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Abstract

The present study was designed to demonstrate the potential of an optimized histology directed 

protein identification combined with imaging mass spectrometry technology to reveal and identify 

molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized 

and non-mineralized areas were compared within the same dermal tissue obtained from a patient 

affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at 

specific sites of soft connective tissues. Data have been technically validated on a contralateral 

dermal tissue from the same subject and compared with those from control healthy skin. Results 

demonstrate that this approach 1) significantly reduces the effects generated by techniques that, 

disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, 

abolishing differences due to inter-individual variability, mineralized and non-mineralized areas 

within the same sample have a specific protein profile and have a different distribution of 

molecules; 3) avoiding the bias of focusing on already known molecules, reveals a number of 

proteins that have been never related to the disease nor to the calcification process, thus paving the 

way for the selection of new molecules to be validated as pathogenic or as potential 

pharmacological targets.
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1. Introduction

Calcium and phosphate deposition in soft connective tissues occurs in a number of genetic 

diseases, in metabolic disorders, such as uremia, hyperparathyroidism and diabetes, or 

secondary to inflammation or atherosclerosis. Numerous proteins have been identified to be 

involved in bone calcification as well as in ectopic mineralization, suggesting that an active 

and dynamic balance of pro-calcifying and anti-calcifying mechanisms take place in both 

physiological and pathological calcification [1]. Nevertheless it is still unclear whether 

calcification affects particular matrix components in specific organs/tissues, whereas other 

areas remain unaffected and which molecules/pathways could be targeted for 

pharmacological approaches. To address these questions, investigations performed so far 

have looked at the specific expression/localization of already known proteins [2] or have 

used cell lines and tissue extracts to pick up unknown gene/proteins by means of “omic” 

techniques [3-5]. However, the major difficulty of these techniques is the ability to analyse a 

large number of proteins without losing the morphology and the tissue architecture and, 

even more importantly, to discriminate which proteins belong to normal or to pathologic 

areas. Therefore, in this study, on-tissue analyses were carried out by Matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI MS) (profiling and imaging) [6-7] as a 

consolidated tool for the analysis of biological and clinical tissue samples [8-12]. This 

approach has several advantages: i) endogenous (locally synthesised by cells) as well as 

exogenous (derived from the blood stream) molecules can be analysed directly from the 

tissue in their native environment, without homogenization, thus preserving spatial 

relationship of molecules within a specimen; ii) it does not require the use of antibodies; iii) 

it can map the expression of hundreds of proteins from a single (8 μm thick) tissue section.

However, MALDI MS, although leading to the detection of a large number of peptides and 

small proteins (up to 25 kDa), cannot be currently utilized for larger proteins (exceeding 25 

kDa). In order to detect also proteins larger than 25 kDa, we have applied a histology-

directed mass spectrometry protein identification [13] using hydrogel discs as carriers for 

the enzyme, thus allowing the digestion to take place directly on discrete tissue areas 

preserving the relationship between molecular information and tissue architecture.

As the technology advances, the application of MALDI MS as well as of miniaturized 

hydrogel devices for histology directed on-tissue protein digestion in the clinic will continue 

to expand, enabling to play a central role in the diagnosis and prognosis of diseases and in 

the evaluation of patient's therapy.

Therefore, we have combined this MS-based technology in order to investigate skin biopsies 

from a patient affected by Pseudoxanthoma elasticum, a rare genetic disorder characterized 

by a progressive calcification occurring in specific areas of soft connective tissues, whereas 

other regions remain unaffected [14]. Proteomic analyses were performed on mineralized 
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and non-mineralized areas of the same biopsy, and data compared with those from a control 

healthy tissue.

2. Material and Methods

2.1 Tissue specimen collection

Patient was a woman 46 years old affected by Pseudoxanthoma elasticum (PXE). The 

disease was clinically diagnosed at the age of 15 years by the presence of typical dermal 

alterations (Fig. 1a) and by ocular angioid streaks. Biomolecular analyses confirmed the 

clinical diagnosis of PXE revealing two causative missense mutations in the ABCC6 gene: 

one on exon 12 (c.1553G>A, p.Arg518Gln) and the other on exon 24 (c.3389C>T, 

p.Thr1130Met).

Control tissue was obtained from a woman 47 years old undergoing elective cosmetic 

surgical procedures. No connective tissue alterations were present, nor any clinically 

relevant condition.

Consent was obtained to use these specimens for research purposes in accordance with the 

Declaration of Helsinki protocol.

After surgery, skin samples were immediately placed in fixatives for morphological analyses 

or frozen in liquid nitrogen and stored at -80°C until ready for processing and preparation 

for mass spectrometry analysis.

2.2 Light and electron microscopy

For the demonstration of calcified elastic fibres, skin specimens (approximately 1cm3) were 

routinely fixed in 10% (v/v) formalin in water, dehydrated and embedded in paraffin. Five to 

seven micron thick sections were collected on glass slides and processed for the von Kossa 

stain. Briefly, sections were deparaffinized and hydrated, stained for approximately hour 

with 5% (w/v) silver nitrate in water under a UV-lamp, rinsed with water, immersed for 5 

minutes in 5% (w/v) thiosulfate in water and finally observed with a Zeiss Axiophot light 

Microscope (Jena, Germany).

For ultrastructural observations, specimens were cut in 1mm3 fragments and routinely fixed 

in 2.5% (v/v) glutaraldehyde (Agar Scientific, Stansted, UK) in Tyrode's buffer pH 7.2 (135 

mM NaCl, 2.8 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 12 mM NaHCO3, 0.4 mM NaH2PO4, 

5.5 mM Glucose), postfixed in 1% (v/v) osmium tetroxide (Agar Scientific) in Tyrode's 

buffer, dehydrated and embedded in Spurr resin (Agar Scientific). Ultrathin sections 

(approximately 70-80nm) were stained with uranyl acetate and lead citrate and observed 

with a TEM Jeol 2010 (Jeol, Tokyo, Japan)

2.3 MS-based techniques: the strategy

A workflow of the analytical approach and technologies we have combined in this study is 

presented in Fig. 2.
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A typical experimental design for MALDI MS protein analysis is made of 3 steps: sample 

preparation, data acquisition (profiling and imaging) and data processing.

In the profiling experiment, the laser beam irradiates each sample spot and ion signals from 

hundreds of consecutive shots are averaged across the droplet surface generating a mass 

spectrum. Protein patterns from a discrete number of spots or areas can be compared 

allowing the analysis of molecules within their native environment.

For imaging analyses (MALDI IMS), spectra are recorded for each x,y coordinate into the 

mass range 2.5-30 kDa and finally plotted in 2-dimensions for ion density map construction 

(for each m/z value). Hundreds of protein-specific ion density maps correlated with tissue 

architecture can be generated. Each pixel (spectrum) contains many proteins and 

endogenous peptides that are individually displayed as a function of their position and 

relative intensity within the tissue. Spectra from different regions of interest (i.e papillary, 

reticular and mineralized dermis) can be used for statistical analysis.

In a parallel experiment a histology-directed on-tissue protein digestion approach has been 

applied. Briefly, on-tissue protein digestion was performed using hydrogel discs (1 mm in 

diameter embedded with trypsin solution) placed on the regions of interest of cryosectioned 

samples. After digestion, discs were first manually removed from the tissue surface, then 

properly treated (solvent extracted) and used for LC-MS/MS analysis followed by database 

search for protein identification.

2.4 Tissue preparation, fixation and contaminant removal

We have recently optimized techniques for IMS analysis of human skin and have used only 

minor modifications of our published procedures [15, 16]. Fresh frozen human skin blocks 

(approximately 1cm3) were sectioned at 8 μm using a cryostat (CM 3050 S, Leica 

Microsystems GmbH, Wetzlar, Germany) set at -22 °C.

For MS analysis, serial cryosections were collected, mounted on ITO conductive glass slides 

(Delta Technologies, Stillwater, MN) and allowed to dry at room temperature for 3 min 

prior to matrix deposition. Each conductive slide was rinsed with a Carnoy's (60 mL of 

ethanol, 30 mL of chloroform, and 10 mL of acetic acid) washing protocol [17] in order to 

remove interfering species such as salts and lipids [18,19].

For histological orientation, serial cryosections were mounted on glass microscope slides 

(Fisher Scientific, Pittsburgh, PA) and stained with haematoxylin-eosin and alizarin red, 

respectively. Briefly, for haematoxylin-eosin staining slides were placed in 95% ethanol 

(v/v) 30 sec, purified water 30 sec, haematoxylin 120 sec, water 15 sec, 70% ethanol (v/v) 

15 sec, 95% ethanol (v/v) 15 sec, eosin 60 sec, 95% ethanol (v/v) 15 sec, 100% ethanol (v/v) 

15 sec, xylenes 120 sec. Calcium deposition was evaluated by alizarin red staining. Sections 

were washed at room temperature as follow: xylene (30 sec), 90% ethanol (v/v) (30 sec), 70 

% ethanol (v/v) (30 sec), purified water (30 sec), Alizarin red (100 μL, 30 sec), acetone (15 

sec), acetone/xylene (1:1, v/v, 30 sec) and finally xylene (3×30 sec).
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2.5 MALDI-MS

A crucial step in MALDI MS analyses is represented by the choice of matrix type and of 

matrix deposition mode (e.g., droplet for profiling by MALDI MS and thin homogenous 

matrix layer for imaging MALDI MS). Most of matrices are specific to a mass range or 

family of compounds, moreover, each matrix type has specific ionization property and this 

determines differences in the MS spectrum.

Sinapinic acid, for instance, is the matrix of choice for large proteins, whereas α-cyano-4-

hydroxy-cinnamic acid (CHCA) is the preferred matrix for peptide mapping.

All MS analyses were performed by an AutoflexSpeed MALDI TOF spectrometer (Bruker 

Daltonics, Billerica, MA, USA), equipped with a linear TOF (time-of-flight) analyser, 

operating in positive polarity, accumulating 500 laser shots per position in the case of the 

IMS experiment, and 1000 shots per matrix spot in the case of the profiling experiment, at 

1000 Hz laser frequency over the m/z range of 2,500-30,000 Da. The laser intensity was 

adjusted before each experiment to yield optimal results. Images were acquired at 50 μm 

rastering (spatial resolution). Data acquisition, pre-processing (baseline subtraction of each 

mass spectrum) and data visualization/process verification were performed using the Flex 

software suite (FlexControl 3.0, FlexAnalysis 3.0, FlexImaging 3.0) from Bruker Daltonics. 

Prior to generation of ion density maps, spectra were normalized to the total ion current 

(TIC) in order to minimize spectrum-to-spectrum differences in peak intensity.

2.5.1 Tissue profiling by MALDI MS—A robotic acoustic droplet ejection system was 

used for matrix deposition (Portrait 630 reagent multi-spotter, Labcyte, Sunnyvale, CA) 

[20]. On a 8 μm-cryosection mounted on ITO conductive glass slide, 2 different areas of 

interest, papillary and reticular dermis (calcified and non calcified), were targeted for 

repeated deposition of matrix made of Sinapinic acid (20 mg/mL) in 1:1 acetonitrile/

trifluoroacetic-acid (Sigma Aldrich, St. Louis, MO, USA) at 0.1% (v/v) aq.) that was 

deposited over a series of 6 iterations at 10 droplets (120nL) per iteration. After completion 

of matrix deposition, slides were immediately returned to vacuum desiccation at room 

temperature until MS analysis the same day (figure 2).

2.5.2 Tissue imaging by MALDI IMS—For imaging mass spectrometry, 8 μm-

cryosections mounted on ITO conductive glass slide were coated of a homogenous thin layer 

of matrix using a sublimation device (Chemglass Life Science, Vineland, NJ, USA). 

Sublimation of sinapinic acid (300 mg) was carried out at 145° C, at a pressure of 45 mTorr 

and, after 15 minutes, coating became uniform. The aim of this procedure was to allow the 

mass spectrometer to acquire spectra with a spatial resolution higher than that is possible by 

an array of evenly spaced spots. Finally, tissue sections were quickly rehydrated at 85° C for 

3 min to allow matrix recrystallization.

2.6 Protein identification by LC-MS/MS

Tissue proteins were first digested following an histology-directed in situ digestion method 

using hydrogel discs for trypsin deposition onto the specific tissue regions of interest (e.g.: 

dermis, mineralized dermis) [21]. Digestion was performed at 50°C for 4 hours. Hydrogels 
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(1 mm diameter) were re-hydrated for 15 mins using 20 μL of 1 μg/mL trypsin (in 100 mM 

ammonium bicarbonate) and then placed over the tissue region of interest (skin mineralized 

dermis, adjacent dermis) onto the whole tissue surface guided by the histological features on 

corresponding serial H&E stained tissue section. The tissue sections were incubated in a 

oven at 50 °C for 4 hours to allow protein digestion. Each hydrogel disc was removed from 

the tissue section and placed in separate eppendorf tubes. Peptides imbibed into the 

microwell hydrogels were extracted by organic (50% acetonitrile/5% formic acid) and 

aqueous (100 mM ammonium bicarbonate) solvents, a process that was repeated three times. 

The supernatant collected from each extraction were combined and dried in a centrifugal 

vacuum concentrator (SPD Speedvac, Thermo Scientific, Waltham, MA, USA). The 

reconstituted extracts (20 μL, 0.1% (v/v) formic acid) were stored at -20°C until LC-MS/MS 

analysis was performed.

The reconstituted extracts were analysed by a 70 minutes data dependent LC-MS/MS 

analysis as already described [13]. Thus, MS/MS spectra were searched via SEQUEST 

against a human database (UniprotKB – reference proteome set) that also contained a 

reversed version for each of the entries [22] (figure 2). The criteria used to accept protein 

identification included the extent of sequence coverage, the number of matched peptides 

(almost 3 peptides/protein) and a probabilistic score at p < 0.05 equivalent to 95% 

confidence. All protein identifications underwent false discovery rate (FDR) that measures 

the expected proportion of false positives among the statistically significant findings. The 

FDR cutoff was set at 0% for all proteins in Scaffold (Proteome Software).

2.7 Statistical analysis

Multiple spectra (N=400) per region of interest (papillary dermis, mineralized dermis, 

reticula dermis) were selected from the IMS data. Comparisons of different cutaneous 

regions of interest were conducted using principal component analysis (PCA) to generate 

classification models based on protein profiles patterns. In order to understand how the 

molecular microenvironment within the mineralized dermis itself can influence adjacent 

areas, PCA was performed comparing the mineralized dermis with the adjacent dermis and 

also with the normal dermis from healthy subject. Protein spectra from the MALDI IMS 

sequences were compared. PCA were performed because this is a statistical method 

commonly used to reduce the dimensionality of a multivariate data set to lower dimensions 

while retaining most of the information by displaying and ranking its variance within a data 

set. The PCA transforms the original coordinate system (peaks) into the new coordinate 

system (PC). The new coordinates are called principal components or PCs; so, the first PC 

(PC1) points in the direction of the highest variance, while the second PC (PC2) points in 

the direction of the second highest variance. This statistical tool was used to generate 

classification models based on protein profile patterns. These data were used to confirm the 

existence of two disparate sub-regions within the dermis in pseudoxanthoma elasticum 

disorder affected subjects. The same statistical analysis was carried out for the papillary and 

reticular dermis from a healthy subject. Statistical analyses were carried out using 

ClinProTools software from Bruker (Bruker Daltonics, Billerica, MA, USA).
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2.8 Functional analysis

To discover the Gene Ontology (GO) categories with significantly enriched protein 

numbers, the MS identified proteins were processed by the DAVID (Database for 

Annotation, Visualization and Integrated Discovery) bioinformatics resource v. 6.7, freely 

available at http://david.abcc.ncifcrf.gov. The significance of “protein”-term enrichment was 

assured by a modified Fisher's exact test with a p value <0.01. The protein list was also 

functionally evaluated applying the UniProtKB/Gene Ontology/Biological Process data 

processing (http://www.uniprot.org/).

The list of gene IDs of the differentially expressed spots identified were used to perform 

functional analysis with DAVID 6.7. The list of gene IDs was loaded into the online tool 

(http://david.abcc.ncifcrf.gov/) clicking on Functional annotation clustering and selecting 

gene ID as identifier and gene list as list type. After submission of the list, functional 

classification was performed on the basis of Gene Ontology.

2.9 STRING 9.1 Network Analysis

Possible connections among identified proteins were analyzed by a protein and gene 

network software. For each protein, UniProtKB entry numbers and related gene names were 

acquired in UniProtKB and used for network generation by the use of STRING 9.1 (http://

www.string-db.org/) [23,24]. The UniProtKB entry numbers were inserted into the input 

form as “multiple proteins” and “Homo sapiens” was selected as the reference organism.

3. Results

3.1 Assessment of calcified areas

Morphological analyses of PXE skin confirm the typical accumulation of deformed calcified 

elastic fibres in the middle reticular dermis, as assessed by von Kossa staining on paraffin 

embedded tissue (Fig. 1B) and by ultrastructural observations (Fig. 1C). As clearly shown in 

figure 1C calcified elastic fibres are characterized by enlarged and tortuous shape with 

irregular contour due to the progressive deposition of mineral precipitates starting from the 

elastin core. Only few small normal areas of amorphous elastin are visible at the periphery 

of the fibres.

3.2. MALDI Mass Spectrometry and Imaging Mass Spectrometry

MALDI MS protein profiling shows, within the same PXE specimen, a number of m/z ions 

with differences in peak's relative intensity and distribution depending on the areas 

considered (Fig. 3A).

To further implement these data, IMS analyses (Fig. 3C), integrated with histological 

observations (Fig. 3B), were carried out on control and PXE cryosectioned samples at the 

spatial resolution of 50 μm. Haematoxylin-eosin and alizarin red staining were used to 

visualize tissue morphology and calcified areas, respectively (Fig. 3B). PXE data have been 

technically validated on sections from the contralateral axilla of the same patient (Figs. 3B, 

C). MS and histology data must be combined in order to produce structural and molecular 

information and to create molecular 2D maps. The distribution and the relative expression of 
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hundreds of m/z ions, within morphologically different tissue regions, were displayed. For 

example, calgizzarin (ion at m/z 11651) is mainly distributed close to the epidermis without 

differences between control and PXE specimens. In the case of thymosin beta-4 (TYB-4) 

(m/z 4965), this protein is density mapped in the papillary dermis adjacent to the 

mineralized region in both PXE samples, whereas it is localized within the whole dermis in 

controls, as previously described in normal healthy skin [15]. By contrast, the cleaved form 

of TYB-4 (m/z 4748) is always present in the papillary dermis, whereas it is absent in the 

control reticular dermis and in the mineralized regions. Other ions, as m/z 3183 and 3406, 

appear primarily localized within the mineralized reticular dermis compared to control skin, 

whereas others, as m/z 3429, are similarly distributed in the superficial layer of control and 

PXE skin, or are barely expressed as in the case of m/z 15874 (Fig. 3C). These data indicate 

that a differential protein mapping may characterize PXE samples compared to healthy skin.

In order to highlight similarities and differences among ion patterns, MALDI mass spectra 

recorded from different control and PXE dermal regions were compared by principal 

component statistical analysis (PCA). When the resulting plot is coloured based on the tissue 

region, it appears that control skin molecules from the papillary and the reticular dermis are 

largely intermingled and no sample grouping is clearly evident (Fig. 4A).

By contrast, PCA plots show that, in PXE, proteins from the mineralized skin can be 

grouped in a region clearly separated from those derived either from the papillary (Fig. 4B) 

or the reticular non-mineralized dermis (Fig. 4C). Only a few proteins were clearly 

identified, most being characterized on the basis of their presence within a mass range of 

3-25 kDa.

3.3 Histology-directed identification of proteins from mineralized and non-mineralized 
tissue regions

The term “histology-directed” describes the use of histology combined with MS techniques, 

conducted directly on serial and consecutive tissue sections, for the evaluation of proteome 

changes affecting a specific tissue region. By histology it is possible to investigate the 

morphology of the tissue and to distinguish pathologic from adjacent, presumably healthy, 

areas. For protein identification we have selected tissue regions according to the histology 

and then we have placed hydrogel discs (microwell reactors containing trypsin) within non-

mineralized and mineralized areas of the same PXE specimen.

All identified proteins (acronym, full name and SwissProt accession number) are listed in 

Table 1 and divided according to their presence in mineralized or in non-mineralized regions 

or in both areas. Additional details on mass spectrometry data are provided in 

Supplementary Table S1.

3.4 Gene ontology (GO) classification of identified proteins

Fig. 5A shows that out of 242 proteins, 78 (32%) have been identified in the nonmineralized 

tissue, 147 (61%) in both mineralized and non-mineralized dermis and 17 (7%) in the 

calcified area. Moreover, considering the nonexclusive localization criteria used in GO, 

proteins can appear in several annotation terms within the GO categories (i.e. biological 

process, molecular function and cellular component).
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According to their contribution to one or to more biological processes, identified proteins 

appear mainly involved in cellular processes, cellular component organization and 

biogenesis, multicellular organismal processes and in the response to stimulus (Fig. 5B and 

Supplemental Table S2). As far as their molecular functions, most of the identified proteins 

exhibit binding and structural molecular activity (Fig. 5C and Supplementary Table S3).

Finally, on the basis of their localization, 78 proteins were in the extracellular region and 

166 in organelle structures (Fig. 5D and Supplementary Table S4).

Despite their different distribution and functional properties, the great majority of the 

identified proteins are actually related one to the other, as clearly highlighted by the results 

of the analysis performed using the STRING software. In Fig. 6 the predicted protein-

protein interaction (PPI) networks are shown based on evidence (Fig. 6A) and actions (Fig. 

6B), respectively. In the evidence and in the action PPI, the type of evidence characterizing 

the protein-protein association and the mode of action of proteins are described by lines of 

different colour.

4. Discussion

Ectopic calcification is a pathologic mineralization process of soft connective tissues 

associated to a number of genetic as well as acquired disorders frequently responsible for 

age-related clinical complications [25].

Within this context, Pseudoxanthoma elasticum, due to ABCC6 gene mutations, is 

characterized by progressive calcification affecting, through only partially known 

mechanisms, specific areas of soft connective tissues, as skin, blood vessels and the Bruch's 

membrane in the eye [14]. Abnormal expression of inhibitors of calcification as matrix-Gla-

protein, pyrophosphate, fetuin-A [3,26-28] have been related to the disease, however it is 

still unclear why, within each tissue, there are areas of mineralization together with 

uncalcified regions. It has been suggested that unknown factors within soft connective 

tissues may allow or counteract the deposition of mineral hydroxyapatite crystals at specific 

sites [29].

PXE represents the perfect model to test the relevance of the combined approach of MALDI 

MS (profiling and imaging) together with histology-driven MS protein identification to 

improve the characterization of the diseased tissue and to investigate a large number of 

proteins on a single tissue section. This aspect is crucial in the case of reduced sample 

availability and represents a significant improvement compared to other techniques 

requiring to separately analyse larger amount of tissue by histology, immunohistochemistry 

and/or proteomics. Moreover, this approach avoids the bias of focusing on already known 

molecules or to evaluate proteins without a precise separation between affected 

(mineralized) and unaffected (non-mineralized) areas within the same tissue specimen.

In particular, with respect to tissue architecture and morphology, IMS can produce spatially 

resolved mass spectrometric data that can be combined with histological observations. In 

addition, with a single measurement, IMS allows the direct analysis of molecules/peptides’ 

localisation and of their relative intensity within the tissue. A different protein distribution 
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between PXE and control skin, as well as between different regions within the same 

specimen has been demonstrated, avoiding differences due to individual variability. One of 

the most striking variation between PXE skin samples and control specimens is the peculiar 

localization of TYB-4 in the PXE papillary dermis, whereas protein expression is barely 

detectable in the mineralized reticular dermis. TYB-4 exerts a protective role on ROS-

mediated damages in many cell types, including fibroblasts [30]. The observation that its 

expression is negligible in the calcified dermis may indicate that the mineralized tissue is 

more susceptible to oxidative stress. Consistently, chronic perturbances of redox balance 

have been demonstrated in vivo and in vitro in PXE [31,32], as well as in other conditions 

related to ectopic calcification [33,34]. Moreover, PCA plots clearly show that the 

mineralized dermis is characterized by a peculiar proteomic profile. IMS measures 

molecules by their mass. Although this is sufficient for smaller analytes, such as lipids or 

peptides that can be directly identified on the tissue itself, molecules with molecular weights 

larger then 25 kDa cannot be identified as easily [35].

To tackle this problem, we have therefore enzymatically treated the tissue in order to cleave 

proteins into peptides that can be readily ionized, detected and subsequently identified. In 

particular, we have used a histology directed in situ digestion method using hydrogel discs 

for the enzyme deposition onto the specific tissue region of interest (Fig. 2) [21]. The 

presence/absence of proteins from the analysed samples depends on the enzyme used for the 

digestion and on the technique applied for the extraction. In our work we have used only 

trypsin, without adding any reduction and alkylation agent. Therefore, the number of 

proteins cleaved, as well as the type of proteins identified, is a consequence of this choice. 

Moreover, we have applied very stringent parameters during the process of protein 

identification. This approach may limit the number of listed proteins, although increasing 

the reliability of the identification of detected proteins and therefore a comparative analysis 

was done in the same experimental conditions on different areas of the same sample. 

Trypsin digestion allowed to reveal hundreds of proteins involved in many biological 

processes or belonging to cellular and extracellular components, however, we have preferred 

to list only 242 proteins resulting from the high stringent conditions used in the 

identification process (confidence for analyte identification >95% and FDR set at 0%).

The presence of cellular and metabolic proteins common to all tissue regions indicate that 

cells are spread within the tissue, independently from the presence of calcification, as 

previously demonstrated by morphological observations showing numerous fibroblasts 

closed to mineralized elastic fibres [36]. Interestingly, it has to be underlined that 78 and 17 

proteins appear characteristic of the non-calcified and of the mineralized dermis, 

respectively. Since the enzyme used for digestion and the stringency of the parameters 

applied for databases searching, affect the number of identified proteins, possibly because of 

the experimental conditions used, some proteins already known to be involved in the 

calcification process (i.e. alkaline phosphatase, ectonucleotide pyrophosphatase/

phosphodiesterase 1) were not detected, whereas others were clearly identified.

For instance, carbonic anhydrase (CA2) is specifically associated to the non-mineralized 

region, whereas it is absent from areas of ectopic calcification. Interestingly, CA2 loss of 

function has been actually related to osteopetrosis and to arterial and cerebral calcification 
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[37]. Although the clinical phenotype in PXE is not so severe as that described in patients 

affected by osteopetrosis, never the less it could be suggested that CA2 may be involved in a 

complex network of factors promoting or inhibiting mineral precipitates through changes in 

the local environment [38].

In the calcified dermis we have demonstrated the presence of molecules as ApoE, an 

apolipoprotein that, besides its role in lipid metabolism, is considered a “pathologic 

chaperone” [39] promoting the accumulation of insoluble proteins within the extracellular 

compartment. In agreement with this finding, insoluble aggregates of fibrillar and 

amorphous proteins have been described in association to calcified elastic fibres within the 

PXE dermis [29]. Elastic structures interact with several matrix components, including 

minor collagens [40]. To be noted that in the present study, alpha 1, 2 and 3 chains of 

collagen type VI have been identified in both mineralized and non-mineralized regions, 

whereas a newly discovered alpha 6 chain of collagen type VI, whose biological role is still 

under investigation, appears unexpectedly associated to the calcified dermis. It has been 

proposed that the alpha 6 chain could represent alternatively spliced variants leading to 

abnormal collagen microfibrillar structures possibly related to elastin-associated components 

[41,42]. If these changes represent markers of extracellular matrix alterations, thus favouring 

mineral deposition, it has been never explored and may be worth of additional investigation 

on a larger number of specimens/subjects.

All data are technically reproducible since the same results were obtained from the 

contralateral skin sample and therefore support the rationale to further look at specific 

molecules/pathways. Moreover, as the technology advances, the analysis of fresh frozen 

tissue at higher spatial resolution provides new possibilities to investigate tissue morphology 

at a molecular level using small amount of tissue, a requirement extremely important in the 

case of reduced sample availability.

Finally, the application of MALDI MS (profiling and imaging) as well as of the miniaturized 

hydrogel devices for histology directed on-tissue protein digestion allow us to expand the 

use of these approaches to the clinic, paving the way for the selection of new molecules to 

be validated as pathogenic or as potential pharmacological target.

In conclusion, although validating the pathogenic role of specific molecules was not purpose 

of the present study, these data, for the first time, demonstrate the significance of these 

technical approaches for studying ectopic calcification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ectopic calcification is investigated by a new emerging technical approach

• MALDI-MS distinguishes calcified from non calcified areas in the same sample

• Mineralized and non-mineralized areas have a different protein profile

• Proteins never related to the calcification process have been identified

Taverna et al. Page 15

Bone. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Clinical phenotype and morphological features observed in PXE. (A-C) Skin laxity (A) is 

associated to the presence of extended areas of calcification in the reticular dermis as shown 

after von Kossa staining (B). By ultrastructural analyses (C) it appears that mineral deposits 

(arrows) are present within elastic fibres, thus altering their typical amorphous structure 

(asterisk).

Taverna et al. Page 16

Bone. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Scheme of the approach for the analysis of ectopic calcification associated proteins by 

MALDI MS/IMS and histology-directed on-tissue digestion and protein ID.
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Fig. 3. 
Protein analysis by MALDI MS. (A) Protein profiles were obtained by MALDI MS from 

papillary (blue trace), mineralized (red trace) and non-mineralized reticular dermis (green 

trace) in PXE skin. A close inspection of these profiles revealed that, some signals were 

common to all 3 areas, whereas others were peculiar of a specific region. (B) Optical images 

of tissue sections after haematoxylin-eosin or Alizarin red staining. (C) Seven representative 

density maps were constructed on the basis of IMS data from a 8 μm thick sagittal section of 

control healthy and PXE dermis. Protein signals are depicted as colour images with red 

representing the highest relative intensity for each m/z value.
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Fig. 4. 
Principal component analysis (PCA) of spectra from papillary and reticular dermis. (A) In 

control skin, protein distribution does not show a clear distinction between papillary (blue) 

and reticular (green) dermis. (B-C) In PXE, spectra from the mineralized area (red) are 

distinctly separated from those obtained from the papillary (blue) and the nonmineralized 

reticular (green) dermis.
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Fig. 5. 
GO analysis of proteins identified by histology-directed MS. (A) Venn diagram showing 

that 147 proteins were found in both the mineralized and the non-mineralized areas, while 

17 proteins were uniquely identified within the mineralized dermis and 78 proteins were 

identified only in the region adjacent to the calcified area. By DAVID it is possible to define 

GO biological processes (B), molecular functions (C) and cell components (d) for 242 

identified proteins (See also Table S2-4 supplemental material).
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Fig 6. 
Predicted protein-protein interaction networks (PPI) created by STRING 9.1. (A) Evidence 

PPI in which the line colour represents the types of evidence characterizing the protein-

protein association. (B) Actions PPI in which the different line colour represents the mode of 

protein actions. Each circle indicates an individual protein with the recognized abbreviated 

name.
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Table 1

List of proteins identified by histology-directed MS

Short name Protein name Accession No. Short name Protein name Accession No.

Proteins identified in the mineralized dermis

A2AP Alpha-2-antiplasmin P08697 HEP2 Heparin cofactor 2 P05546

AEBP1 Adipocyte enhancer-binding protein 1 Q8IUX7 MYPR Myelin proteolipid protein P60201

APOE Apolipoprotein E P02649 PCOC1 Procollagen C-endopeptidase enhancer 1 Q15113

C1QC Complement C1q subcomponent subunit C P02747 PEDF Pigment epithelium-derived factor P36955

CAPG Macrophage-capping protein P40121 RL4 60S ribosomal protein L4 P36578

CFAI Complement factor I P05156 SPP24 Secreted phosphoprotein 24 Q13103

CO6A6 Collagen alpha-6(VI) chain A6NMZ7 SRPX Sushi repeat-containing protein SRPX P78539

FILA Filaggrin P20930 THRB Prothrombin P00734

H7C2N1 Prothymosin alpha (Fragment) H7C2N1

Proteins identified in the non-mineralized dermis

AATM Aspartate aminotransferase, mitochondrial P00505 IMMT Mitochondrial inner membrane protein Q16891

ACON Aconitate hydratase, mitochondrial Q99798 K1C18 Keratin 18 P05783

ACOT2 Acyl-coenzyme A thioesterase 2, 
mitochondrial

P49753 K22E epidermal cytokeratin 2 P35908

ACSL1 Long-chain-fatty-acid--CoA ligase 1 P33121 K2C1B keratin 1B Q7Z794

ADH1B Alcohol dehydrogenase 1B P00325 K2C7 keratin 7 P08729

AK1C2 Aldo-keto reductase family 1 member C2 P52895 K2C8 keratin 8, type II cytoskeletal P05787

AL9A1 4-trimethylaminobutyraldehyde dehydrogenase P49189 KAD3 GTP:AMP phosphotransferase, mitochondrial Q9UIJ7

ALDH2 Aldehyde dehydrogenase, mitochondrial P05091 KAP3 cAMP-dependent protein kinase type II-beta 
regulatory subunit

P31323

ANXA3 Annexin A3 P12429 LAMA4 Laminin subunit alpha-4 Q16363

ANXA4 Annexin A4 P09525 LAMB2 Laminin subunit beta-2 P55268

ANXA7 Annexin A7 P20073 LAMC1 Laminin subunit gamma-1 P11047

AOC3 Membrane primary amine oxidase Q16853 LDHB L-lactate dehydrogenase B chain P07195

AT2B4 Plasma membrane calcium-transporting 
ATPase 4

P23634 LIPS Hormone-sensitive lipase Q05469

ATPO ATP synthase subunit O, mitochondrial P48047 MARCS Myristoylated alanine-rich C-kinase substrate P29966

BLVRB Flavin reductase (NADPH) P30043 MDHC Malate dehydrogenase, cytoplasmic P40925

CAH1 Carbonic anhydrase 1 P00915 MYL6 Myosin light polypeptide 6 P60660

CALR Calreticulin P27797 NCALD Neurocalcin-delta P61601

CD44 CD44 antigen P16070 NUCL Nucleolin P19338

DECR 2,4-dienoyl-CoA reductase, mitochondrial Q16698 PEBP1 Phosphatidylethanolamine-binding protein 1 P30086

EF2 Elongation factor 2 P13639 PHB Prohibitin P35232

EFTU Elongation factor Tu, mitochondrial P49411 PIP Prolactin-inducible protein P12273

Short name Protein name Accession No. Short name Protein name Accession No.

ESYT1 Extended synaptotagmin-1 Q9BSJ8 PLIN1 Perilipin-1 O60240

F213A Redox-regulatory protein FAM213A Q9BRX8 PLIN4 Perilipin-4 Q96Q06

FABP4 Fatty acid-binding protein, adipocyte P15090 PRDBP Protein kinase C delta-binding 
protein

Q969G5

Bone. Author manuscript; available in PMC 2016 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Taverna et al. Page 23

Short name Protein name Accession No. Short name Protein name Accession No.

FAS Fatty acid synthase P49327 PRDX3 Thioredoxin-dependent peroxide 
reductase, mitochondrial

P30048

FBN1 Fibrillin-1 P35555 RAB5C Ras-related protein Rab-5C P51148

FLNB Filamin-B O75369 RAP1B Ras-related protein Rap-1b P61224

G6PI Glucose-6-phosphate isomerase P06744 RBY1B RNA-binding motif protein, Y 
chromosome, family 1 member B

A6NDE4

GNAS2 Guanine nucleotide-binding protein 
G(s) subunit alpha isoforms short

P63092 RL13 60S ribosomal protein L13 P26373

GPDA Glycerol-3-phosphate 
dehydrogenase [NAD(+)], 
cytoplasmic

P21695 S12A2 Solute carrier family 12 member 2 P55011

GRP75 Stress-70 protein, mitochondrial P38646 SDPR Serum deprivation-response protein O95810

HBD Hemoglobin subunit delta P02042 SEPT7 Septin-7 Q16181

HMGB1 High mobility group protein B1 P09429 SPB6 Serpin B6 P35237

HNRH1 Heterogeneous nuclear 
ribonucleoprotein H

P31943 SRBS1 Sorbin and SH3 domain-containing 
protein 1

Q9BX66

HP183 Heterochromatin protein 1-binding 
protein 3

Q5SSJ5 TCP4 Activated RNA polymerase II 
transcriptional coactivator p15

P53999

HYEP Epoxide hydrolase 1 P07099 TENS1 Tensin-1 Q9HBL0

IDHP Isocitrate dehydrogenase [NADP], 
mitochondrial

P48735 TKT Transketolase P29401

IGHG3 Ig gamma-3 chain C region P01860 UBA1 Ubiquitin-like modifier-activating 
enzyme 1

P22314

ILF2 Interleukin enhancer-binding factor 
2

Q12905 XRCC6 X-ray repair cross-complementing 
protein 6

P12956

Proteins identified in mineralized and non-mineralized dermis (common)

1433B 14-3-3 protein beta/alpha P31946 HS90A Heat shock protein HSP 90-alpha P07900

1433E 14-3-3 protein epsilon P62258 HSP71 Heat shock 70 kDa protein 1A/1B P08107

A1AG1 Alpha-1-acid glycoprotein 1 P02763 HSP7C Heat shock cognate 71 kDa protein P11142

A1AT Alpha-1-antitrypsin P01009 HSPB1 Heat shock protein beta-1 P04792

A2BHY4 Complement component C4B A2BHY4 HTTP Haptoglobin P00738

A2MG Alpha-2-macroglobulin P01023 IC1 Plasma protease C1 inhibitor P05155

AACT Alpha-1-antichymotrypsin P01011 IGHA1 Ig alpha-1 chain C region P01876

ACTB Actin, cytoplasmic 1 P60709 IGHG1 Ig gamma-1 chain C region P01857

ACTC Actin, alpha cardiac muscle 1 P68032 IGHG2 Ig gamma-2 chain C region P01859

ACTN1 Alpha-actinin-1 P12814 IQGA1 Ras GTPase-activating-like protein 
IQGAP1

P46940

ACTN4 Alpha-actinin-4 O43707 ITIH1 Inter-alpha-trypsin inhibitor heavy 
chain H1

P19827

AHNK Neuroblast differentiation-associated 
protein AHNAK

Q09666 K1C10 Keratin 10 P13645

ALBU Serum albumin P02768 K1C14 Keratin 14 P02533

ANT3 Antithrombin-III P01008 K1C19 Keratin 19 P08727

ANXA1 Annexin A1 P04083 K1C9 Keratin 9 P35527

ANXA2 Annexin A2 P07355 K2C1 Keratin 1 P04264

ANXA5 Annexin A5 P08758 K2C5 Keratin 5 P13647

Short name Protein name Accession No. Short name Protein name Accession No.

ANXA6 Annexin A6 P08133 K2C6A Keratin 6A P02538
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Short name Protein name Accession No. Short name Protein name Accession No.

APOA1 Apolipoprotein A-I P02647 KCD12 BTB/POZ domain-containing protein 
KCTD12

Q96CX2

ARF3 ADP-ribosylation factor 3 P61204 KPYM Pyruvate kinase isozymes M1/M2 P14618

ARPC4 Actin-related protein 2/3 complex 
subunit 4

P59998 LAC2 Ig lambda-2 chain C regions P0CG05

ASPN Asporin Q9BXN1 LDHA L-lactate dehydrogenase A chain P00338

ATPA ATP synthase subunit alpha, 
mitochondrial

P25705 LMNA Prelamin-A/C P02545

ATPB ATP synthase subunit beta, 
mitochondrial

P06576 LUM Lumican P51884

BGH3 Transforming growth factor-beta-
induced protein ig-h3

Q15582 MDHM Malate dehydrogenase, mitochondrial P40926

CALD1 Caldesmon Q05682 MIME Mimecan P20774

CALM Calmodulin P62158 MOES Moesin P26038

CAP1 Adenylyl cyclase-associated protein 1 Q01518 MYH9 Myosin-9 P35579

CAV1 Caveolin-1 Q03135 MYO1C Unconventional myosin-Ic O00159

CFAH Complement factor H P08603 PDIA1 Protein disulfide-isomerase P07237

CLH1 Clathrin heavy chain 1 Q00610 PDIA3 Protein disulfide-isomerase A3 P30101

CLUS Clusterin P10909 PEPL Periplakin O60437

CO1A1 Collagen alpha-1 (I) chain P02452 PGK1 Phosphoglycerate kinase 1 P00558

CO1A2 Collagen alpha-2(I) chain P08123 PGS1 Biglycan P21810

CO3 Complement C3 P01024 PGS2 Decorin P07585

CO3A1 Collagen alpha-1(III) chain P02461 PLEC Plectin Q15149

CO4A2 Collagen alpha-2(IV) chain P08572 PLSL Plastin-2 P13796

CO4A4 Collagen alpha-4(IV) chain P53420 POSTN Periostin Q15063

CO6A1 Collagen alpha-1(VI) chain P12109 PPIA Peptidyl-prolyl cis-trans isomerase A P62937

CO6A2 Collagen alpha-2(VI) chain P12110 PPIB Peptidyl-prolyl cis-trans isomerase B P23284

CO9 Complement component C9 P02748 PRDX1 Peroxiredoxin-1 Q06830

COEA1 Collagen alpha-1(XIV) chain Q05707 PRDX2 Peroxiredoxin-2 P32119

DPYL2 Dihydropyrimidinase-related protein 2 Q16555 PRELP Prolargin P51888

DPYL3 Dihydropyrimidinase-related protein 3 Q14195 PROF1 Profilin-1 P07737

E9PCV6 Collagen alpha-3(VI) chain E9PCV6 PTMS Parathymosin P20962

ECHA Trifunctional enzyme subunit alpha, 
mitochondrial

P40939 PTRF Polymerase I and transcript release 
factor

Q6NZI2

EF1A1 Elongation factor 1-alpha 1 P68104 Q5TCU3 Tropomyosin 2 (Beta) Q5TCU3

ELN Elastin P15502 Q5VU59 Tropomyosin 3 Q5VU59

ENOA Alpha-enolase P06733 Q6ZN4A Tropomyosin 1 (Alpha), isoform 
CRA_f

Q6ZN40

ENPL Endoplasmin P14625 RAB7A Ras-related protein Rab-7a P51149

F13A Coagulation factor XIII A chain P00488 RLA0 60S acidic ribosomal protein P0 P05388

F5GWP8 Junction plakoglobin F5GWP8 RLA2 60S acidic ribosomal protein P2 P05387

FIBA Fibrinogen alpha chain P02671 ROA2 Heterogeneous nuclear 
ribonucleoproteins A2/B1

P22626

FIBB Fibrinogen beta chain P02675 RS4X 40S ribosomal protein S4, X isoform P62701

Short name Protein name Accession No. Short name Protein name Accession No.

FIBG Fibrinogen gamma chain P02679 RS9 40S ribosomal protein S9 P46781
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Short name Protein name Accession No. Short name Protein name Accession No.

FINC Fibronectin P02751 SERPH Serpin H1 P50454

FLNA Filamin-A P21333 SH3L3 SH3 domain-binding 
glutamic acid-rich-like 
protein 3

Q9H299

G3P Glyceraldehyde-3-phosphate dehydrogenase P04406 SODE Extracellular superoxide 
dismutase [Cu-Zn]

P08294

GDIB Rab GDP dissociation inhibitor beta P50395 SPTB2 Spectrin beta chain, non-
erythrocytic 1

Q01082

GELS Gelsolin P06396 SPTN1 Spectrin alpha chain, non-
erythrocytic 1

Q13813

GLU2B Glucosidase 2 subunit beta P14314 TAGL Transgelin Q01995

GRP78 78 kDa glucose-regulated protein P11021 TBA1B Tubulin alpha-1B chain P68363

GSTP1 Glutathione S-transferase P P09211 TBA4A Tubulin alpha-4A chain P68366

H10 Histone H1.0 P07305 TBB4B Tubulin beta-4B chain P68371

H12 Histone H1.2 P16403 TBB5 Tubulin beta chain P07437

H2A1B Histone H2A type 1-B/E P04908 TENX Tenascin-X P22105

H2B1K Histone H2B type 1-K O60814 TERA Transitional endoplasmic 
reticulum ATPase

P55072

H32 Histone H3.2 Q71DI3 TLN1 Talin-1 Q9Y490

H4 Histone H4 P62805 TPIS Triosephosphate isomerase P60174

HBA Hemoglobin subunit alpha P69905 TRFE Serotransferrin P02787

HBB Hemoglobin subunit beta P68871 VAPA Vesicle-associated 
membrane protein-
associated protein A

Q9P0L0

HEMO Hemopexin P02790 VIME Vimentin P08670

HNRPD Heterogeneous nuclear ribonucleoprotein D0 Q14103 VINC Vinculin P18206

HNRPK Heterogeneous nuclear ribonucleoprotein K P61978
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