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Abstract
Colorectal cancer is a major cause of cancer-related 
death in many countries. Colorectal carcinogenesis is 
a stepwise process which, from normal mucosa leads 
to malignancy. Many factors have been shown to influ-
ence this process, however, at present, several points 
remain obscure. In recent years some hypotheses have 
been considered on the mechanisms involved in cancer 
development, expecially in its early stages. Tissue in-
jury resulting from infectious, mechanical, or chemical 
agents may elicit a chronic immune response result-
ing in cellular proliferation and regeneration. Chronic 
inflammation of the large bowel (as in inflammatory 
bowel diseases), has been associated with the subse-
quent development of colorectal cancer. In this review 
we examine the inflammatory pathways involved in the 
early steps of carcinogenesis, with particular emphasis 
on colorectal. Firstly, we describe cells and proteins re-
cently suggested as central in the mechanism leading 
to tumor development. Macrophages and neutrophils 

are among the cells mostly involved in these processes 
and proteins, as cyclooxygenases and resolvins, are 
crucial in these inflammatory pathways. Indeed, the 
activation of these pathways establishes an oxidative 
and anaerobic microenvironment with DNA damage 
to epithelial cells, and shifting from an aerobic to an 
anaerobic metabolism. Many cellular mechanisms, such 
as proliferation, apoptosis, and autophagy are altered 
causing failure to control normal mucosa repair and 
renewal.
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Core tip: This paper examines the most important in-
flammatory pathways involved in the very early steps 
of colorectal carcinogenesis. In particular, it emphasizes 
the role played by cells of the immune system and key 
proteins, like cyclooxygenases, resistins, hypoxia-in-
ducible factor 1, nuclear factor E2-related factor 2, and 
sirtuins, in fostering changes in mechanisms, like cell 
proliferation, DNA damage, apoptosis and autophagy, 
anaerobial metabolism and tissue remodeling, consid-
ered central for colorectal cancer development. 
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INTRODUCTION
Colorectal cancer is still a major health concern. In recent 
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years new hypotheses have been considered on the mech-
anisms involved in the early stages of  colorectal carcino-
genesis. Among them, it has been postulated that inflam-
mation, and in general colorectal mucosa injury caused by 
several environmental agents, can play an important role. 
Indeed, tissue injury resulting from infectious, mechani-
cal, or chemical agents may elicit a chronic immune re-
sponse resulting in cellular proliferation and regeneration. 
If  the immune response fails to resolve injury, a microen-
vironment rich in cytokines, growth factors, and products 
of  cellular respiration substaines a prolonged prolifera-
tion in attempt to repair, resulting in the accumulation of  
genetic errors and continued inappropriate proliferation. 
Evidence supports a role for inflammatory responses in 
the development of  colorectal cancer. Chronic inflam-
mation of  the large bowel [as in inflammatory bowel 
diseases (IBD)], has been associated with the subsequent 
development of  colorectal cancer.

Here we examine the inflammatory pathways in-
volved in the early steps of  carcinogenesis, with particu-
lar emphasis on colorectal. Firstly, we describe cells and 
proteins recently suggested as central in the mechanism 
leading to tumor development. A second chapter is tar-
geted to the description of  the tumor microenvironment 
and its oxidative and anaerobic metabolism. Finally, the 
role of  inflammation in colorectal tissue remodelling is 
discussed.

INFLAMMATORY CELLS AND PROTEINS
Macrophages
Macrophages (Mfs) represent 10%-20% of  all mononu-
clear cells found in the intestinal lamina propria making 
the intestine the largest reservoir of  Mfs in humans.

Type Ⅰ macrophages (M1) (classical activated) as 
cells able to produce large amounts of  proinflammatory 
cytokines, are implicated in the mechanism of  killing 
pathogens and tumor cells by secreting agents such as 
tumor necrosis factor α (TNF-α), interleukin (IL)-12, re-
active nitrogen (iNOS), and oxygen intermediates (ROS). 
In contrast, Type Ⅱ macrophages (M2) (alternative acti-
vated), generated by various signals which include IL-4, 
IL-13, IL-10, and glucocorticoid hormones, moderate the 
inflammatory response, eliminate cell wastes, promote 
angiogenesis and tissue remodeling, and release cytokines, 
including IL-10[1-4]. 

Macrophages in tumors, usually termed tumor-
associated macrophages (TAMs), play important roles in 
determining the clinical outcome, and often express the 
M2 phenotype. M1 macrophages are often abundant in 
chronic inflammatory sites, and where tumors are initi-
ated and start to develop. Moreover, it is possible that 
the macrophages switch to an M2-like phenotype as the 
tumor begins to invade, vascularize, and develop [5,6].

IL-23 is produced by macrophages within a few 
hours after the activation. This, in turn, triggers rapid 
IL-17 responses from tissue-resident macrophages. IL-17 
promotes the production of  IL-1, IL-6, IL-8, CXC lig-

and 1 and TNF-α in stromal, epithelial and endothelial 
cells, and also in a subset of  monocytes. Together, these 
proinflammatory cytokines rapidly recruit neutrophils 
to the site of  infection. Neutrophils normally traffic to 
peripheral tissues, where they are phagocytosed by Mfs 
after transmigration and apoptosis. Apoptotic cell phago-
cytosis might downregulate IL-23 secretion and then 
curb IL-17 and granulocyte colony stimulating factor (G-
CSF) production and eventually granulopoiesis. If  this 
processes were interrupted, tissue Mfs would continue 
to express IL-23. This could drive IL-17 expression and 
increase neutrophils retrieval in peripheral tissues[7-9]. 

The production of  arginase has been associated with 
M2 type macrophages. The switch from (nitric oxide) NO 
production to induction of  arginase in these “alterna-
tively activated” cells up-regulates polyamine and proline 
biosynthesis, that can stimulate cell replication, collagen 
deposition, and tissue repair[10,11]. Some in vivo evidences 
indicate that an exacerbated local M1 macrophage-like 
inflammation favors oxidative microenvironment, while 
M2 macrophage-like inflammation substains progressive 
tumor growth[12-14] (Figure 1). 

Immune cells are known to express specific recogni-
tion molecules for cell surface glycans, such as galectins, 
sialic acid binding Ig-like lectins (siglecs), and selectins. 
Some carbohydrate determinants are preferentially ex-
pressed in nonmalignant epithelial cells, whereas other 
determinants are expressed in association with cancers. 
The carbohydrate determinants associated with cancers, 
such as sialyl Lewis-A or sialyl Lewis-X, are clinically 
used as tumor markers. Most siglecs are known to inhibit 
excess activation of  immune cells. It is noteworthy that 
only the glycans that are expressed in normal epithelial 
cells serve as ligands for siglec-7 and -9, whereas cancer-
associated glycans do not. Their expression is lost at the 
early stage of  colon carcinogenesis as a result of  epige-
netic silencing of  glycol-genes involved in their synthesis. 
The majority of  immune cells expressing siglec-7 and -9 
in normal colonic mucosa are macrophages/monocytes. 
The ligation of  siglec-7 and -9 suppresses lipopolysaccha-
ride (LPS) induced cyclooxygenases (COX)-2 and PGE2 
production. These results suggest that normal glycans of  
colonic epithelial cells exert a suppressive effect on tissue 
macrophage COX2 expression in colonic mucosa, thus 
maintaining immunological homeostasis in normal muco-
sal membranes. These results also imply that the cancer-
associated impaired glycosylation of  siglec-7 and -9 
ligands serves to enhance COX2 production by mucosal 
macrophages[15-18]. 

Neutrophils
Neutrophils (polymorphonuclear cells, PMN) have a 
well-established role in the first line of  defence against 
microbial pathogens but, because of  their short life and 
fully differentiated phenotype, their role in cancer-related 
inflammation has long been considered negligible.

Upon encountering inflammatory signals, neutrophils 
change their responsiveness to allow directed migration 
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and enhancement of  microbicidal capacity. Neutrophil 
life-span is influenced during inflammation to enhance 
their anti-microbial action. Activated PMN are able to 
produce and release pro-inflammatory mediators, such as 
IL-1, IL-8, and macrophage inflammatory protein (MIP)-
1s. PMN synthesize and store within cytoplasmic gran-
ules large quantities of  serine proteinases (e.g., neutrophil 
elastase), enzymes, including myeloperoxidase (MPO) and 
lysozyme, and ROS. The most abundant granule enzyme 
is MPO, which forms cytotoxic hypochlorous acid (HOCl) 
from the reaction of  chloride anion with hydrogen per-
oxide produced after the respiratory burst[19,20]. 

In addition, cytokines IL-23 and IL-17 activate the 
inflammatory program of  PMN by inducing the syn-
thesis and the release of  MPO and metalloproteinases 
{neutrophil collagenase [matrix metalloproteinases 
(MMP)-8], gelatinase B (MMP-9)} contributing, like ser-

ine proteinases, to tissue destruction through their pro-
teolytic activity.

Once their physiological function has been performed 
in the tissues, neutrophils change their phenotype from a 
pro-inflammatory state, where they produce and release 
pro-inflammatory mediators such as LTB4 and PAF, to 
a more anti-inflammatory pro-resolution state whereby 
they release products (e.g., lipoxins) that can influence the 
resolution phase of  inflammation[8,9,21,22]. 

The resolution of  inflammation therefore relies on 
the effective “switching off ’ of  the neutrophil, the pro-
motion of  apoptosis and the successful recognition and 
uptake of  cells by phagocytes such as macrophages. The 
apoptotic neutrophils stimulate macrophages into a pro-
resolution phenotype, reducing the inappropriate inflam-
matory response further. In the intestine, the process of  
PMN apoptosis can be delayed or accelerated by a num-
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Figure 1  Inflammatory cells and proteins in the early phases of colorectal carcinogenesis. A: Inflammation and necrosis lead to monocytes recruitment and 
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12-LOX metabolites promote cancer cell prolifera-
tion, metastasis, and angiogenesis, whereas 15-LOX 
metabolites seem to be protective against inflammation 
and carcinogenesis. 15-LOX is important for the resolu-
tion of  inflammation and for the terminal differentiation 
of  normal cells. 15-LOX enzymes are usually preferen-
tially expressed in normal tissues and benign lesions, but 
not in carcinoma of  the colon. In contrast, 5-LOX and 
12-LOX are generally absent in normal epithelia, but 
they can be induced by pro-inflammatory stimuli, and 
are often constitutively expressed in various epithelial 
cancers including colonic ones. A strong correlation be-
tween 5-LOX expression and increased polyp size, high-
er tumor grade and histological epithelial localisation has 
been reported, and a 5-LOX overexpression has been 
seen in adenomatous colonic polyps and cancer com-
pared to normal mucosa. This data support a role for 
5-LOX in the early stages of  colon cancer[38-41]. Signaling 
pathways leading to PGE2 and PGD2 in turn actively 
induce the formation of  lipoxin (LX) A4 and lipoxin B4, 
which stop further recruitment of  neutrophils and stim-
ulate non-phlogistic monocyte infiltration. Both PGE2 
and/or PGD2 switch eicosanoid biosynthesis from pre-
dominantly “proinflammatory” LTB4 to “antiinflamma-
tory” LXA4 production. Specific lipoxins and the related 
members of  the resolvin and protectin families provide 
potent signals that selectively stop neutrophil and eosi-
nophil infiltration; stimulate non-phlogistic recruitment 
of  monocytes (that is, without elaborating pro-inflam-
matory mediators); promote the uptake and clearance 
of  apoptotic cells and microorganisms by macrophages; 
increase the exit of  phagocytes from the inflamed site 
through the lymphatics; and stimulate the expression 
of  molecules involved in antimicrobial defence. LXA4 
treatment exerts anti-inflammatory responses in immune 
cells, reducing bowel inflammation via NF-κB and de-
creasing the damage caused to the intestinal epithelium, 
and some studies have shown that LXA4 analogs at-
tenuated chemically induced colitis in rodents. Resolvin 
E1 (RvE1) reduces PMN transendothelial migration, 
superoxide generation and release, and attenuate colonic 
mucosal inflammation in vivo, probably by inhibiting 
phosphorylation of  NF-κB and decreasing the levels 
of  pro-inflammatory mediators. The resolvins have also 
recently been found to influence neutrophil apoptosis 
by suppressing MPO-induced survival mechanisms with 
improved resolution of  inflammation[42-44]. 

Therefore, it has been hypothesized that the balance 
struck by linoleic and arachidonic acid metabolisms in 
the LOX pathway activity shifts from the antitumorigenic 
15-LOX-1 and 15-LOX-2 pathways to the protumorigen-
ic 5-LOX and 12-LOX pathways during tumorigenesis[45] 
(Figure 1). 

Recently a role for the acyl-CoA synthetase 4 (ACSL4) 
in this shift has been reported. ACSL4 is an enzyme that 
esterifies arachidonic acid (AA) into arachidonoyl-CoA. 
It is poorly expressed in the gastrointestinal tract, but its 
expression is increased in colon cancer. It has been re-

ber of  factors. Several host-derived cytokines, including 
IL-1, IL-8, and granulocyte-macrophage colony stimulat-
ing factor (GM-CSF), inhibit PMN apoptosis. There is 
now evidence that suggests MPO can act as a paracrine 
signalling molecule, promoting neutrophil survival. By 
contrast, the cytokines IL-10 and TNF-α and the prod-
ucts of  respiratory burst, can induce apoptosis[23-26]. 

Under a persistent inflammation, this regulatory 
mechanism can be compromised. Indeed, it has been 
demonstrated that a low level of  persistent inflammation 
in normal colorectal mucosa does exist in patients with 
colorectal cancer or adenomas[27]. Neutrophils continually 
accumulate within the intestinal mucosa and apoptotic 
neutrophils that are not eliminated by macrophages un-
dergo secondary necrosis and release the contents of  in-
tracellular granules, which can induce pathological tissue 
damage[28,29] (Figure 1). 

COX and resolvins
Lipid mediators such as eicosanoids, which are derived 
from the arachidonic acid, are among the earliest signals 
released in response to injury or an inflammatory stimu-
lus. Two families of  enzymes, namely, the cyclooxygen-
ases (COX-1 and COX-2) and the lipoxygenases [5-li-
poxygenase (5-LOX), 12-LOX, and 15-LOX], metabolize 
arachidonic acid to form lipid autacoids[30]. 

The 5-LOX pathway is closely related to chronic 
inflammation and carcinogenesis. Evidence suggests 
a potential role of  5-LOX products in early stages of  
colorectal carcinogenesis. 5-LOX is highly expressed 
in neutrophils and monocytes and is upregulated upon 
stimulation with IL-4 and IL-13. During cell activation, 
arachidonic acid released from membrane phospholip-
ids is converted by 5-LOX in leukotriene B4 (LTB4) or 
LTC4. Two types of  receptors, LTB4 receptor 1 (BLT1) 
and receptor 2 (BLT2) are known, and BLT1 is mainly 
involved in inflammatory responses. Overproduction of  
LTB4 in human colon cancer tissue and LTB4-mediated 
proliferation of  colon cancer cells were reported. It has 
also been demonstrated a strong expression of  BLT1 in 
the carcinomatous regions of  human colon tissues, but 
not in the normal regions. Leukotriene B4 has been im-
plicated in the pathogenesis of  IBD[31-33].

The COX pathway contributes to neutrophil accumu-
lation, and PGE2, a prominent product of  the COX-2 
pathway, plays a central role in checking leukocyte func-
tion by activating a specific PGE2 receptor. During 
the tissue progression of  inflammatory events, PGE2 
inhibits the production of  proinflammatory cytokines, 
acts upreguling M2-type responses in Mfs but may also 
perpetuate chronic inflammatory responses by causing 
more prooxidant conditions, leading to DNA damage or 
reduced DNA repair. Thus, chronic inflammation leads 
to a chronic infiltration of  neutrophils and macrophages 
with consequent damage to tissue. The increase in PGE2 
production mediated by overexpression of  COX-2, pro-
motes colorectal tumorigenesis and activates the Wnt 
signaling pathway in colorectal cancer[34-37]. 

Mariani F et al . Inflammation in colorectal carcinogenesis
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ported that ACSL4 leads to increased COX-2 and LOX-5 
levels and controls both lipooxygenase and cyclooxyge-
nase metabolism of  AA, resulting in inhibition of  apop-
tosis and increase in cell proliferation. Thus, a new as-
sociation therapy has been proposed, according to which 
a concomitant ACSL4, LOX and COX-2 inhibition may 
reduce side effects and improve cancer treatment[46,47]. 

OXIDATIVE MICROENVIRONMENT
DNA damage
The chronic inflammatory response represents a fine 
balance between active inflammation, repair, and destruc-
tion occurring in response to a persistent stimulus over 
a prolonged period of  time. The activation of  immune 
cells in response to a stimulus results in the elaboration 
of  cytokines, chemokines, ROS, and reactive nitrogen 
species (RNS). Consequently, oxidative stress comes 
from the imbalance between endogenous generation of  
ROS and anti-oxidant defence systems that involve scav-
enging of  low reactive ROS such as superoxide radical 
(HO2·) and hydrogen peroxide (H2O2), the precursors of  
highly damaging hydroxyl radical (OH·). The release of  
large amounts of  ROS and RNS leads to oxidation of  
nucleic acids, proteins and lipids, and induction of  sev-
eral promutagenic DNA lesions. Indeed, DNA damage 
accumulation is associated with decrease of  antioxidant 
defences[48-51]. 

It is estimated that ROS derived from chronic inflam-
matory cells may be a primary factor in the development 
of  up to one-third of  all cancers. Neutrophils and macro-
phages are a major source of  oxidants that causes genetic 
alterations and may promote cancer development. More-
over, it has been reported a key role of  MPO-mediated 
metabolic activation of  inhaled chemical carcinogens in 
early stages of  pulmonary carcinogenesis. Furthermore, 
it has been established that the type of  DNA base modi-
fications, as detected in target cells exposed to reagent 
H2O2, is highly comparable with the damage induced by 
activated neutrophils. In addition, HOCl also has been 
demonstrated to be an inhibitor of  DNA strand break 
repair. Consequently the defects in DNA repair proteins 
genes may carry early to a mutated neoplastic clone, pre-
sumably as a result of  markedly increased epithelial cell 
proliferation associated with inflammation, also in non-
neoplastic colonic tissue. Unlike normal colonic mucosa, 
inflamed colonic mucosa shows abnormalities in these 
molecular pathways even before any histological evidence 
of  dysplasia or cancer, and it has been reported by several 
works that the number of  gene mutations in individually 
growing tumors was associated with the number of  infil-
trating neutrophils[52-54]. 

In addition, in colitis-associated colon carcinogenesis, 
ROS/RNS may contribute to the p53 mutations and can 
functionally impair the protein components of  the DNA 
mismatch repair system[55]. iNOS expression is induced 
during inflammation and catalyzes the production of  

nitric oxide (NO). Moreover, depending on the concen-
tration, genetic background, and NO enzyme involved, 
NO may induce protective effects. Clinical data show 
that iNOS levels are elevated in actively inflamed mucosa 
from inflammatory bowel diseases; however, there is con-
troversy about its role in intestinal carcinogenesis[56,57]. 

Also carcinoma associated fibroblasts (CAFs), origi-
nated either by resident fibroblasts or by recruitment 
of  circulating mesenchymal stem cells, are profoundly 
affected by oxidative stress. CAFs activation leads to 
lactate production and to lactate upload by neighbouring 
cancer cells, thus supporting their respiration and ana-
bolic functions[58,59]. 

Thus, a persistent oxidative stress may, first, induce 
DNA damage such as modified base products and strand 
breaks that may lead to further mutation and chromo-
somal aberration of  cancer (genomic instability) and, sec-
ondly, constantly activate transcription factors and induce 
expression of  proto-oncogenes, such as NF-κB, c-fos, 
c-jun, and c-myc. In addition, ROS are involved in tumor 
angiogenesis, through the release of  vascular endothe-
lial growth factor, angiopoietin, and apoptosis evasion. 
The accumulation of  tissue damage and the subsequent 
angiogenesis, remodeling, and connective tissue replace-
ment, with a loss of  cell cycle control, may contribute to 
tumor initiation. 

Anaerobial metabolism
The inflammation sites are associated with changes in the 
tissue metabolism. More than 80 years ago, Otto War-
burg suggested that cancer could be caused by a decrease 
in the energy metabolism of  mitochondria in parallel 
with an increased glycolytic flux. In the following years it 
has been shown that cancer cells exhibit multiple altera-
tions in structure, function and activity of  mitochondria 
and glycolytic enzymes. The imbalance in glucose uptake 
and lactic acid production in the colonic neoplastic cells 
when compared with non-neoplastic cells has been well 
documented, and insulin signalling has been linked to an 
increased colon cancer risk. According to some studies, 
insulin pro-tumorigenic action may be due to an overpro-
duction of  ROS with subsequent DNA damage[60]. In this 
view, the mitochondria contribute to ROS generation, 
thus leading to DNA alteration. Both nuclear and mito-
chondrial DNA damage has been related to cancer devel-
opment. Mitochondrial transcription factor A (TFAM) 
is a protein involved in transcription, replication and 
repair of  mtDNA. It is essential also for mitochondrial 
biogenesis and function. Recent studies reported that its 
expression is related to clinical and pathological gradient 
of  colorectal cancer, and that its loss can induce mtDNA 
instability with enhanced carcinogenic potential[61,62].

Hypoxia inducible factor 1 
Inflammation can cause a significant hypoxia, resulting in 
the induction of  hypoxia-response genes. Hypoxia leads 
to a coordinated transcriptional response mainly through 

Mariani F et al . Inflammation in colorectal carcinogenesis



ROS production 
by neutrophils and 

macrophages
Nrf2

Endogenous 
ROS production

Antioxidant/
detoxification

Cell survival 
and 

proliferation

Metabolic switch 
and hypoxic 
adaptation

Apoptosis

Apoptosis

Nrf2

HIF-1

HIF-1

SIRT

HIF-1

NF-κB

NQO1
GST
HO-1

ARE

ALD
PGK

ENO1
LDH

Glycolisis

Endogenous ROS 
production

HRE

HRE

Tumor initiation 

9721 August 7, 2014|Volume 20|Issue 29|WJG|www.wjgnet.com

the activation of  the transcription factor hypoxia induc-
ible factor 1 (HIF1), which is composed by two subunits: 
HIF-1α that is oxygen-sensitive and HIF-1β [known also 
as aryl hydrocarbon receptor nuclear translocator] that is 
constitutively expressed. 

HIF undergoes a negative regulation in normoxia. 
The stabilization of  HIF-1α protein, however, is not 
limited to hypoxic conditions, and the so-called “hypoxic 
response” can also start with a suitable support of  oxy-
gen. This oxygen-independent hypoxic response can 
result from a wide variety of  genetic abnormalities and 
dysfunctions in signaling pathways, such as tumor sup-
pressor genes deletion (VHL, p53, PTEN), or by the ac-
tivation of  oncogenic pathways related to PI3K/Akt, Src, 
or activation of  growth factors (such as EGF or IGF). 
Further, ROS, NO, and the heat shock promote HIF-1α 
expression in normoxic conditions. Pyruvate and oxalo-
acetate, the major products of  the tricarboxylic acid cycle, 
contribute to the stabilization of  HIF. Promoter analysis 
revealed that HIF-1α directly regulates more than 60 
target genes, and genes induced by HIF-1α in hypoxic 
conditions are similar to those induced in normoxic con-
ditions[63-67]. 

HIF-1 mediates adaptation to hypoxia through the 
activation of  genes that increase the glycolysis, as the 
glucose transporter Glut1. This mechanism increases 
glucose entry into the cell and accelerates glycolysis. En-

zymes such as aldolase, phosphoglycerate kinase [whose 
levels are increased already at the stage of  aberrant crypt 
foci (ACF), early lesions in colorectal cancer develop-
ment], Enolase, Lactate Dehydrogenase, and the carrier 
of  lactate MCT4 contain consensus sequences for HIF. 
The increased induction of  HIF target enzymes increases 
the environment acidity[68-71] (Figure 2). 

It has been shown that the generation of  mitochon-
drial reactive oxygen species during hypoxia promotes 
HIF stabilization. In turn, HIF-1α is also implicated in 
the control of  mitochondrial activity. HIF-1α controls 
the expression of  cytochrome c oxidase subunit Ⅳ (COX 
Ⅳ, isoform2) through HRE elements present on the 
gene. A continuous ROS production contributes to create 
mutations in the mitochondrial DNA. The presence of  
these mutations has been indicated as a factor promoting 
colorectal carcinogenesis[72-74]. 

A hypoxic microenvironment is established very early 
during the development of  the tumor when the tumor 
has a volume of  about 2-3 mm in diameter (possibly at 
the stage of  aberrant crypt foci, ACF)[75]. HIF directly 
activates the genes coding for transferrin, vascular en-
dothelial growth factor (VEGF), endothelin1 and nitric 
oxide synthase, which are involved in vasodilation and 
neovascularization. So, the tumor responds by increasing 
the glycolytic metabolism and angiogenic potential; thus, 
HIF is an important player in all the phases of  neoplastic 

Figure 2  Oxidative microenvironment in the inflammatory milieu of colorectal mucosa. Inflammation leads to an oxidative microenvironment with consequent 
modification of cell metabolism. The major players of these changes is hypoxia inducible factor 1 (HIF1), nuclear factor erythroid 2-related factor 2 (Nrf2), and sirtuins 
(SIRT). HIF1 activation supports the metabolic switch to anaerobial metabolism [fructose-1,6 bisphosphate aldolase (ALD); phosphoglycerate kinase (PGK); enolase 
1 (ENO1); lactate dehydrogenase (LDH)]. Nrf2 is involved in the antioxidant defences of epithelial cells [NAD(P)H dehydrogenase (NQO1); glutathione S-transferase 
(GST); heme oxygenase-1 (HO-1)], while sirtuins affect apoptosis and anti-inflammatory genes.
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growth by regulating survival, inhibition of  apoptosis, 
neoangiogenesis and tumor metastasis[76,77].

Nuclear factor E2-related factor 2 
Nrf2, or nuclear factor erythroid 2-related factor 2, is a 
positive regulator of  the human antioxidant response 
element (ARE) that drives the expression of  antioxidant 
enzymes such as NAD(P)H: quinone oxidoreductase 1 
(NQO1), those involved in glutathione synthesis, and 
genes involved in limiting the inflammatory process[78,79]. 

Nrf2 signaling in physiological conditions acts as a 
switch that is turned on by the presence of  stressors in 
the cellular microenvironment and that is rapidly deacti-
vated when the insult is withdrawn and homeostasis is re-
stored. However, under pathological conditions, the tight 
regulation of  Nrf2 by rapid protein turnover is highly 
susceptible to being altered. This could result in the loss 
of  responsiveness to cell stressors and subsequent vul-
nerability of  the cell to various insults or in the acquisi-
tion of  a constitutively active phenotype[80,81].

Constitutive signalling toward the expression of  cyto-
protective enzymes would confer cells a survival advantage 
under adverse conditions. Therefore, constitutive activa-
tion or augmented signalling of  the Nrf2 pathway might 
be decisive for cell fate during tumorigenesis and affect the 
response to chemotherapy. Under these conditions, Nrf2 
can be defined as a proto-oncogene[82] (Figure 2). 

The involvement of  Nrf2 in cancer pathogenesis is 
a controversial topic, provided a number of  reports that 
still assign Nrf2 a role in cancer chemoprevention from 
genotoxic agents or inflammation[83]. 

Nrf2 knockout leads to an enhanced oxidative and 
inflammatory environment which would contribute to an 
increased level of  free radicals, PGE2, LKTB4 and NO 
accumulation in the cells, leading to hyperproliferation of  
colonic crypts. However, some reports have shown that 
drugs that activate Nrf2 can promote cell growth, and an 
increasing number of  works points to a potential role for 
Nrf2 and its transcriptional target genes in tumorigenesis. 
In conclusion Nrf2 can function as a proto-oncogene in 
plenty of  solid tumors and leukemias. Nrf2 can be ac-
tivated by numerous compounds and is also frequently 
deregulated in a wide variety of  cancers by mutations, 
aberrant epigenetic or posttranslational regulation, or hy-
peractivation of  oncogenic signalling pathways involving 
other transcription factors such as NF-κB, various protein 
kinases, structural proteins such as E-cadherin, or other 
regulators such as p62. Overexpressed or hyperactivated 
Nrf2 can participate in tumorigenesis by helping cells es-
cape from diverse forms of  stress through the induction 
of  anti-oxidant target genes or by directly promoting cell 
survival, proliferation, and even metastasis[84,85]. 

SIRTUINS, INFLAMMATORY BOWEL 
DISEASE, AND COLORECTAL CANCER 
Mammals express seven sirtuins (SIRT1-7) that have 

been demonstrated to play important roles in many 
physiological and pathophysiological conditions, includ-
ing metabolism, cell survival, cancer, aging and caloric 
restriction-mediated longevity[86,87]. 

Sirtuins are a group of  highly phylogenetically con-
served proteins that catalyze the deacetylation of  target 
proteins. The deacetylation reaction spends NAD+, a 
key molecule in energy metabolism, thus linking protein 
regulatory control to metabolic conditions[88]. 

Mitochondrial SIRT3 is involved in tumor metabo-
lism. SIRT3 induces fatty acid oxidation and regulates 
ROS homeostasis by targeting the mitochondrial enzymes 
Mn-SOD and SOD2. SIRT3 seems to maintain genomic 
stability by controlling ROS levels, that have been associ-
ated with mutagenesis promotion and genomic instability. 
ROS can modulate both cell survival and apoptotic path-
ways; thus SIRT3 may also promote tumorigenesis and 
prevent apoptosis, maintaining ROS at the appropriate 
level for a proliferative and aggressive phenotype. In con-
trast, some reports support a role for SIRT3 in inducing 
growth arrest and apoptosis in colorectal carcinoma[89,90]. 

SIRT1 regulates both apoptosis and autophagy by 
deacetylating p53 and other proteins involved in these 
pathways[91]. As a consequence, SIRT1 might be consid-
ered a facilitator for cancer development. Nevertheless, 
although pro-oncogenic effects of  SIRT1 have been re-
ported in some studies, there are also reports showing a 
tumor-suppressor role for this protein as well. Although 
information about the role of  sirtuins in IBD is limited, 
there are several reports that show an antiinflamma-
tory effect for these molecules. In fact, the best-known 
SIRT1 activator is resveratrol, that reverses colitis-asso-
ciated decrease in SIRT1 gene expression, provokes the 
down-regulation of  NF-κB and the increase of  COX-2 
expression, and other changes, in a dextran sulfate 
sodium-induced colitis, and resveratrol suppresses colon 
cancer associated with colitis[92,93]. In addition, SIRT1 
is a negative regulator of  NF-κB activity. With respect 
to colorectal cancer, several studies support the notion 
that SIRT1 could be involved in carcinogenesis, and 
SIRT1 has been found to be upregulated in various hu-
man cancers, including colon cancer[94,95]. SIRT1 expres-
sion is associated with microsatellite instability and CpG 
island methylator phenotype in human colorectal can-
cer. Conversely, there are also studies that indicate that 
SIRT1 can act as tumor suppressor. SIRT1 suppresses 
intestinal tumorigenesis and colon cancer growth in a 
β-catenin-driven mouse model of  colon cancer[96,97]. 
SIRT1 has been shown to regulate Wnt signalling, to 
promote constitutive Wnt signalling and Wnt-induced 
cell migration, showing more a protumor action than an 
antitumor effect. In another study, SIRT1 has proper-
ties of  a growth suppressor. Knockdown of  SIRT1 in-
creases the rate of  tumor growth, whereas overexpres-
sion of  SIRT1 reduces tumor formation in nude mice. 
Furthermore, pharmacological inhibition of  SIRT1 
increases the rate of  cell proliferation in culture. These 
results together suggest that SIRT1 has properties of  a 
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context-dependent tumor suppressor[98,99]. These results 
show that sirtuins have pleiotropic effects on cancer de-
velopment (Figure 2). 

INFLAMMATION AND REMODELLING
Generally, the repair of  the damaged epithelium can rap-
idly be completed following the decrease of  intestinal in-
flammation. Very few tissues in adult mammals have the 
ability for true regeneration; among them are the bone 
marrow, liver, intestinal epithelium, and epidermis of  the 
skin. 

There is accumulating evidence that loss of  control 
over normal tissue repair or renewal mechanisms may 
lead to malignant transformation. Cancer has been de-
scribed as a “wound that does not heal” or “the wound 
is a tumor that heals itself ”. But is there a link between 
tissue repair and cancer? The association between cancer 
and persistent inflammatory or regenerative states strong-
ly suggests this connection[100,101] (Figure 3). 

Further, PMNs recruited to the inflammation site act 

also by producing and releasing IL-22. IL-22 has a ben-
eficial action on intestinal epithelial barrier by promot-
ing cell proliferation, migration, and mucus production. 
This action is mediated probably by the IL-22 receptor 
(IL-22R), that is expressed by the epithelial cells of  the 
gastrointestinal tract. There is also a soluble receptor for 
IL-22, IL-22BP, that acts by preventing the binding to the 
membrane-bound IL-22R and thus terminating the IL-
22-induced regenerative program. So, as decreased levels 
of  IL-22 are detrimental to the regeneration of  epithelial 
monolayer, a defective control by IL-22BP can speed 
colon cancer development by sustaining a prolonged epi-
thelial proliferation[102,103].

STROMAL INVOLVEMENT
Macrophages remove apoptotic neutrophils, the phago-
cytosis of  which may lead to a change toward a more re-
parative (M2) macrophage phenotype and the resolution 
of  the inflammatory phase of  wound healing[104-106]. 

There is evidence for extracellular matrix (ECM) 
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Figure 3  Inflammation and remodelling of colorectal mucosa. Macrophages and neutrophils cause tissue damage and DNA damage by reactive oxygen species 
(ROS) formation. Inflammatory cytokines stimulate crypt stem cells proliferation driven by Wingless and Hedgehog. Defects in apoptosis and autophagy systems cause 
accumulation and proliferation of transformed cells. Indeed, inflammatory cells cause extracellular matrix (ECM) modifications, substaining disassembly of normal tissue 
architecture, angiogenesis and tumor invasion. CAF: Carcinoma associated fibroblasts; TAMs: Tumor-associated macrophages; MMP: Matrix metalloproteinases.
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proteins and activated ECs increasing the lifespan of  
neutrophils. The protection against neutrophil apoptosis 
is a result of  adhesion to matrix proteins fibronectin and 
laminin, and activated EC-coated substrates, leading to an 
appropriate function[107,108]. 

The proliferative phase of  wound healing involves 
new ECM deposition, including the deposition of  dense 
fibrous connective tissue, within the site of  injury. The 
architecture of  the collagen scaffolds in tumors is severely 
altered. Tumor-associated collagens are often linearized 
and crosslinked, reflecting elevated deposition and signifi-
cant posttranslational modification[109,110]. 

The ECM provides a physical scaffold for cell adhe-
sion and migration, it influences tissue tension, and it 
signals to cells through ECM receptors. Proteolysis of  
the ECM regulates cellular migration by modifying the 
structure of  the ECM scaffold and by releasing ECM 
fragments with biological functions. ECM proteolysis is 
therefore tightly controlled in normal tissues but typically 
deregulated in tumors[111-113]. 

Following the deposition of  significant amounts of  
ECM (predominantly collagens type Ⅰ and Ⅲ) during 
the proliferative phase, the remodeling phase of  wound 
healing begins. This phase is characterized by MMP and 
tissue inhibitor of  metalloproteinase (TIMP)-mediated 
degradation and remodeling of  the newly deposited col-
lagen. An altered expression of  some MMPs has also 
been reported in colorectal carcinogenesis[114,115]. 

TIMPs, which are secreted proteins, bind and inhibit 
enzymatically active MMPs at a 1:1 molar stechiomet-
ric proportion, thus inhibiting the proteolytic activity 
of  MMPs. The impact of  TIMPs is essential for the 
homeostasis of  the ECM. The sensitive balance between 
MMPs and TIMPs is essential for many physiological 
processes in the gut[116]. 

Moreover, it has been demonstrated that serum an-
tigen concentrations of  MMP-9, TIMP-1 and TIMP-2, 
were significantly increased in patients with ulcerative 
colitis and crohn disease compared to controls. These 
results suggest that MMPs and TIMPs may contribute to 
the inflammatory and remodeling processes in IBD[117].

M2-like TAMs release a number of  potent proang-
iogenic cytokines, such as VEGF-A, VEGF-C, TNF-α, 
IL-8, and bFGF. Additionally, these TAMs also express 
a broad array of  proteases known to play roles in the 
angiogenic process. These proteases include urokinase-
type plasminogen activator (uPA), the matrix metal-
loproteinases MMP-2, MMP-7, MMP-9, and MMP-12, 
and elastase uPA and MMP support angiogenesis by 
remodeling and breaking down the ECM. Degradation 
of  ECM leads to the mobilization of  growth factors and 
facilitates the migration of  vascular cells into new envi-
ronments[118,119]. 

Among the proteolytic enzymes expressed by TAMs 
there are several members of  the cysteine cathepsin fam-
ily, which have been implicated in cancer progression. 
Cysteine cathepsins are specifically involved in cancer, 
cysteine cathepsins B and L have been investigated most 

intensively, and invariably their increased expression 
and/or activity correlates with malignant progression[120]. 
Several investigations have confirmed significantly higher 
levels of  cathepsins D, L, H, and, in particular, cathepsin 
B in colorectal carcinoma[121].

Fibroblasts are among the most active cell types of  the 
stroma. They are present in the stroma of  normal tissues, 
including colorectal, where they perform tissue repair 
functions under certain physiological conditions, and in 
the stroma of  tumors, in which they might represent the 
main component. They have been given various names: 
tumor-associated fibroblasts, CAF or myofibroblasts. 

The differentiation of  fibroblasts into myofibroblasts 
is an important step in tissue repair. Migration of  colonic 
fibroblasts into and through the extracellular matrix dur-
ing the initial phase of  mucosal healing appears to be a 
fundamental component of  wound contraction[122,123]. 

After differentiation, subepithelial myofibroblasts 
form a pericryptal fibroblast sheet adjacent to the basal 
lamina of  colonic crypts. Intestinal subepithelial myofi-
broblasts contribute to the coordination of  tissue regen-
eration by producing TGF-β, epidermal growth factor, 
basic fibroblast growth factor, proinflammatory cyto-
kines, and the formation of  new basement membrane. 

In a state of  permanent activation, fibroblasts can 
promote tumor growth and tumor progression, favoring 
a variety of  tumor-specific mechanisms. These activated 
fibroblasts can be characterized molecularly by several 
markers that should be expressed by the fibroblasts in 
their activated state. Some of  the most common CAF 
markers are α-smooth muscle actin, fibroblast-specific 
protein 1 (FSP1 or S100A4) and fibroblast activation pro-
tein. Together with M2 macrophages, and as previously 
stated above, CAF are a large component of  the stroma 
and generally tumor promoting[124-126]. 

THE STEM CELL ROLE AND THE 
EPITHELIUM RESPONSE
Thus, rapid resealing of  the epithelial surface barrier fol-
lowing injuries or physiological damage is essential to 
preserve the normal homeostasis. In a state of  chronic 
injury or inflammation, stem cells are under a continu-
ous stimulus of  proliferation; pathway activation and 
presumed expansion of  stem cell pools would persist so 
long as repeated injury prevents full regeneration[127]. 

Epithelial cell proliferation is stimulated in crypts near 
the damaged mucosal area to replenish the decreased cell 
pool. This appears as an elongation of  the crypt, which 
may subsequently divide into two crypts. Maturation 
and differentiation of  undifferentiated epithelial cells is 
needed to maintain the numerous functional activities of  
the mucosal epithelium[128,129]. 

Recent studies have revealed that the key signal regu-
lating the proliferation of  immature epithelial cells in the 
crypt may be Wnt signaling. Wnt signaling is an important 
part of  normal epithelial renewal within the small and 
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large intestine. Wnt signaling has long been studied in the 
development of  colon cancer, a disease characterized by 
the unregulated proliferation of  intestinal epithelial cells. 
A series of  studies in mice has revealed that Wnt signal-
ing also regulates the proliferation of  immature epithelial 
cells within the normal crypt. Two morphogenic signal-
ing pathways, specifically Hedgehog (Hh) and Wingless 
(Wnt), serve to illustrate how pathways involved in stem 
cell proliferation during development, and regeneration 
have also been implicated in several different epithelial 
cancers. These observations suggest that cancer growth 
may represent the continuous operation of  an unregu-
lated state of  tissue repair and that continuous Hh/Wnt 
pathway activities in carcinogenesis may represent a devi-
ation from the return to quiescence that normally follows 
regeneration[130-133]. 

AUTOPHAGY 
Autophagy is usually considered as a tumor-suppressing 
mechanism, though it can also enable tumor cell survival 
upon stress, and may promote metastasis formation. 
Autophagy is a key response mechanism to numerous 
extracellular and intracellular stresses. These include, 
for example, nutrient and growth factor deprivation and 
hypoxia. Autophagy is the only cellular catabolic process 
that can eliminate damaged or ROS-overproducing mi-
tochondria, and thereby limit general oxidative damage. 
Nutrient or growth factor limitation, hypoxia and other 
cellular stressors are known to deactivate the signaling 
system that leads to autophagy induction and suppression 
of  cell growth and proliferation[134,135]. 

Several pathways (including RAS/PKA, RAS/ERK, 
IRE1/JNK, TGF-β, WNT/GSK3, HIF) and transcrip-
tion factors (TFs), such as NRF2, FoxO and p53 have 
been described to affect autophagy. Interestingly, these 
signaling pathways are also important in cell growth, 
proliferation, angiogenesis, immunity, cell survival and 
cell death, functions whose alteration are listed among 
the hallmarks of  cancer. Thus, these data show that 
the control of  autophagy is affected during tumori-
genesis[136-138]. Numerous studies examined the role of  
autophagy in cancer, but the results are rather ambigu-
ous. On the one hand, autophagy has tumor suppress-
ing functions by suppressing chromosomal instability, 
restricting oxidative stress, promoting oncogene-induced 
senescence, and reducing intratumoral necrosis and local 
inflammation. On the other hand, enhanced autophagy 
represents a prominent mechanism used by tumor cells 
to escape from hypoxic, metabolic, detachment-induced 
and therapeutic stress as well as to develop metastasis 
and dormant tumor cells. During tumorigenesis, autoph-
agy is frequently switched on and off, resulting in highly 
regulated anti- and pro-tumorigenic effects. Therefore, 
autophagy can be considered as a double-edged sword 
during tumorigenesis. 

During tumorigenesis, cells not only increase their 
proliferative potential but also need to develop mecha-

nisms that allow them to escape their own tumor sup-
pressor systems. Impairment or deregulation of  the main 
apoptotic pathways is a major characteristic of  cancer 
cells. In this regard, a cross link between Nrf2 and some 
effectors of  the main apoptotic pathways has been 
proposed on several occasions. Tumor suppressor p53, 
which induces apoptosis upon DNA damage, partially in 
a ROS-dependent fashion, has been shown to inhibit the 
transcriptional activation of  Nrf2 target genes in various 
cancer cell lines. This finding is supported by another 
report in which mice with decreased p53 levels showed 
enhanced expression of  Nrf2 target genes after treatment 
with a genotoxic agent. These data suggest that Nrf2 in-
hibition is needed for p53-dependent apoptosis[139]. 

Many derangements in cell signaling occur within 
chronically inflamed tissues, which may lead to inappro-
priate suppression of  apoptosis and subsequent tumori-
genesis. Through careful microdissection of  chronically 
inflamed and neoplastic tissues, several consistently 
upregulated survival signaling pathways have been identi-
fied, with subsequent attempts made to develop inhibi-
tors to key pathway intermediates[140]. 

TARGETING THE NF-κB PATHWAY 
NF-κB is a ubiquitously expressed transcription factor 
that plays a pivotal role in regulating cellular responses 
to environmental challenges, such as stress, infection, 
and inflammation. NF-κB is activated in response to 
cytokines and inflammatory mediators such as TNF-α, 
IL-1, LPS and ROS, and its regulatory products include 
growth factors, cytokines, immunoreceptors, and cell 
survival proteins, making it a complex modulator of  the 
immune response. 

Moreover, there is growing evidence of  a connection 
between inflammation, NF-κB and tumor development. 
Viral oncogenes and some chemical and physical car-
cinogens, especially nicotine and carcinogens in tobacco, 
promote cell proliferation, survival, and inflammation 
via NF-κB activation. The role of  NF-κB in promoting 
carcinogenesis is evidenced by numerous studies which 
indicate that this factor blocks apoptosis by regulating 
anti-apoptotic proteins, or by inhibiting the accumulation 
of  ROS[141,142]. In chronic inflammation, the cytokines 
and chemokines produced by inflammatory cells activate 
NF-κB, which translocates into the nucleus, inducing the 
expression of  certain tumorigenic, adhesion proteins, 
chemokines, and inhibitors of  apoptosis that promote 
cell survival. Therefore, NF-κB may contribute to the de-
velopment of  colitis-associated colorectal cancer by sus-
taining the ongoing inflammatory process in the gut mu-
cosa. NF-κB is also connected to the regulation of  many 
genes differently expressed in invasion and metastasis: 
cyclin D1 and cMyc oncogenes, and VEGF and IL-8 are 
directly or indirectly enhanced by NF-κB activation. Sev-
eral products have been suggested to inhibit NF-κB ac-
tivation, including curcumin, ginseng extract, resveratrol, 
green tea extract, among others, and are known for their 

Mariani F et al . Inflammation in colorectal carcinogenesis



9726 August 7, 2014|Volume 20|Issue 29|WJG|www.wjgnet.com

antiproliferative properties[143,144]. 

CONCLUSION
Several cells and proteins are involved in the early steps 
of  colorectal carcinogenesis, and the most important are 
summarized in Table 1. They are components of  a com-
plex environment with continuous cross-talking between 
the epithelium and the stroma of  the mucosal layer. 
Recent evidence has suggested that the stroma plays an 
important role in influencing important mechanisms 
both promoting and inhibiting the multistep process 
of  carcinogenesis. Early injury to the colorectal mucosa 
caused by carcinogens coming from the environment, 
or any other agent damaging the mucosa may elicit an 
inflammatory process. Macrophages and neutrophils are 
among the cells mostly involved in these processes and 
proteins, as cyclooxygenases and resolvins, are crucial in 
these inflammatory pathways. Moreover, the activation 
of  these pathways establishes an oxidative environment 
with further DNA damage to epithelial cells, and shifting 
from an aerobic to an anaerobic metabolism, thus awak-
ing other proteins and altering other mechanisms, such as 
autophagy, proliferation and apoptosis, with final failure 
to control normal mucosal repair and renewal. However, 
the picture of  the early events in colorectal carcinogen-
esis is still incomplete: future studies are needed in order 

to draw a more definite one. 
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