 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 6: Experimental values of the statistics listed in Section 4.1 for the Tompa dataset. Sensitivity (not reported
for graph legibility) is smaller than 0.052 for all tools, with the exception of SCOPE (0.203) and MV 11∗ (0.534).
The best nCC performing tool configuration for MotifVoter (denoted with MV 4) is given by three configurations:
MEME, Alignace, MotifSampler and one of the following: MDscan, SPACE or Weeder. The best nCC performing
tool configuration for CE3 (denoted with CE3 4) is given by: MEME, Improbizer, RSAT and Weeder. MV 11∗ is our
implementation of MotifVoter run with all eleven tools.

• Having more than one tool with similar optimization criteria (e.g., Gibbs sampling) leads to very bad results
more often than not. Instead, the voting criterion seems more suitable to a blend of finders representative of all
the few good algorithmic strategies developed so far, which is another reason that supports the development of
extensible ensembles.

4.3.1 CE3 configuration

In this section we propose guidelines that, when applicable, can be used to establish a set of tools that is likely to
leverage CE3’s performance close to the best possible output (given the dataset and the overall set of external finders
available). As for the learning function, we always adopt the voting learning strategy, as suggested by one observation
above.

As pointed out in the previous section, we observed a certain degree of stability in the configurations that guar-
anteed good results across similar datasets, in particular those whose sequences came from the same organism and/or
shared a small set of transcription factors. Hence, as customary in learning-by-examples approaches, given a new
dataset (called test set), we collect information coming from biologically similar datasets (called training set), to de-
termine a stable CE3 configuration to be used to make predictions on all files (collections of sequences) forming the
test set.

More precisely, using the training set as input, we run CE3 by varying the number of tools from 4 to 6 (see again
one of the observations in the previous section) in all the possible ways. We compute the corresponding nCC values
and use the one giving the better score(s) to make predictions for the test set.

We evaluated this strategy on two datasets showing some degree of homogeneity: the E. Coli, which includes
sequences coming from the same organism, and the G7 dataset, which contains sequences sharing transcription factors

15

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE317 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 7: Experimental values of the statistics listed in Section 4.1 for the G7 dataset. The best nCC performing tool
configuration for MotifVoter (denoted with MV 3) is given by three configurations: MEME, SPACE and Weeder. The
best nCC performing tool configuration for CE3 (denoted with CE3 3) is given by: SeSiMCMC, SPACE and Weeder.
MV 11∗ is our implementation of MotifVoter run with all eleven tools.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

2 3 4 5 6 7 8 9 10 11
Number of tools

nCC nPC nPPV nSn

Figure 8: Correlation Coefficient (nCC), Performance Coefficient (nPC), Positive Predicted Values (nPPV) and Sen-
sitivity (nSn) values obtained by CE3 best configuration over the E. Coli dataset, when varying the number of tools.
The maximum nCC value is reached for six and seven tools.

16

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE318 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 9: The training strategy tested on the E. Coli dataset. nCC values are shown for 30 independent tests, with the number of
tools varying from four to six. Best is the nCC value obtained by the best performing configuration on the test set; Worst is the
nCC value obtained by the worst performing configuration on the test set; Prediction with Best Ensemble is the nCC value obtained
running CE3 on input the test set with the best performing ensemble configuration for the training set; Prediction with Best Singles
is the nCC value obtained running CE3 on input the test set with the n best performing single finders on the training set.

17

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE319 LEONCINI M, MONTANGERO M, PANUCIA K

from a small set of eight TFs but coming from different organisms.
By varying the number n of used tool from four to six, we repeated the following experiment K times.

1. randomly select m datasets and make them the test set;

2. let the remaining datasets form the training set;

3. for all possible combination of n tools, run CE3 on the training set, compute the nCC values, and determine the
configuration giving the best score;

4. use the best performing configuration to make prediction on the test set and compute the corresponding nCC
value.

The value of K (resp. m) is set to 30 (resp. 5) for the E. Coli dataset, while for the G7 dataset K (resp. m) is set to 5
(resp. 2), being the latter dataset much smaller than the former.

The results obtained are reported in Figures 9 and 10. We compared the nCC achieved by CE3 when run with the
configurations determined by the strategy outlined above, denoted as Prediction by Best Ensemble, with the following
values: Best/Worst, namely the best/worst nCC value obtained by CE3 on the test set when considering “all” the
possible sets of finders; Prediction with Best Singles, where CE3 has been run on input the test set, using the n best
performing single finders for the training set.

The first thing worth noticing is that the proposed training strategy gives results that are much closer to the best
prediction achievable by CE3 (in its default configuration and given a fixed number of finders) than to the worst one,
sometimes even the best itself. Second, the results are better when sequences come from the same organism (as in
the E. Coli dataset) than from different ones, meaning that the gap between prediction and best achievable solution is
smaller. Nevertheless, even when the training and test sets only have the same set of transcription factors in common
(as in the G7 dataset), results are still encouraging. On the contrary, the same experiment on the Tompa dataset gives
very bad results, probably due to the fact that sequences come from very different organisms and there is a large
heterogeneity in the transcription factors binding to the sequences (these are not well conserved and might vary a lot
in length).

A final observation has to do with the Prediction with Best Singles strategy. Actually, running CE3 with the com-
bination of 4-6 tools that alone performed best on the training set achieves fairly good results as well. These however,
are in general slightly worse than those returned by the strategy that makes prediction based on the best ensemble
combination. The general better accuracy granted by the latter might be balanced, depending on the applications and
the size of the dataset (and the number of available finders as well), with the much more cheap computational cost of
the former.

5 Conclusions and Further Work
In this paper we have presented a first prototype implementation of CE3, an ensemble tool for motif discovery whose
key quality is that of being extensible and tailorable with respect to the (third-party) motif finders used and the learning
strategies adopted: CE3 has the potential to simulate almost all the currently available ensembles and to “easily” allow
the user to create her/his ad-hoc ensemble, i.e., without starting from scratch.

Test showed that CE3 achieves interesting performances when compared to single finders and other ensemble
methods. Moreover, we devised and tested a training strategy to help the user define a configuration to use CE3 to
make prediction on new datasets.

Work in progress includes further investigations with new datasets and the construction of a Web application that
will also include a (customizable) implementation of the training strategy introduced in section 4.3.1. Future work
include the investigation of the possibility to integrate CE3 with some DNA analysis platforms.

Conflict of Interest
None declared

18

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE320 LEONCINI M, MONTANGERO M, PANUCIA K

Figure 10: The configuration strategy tested on the G7 dataset (legend is explained in text and in the caption of
Figure 9). nCC values are shown for 5 independent tests, with the number of tools varying from four to six.

Acknowledgments
None declared

References
[1] Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000;16(1):16–23.

[2] D’haeseleer P. What are DNA sequence motifs? Nature Biotech. 2006;24:423–425.

[3] Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs.
Nucleic Acids Research. 2006 July;34(Web-Server-Issue):369–373.

[4] Lipman DJ, Altschul SF, Kececioglu JD. A tool for multiple sequence alignment. In: Proceedings of National
Acadademy of Sciences. vol. 86. USA; 1989. p. 4412–4415.

[5] Pavesi G, Mauri G, Pesole G. An algorithm for finding signals of unknown length in DNA sequences. Bioinfor-
matics. 2001;17(1):207–214.

[6] Das MK, Dai HK. A survey of dna motif finding algorithms. BMC Bioinformatics. 2007;8.

[7] Tompa M, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nature
Biotech. 2005;23(1):137–144.

[8] Chakravarty A, Carlson JM, Khetani RS, Gross RH. A novel ensemble learning method for de novo computa-
tional identification of DNA binding sites. BMC Bioinformatics. 2007;8.

19

POWER AND LIMITATIONS OF ENSEMBLE MOTIFS USING CE321 LEONCINI M, MONTANGERO M, PANUCIA K

[9] Hu J, Yang YD, Kihara D. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences.
BMC Bioinformatics. 2006;7.

[10] Huber BR, Bulyk ML. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene
expression data. BMC Bioinformatics. 2006;7.

[11] Wijaya E, Yiu SM, Son NT, Kanagasabai R, Sung WK. MotifVoter: a novel ensemble method for fine-grained
integration of generic motif finders. BIOINFORMATICS. 2008;24(20):2288–2295.

[12] Zambelli F, Pesole G, Pavesi G. Motif discovery and transcription factor binding sites before and after the
next-generation sequencing era. Brief in Bioinf. 2012;14:225–237.

[13] Kim N, Tharakaraman K, Mario-Ramrez L, , Spouge JL. Finding sequence motifs with Bayesian models in-
corporating positional information: an application to transcription factor binding sites. BMC Bioinformatics.
2008;9.

[14] Hughes JD, et al. Computational identification of Cis-regulatory elements associated with groups of functionally
related genes in Saccharomyces cerevisiae. J Mol Biol. 2000;296(5):1205–1214.

[15] Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of
co-expressed genes. In: Proceedings of the 7th Pacific Symposium of Biocomputing (PSB); 2001. p. 127–138.

[16] Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, et al. RSAT 2011:
regulatory sequence analysis tools. Nucleic Acids Research. 2011;39(suppl 2):W86–W91.

[17] Liu XS, Brutlag DL, Liu JS. An algorithm for finding protein-DNA binding sites with applications to chromatin-
immunoprecipitation microarray experiments. Nat Biotechnol. 2002;8(20).

[18] Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE. Environmentally induced forgut remodelling by PHA-4/FoxA
and DAF-12/NHR. Science (New York, NY). 2004;305(5691):1743–1746.

[19] Edward Wijaya SMY Kanagasabai Rajaraman, Sung WK. Detection of Generic Spaced Motifs Using Submotif
Pattern Mining. Bioinformatics. 2007;23:1476–1485.

[20] Favorov A, Gelfand M, Gerasimova A, Ravcheev D, Mironov A, Makeev V. A Gibbs sampler for identification
of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics.
2005 May;21(10):2240–2245.

[21] Gordon DB, Nekludova L, McCallum S, Fraenkel E. TAMO: a flexible, object-oriented framework for analyzing
transcriptional regulation using DNA-sequence motifs. Bioinformatics. 2005;21(14):3164–3165.

[22] Garcia F, Lopez FJ, Cano C, Blanco A. FiSIM: A new similarity measure between transcription factor binding
sites based on the fuzzy integral. BMC Bioinformatics. 2009;10.

[23] Hu J, Li B, Kihara D. Limitations and potentials of current motif discovery algorithms. Nucleic Acid Res.
2005;33:4899–4913.

[24] Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioinformatics. 2002;18:354–
363.

[25] Workman CT, Stormo GD. ANN-Spec: a method for discovering transcription factor binding sites with improved
specificity. Pac Symp Biocomput. 2000;5:467–478.

[26] Osada R, Zaslavsky E, Singh M. Comparative analysis of methods for representing and searching for transcrip-
tion factor binding sites. Bioinformatics. 2004;20(18):3516–3525.

[27] Wei Z, Jensen ST. GAME: detecting cis-regulatory elements using a genetic algorithm. Bioinformatics. 2006
Jul;22(13):1577–1584.

20

