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test of the integrated areas showed that Cho is significantly different
(p <0.0002) when 1 and 12 months and 6 and 12 months classes are
compared, whereas Tau (p < 0.05) when the comparison is between 1 and
12 months classes.

On the whole, the changes over time of Cho and PC signals in frozen tissues
represent not a trivial finding, since many studies base the distinction
between neoplastic and healthy tissues or the assessment of tumor grade on
the analysis of choline metabolites.

3.4. Comparison between healthy and neoplastic CPMG
spectra

The second goal of this work was to verify if, for breast tissues obtained
through the Modena BioBank protocol, the metabolic information related to
healthy/neoplastic state remains encoded in CPMG spectra, despite the
relatively high temperatures experienced by the samples collected through the
BioBank before freezing (with respect to those snap-frozen in liquid nitrogen
in the operating theater).

All the spectra of the healthy class were compared to all those of the
neoplastic one. The 7 test run on the metabolite region of the spectra of the
two classes indicates that statistically significant differences (—Log(p) > 5)
are found, especially when Cho, PC, Tau, Myo, Lac, Asc, PE and Glc
signals are concerned (Fig. S5).

Applying the PCA approach it can be seen that neoplastic and healthy
samples cluster, as is shown in Fig. 4a.

Fig. 4

a Scores plot (/eft) of PCA on neoplastic (green) versus healthy (red) samples.
Loadings profiles (right) of PC2 and PC3. b PLS-DA 3D score plot (/eft) of
neoplastic (green) versus healthy (red) samples. Loading profile (right) of the
first latent variable (LV1)
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The first three PCs account for 91.7 % of the total variance, and another
1.8 % is captured by PC4 which is dominated by X signal (Fig. S6).
Neoplastic samples have PC2 values higher than those of the healthy ones,
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1.e. should have at least higher PC, Tau, Lac, PE, Cr and Asc signals and
lower Myo, X and B-Glc.

PLS-DA was also run with Metaboanalyst, obtaining a good discrimination
between the two classes (Fig. 4b). The optimal number of components,
three, was determined through ten10-fold cross validation (Fig. S7). To
assess the significance of class discrimination, a permutation test was
performed (Fig. S7). In each permutation, a PLS-DA model was built
between the data and the permuted class labels using the optimal number of
components determined by cross validation for the model based on the
original class assignment.

PLS-DA loadings profile is very close to that of PC2 in Fig. 4a. It indicates
the enhancement of Lac, Tau, PE, PC, Cr and Asc, and to the decreasing of
X, Glc and Myo in the neoplastic samples with respect to the healthy ones.

To verify these results of multivariate analysis, integrated areas of the
previously selected signals where compared and a ROC analysis (Xia et al.
2012b) was undertaken.

3.5. Analysis of integrals in healthy and neoplastic
samples

PCA and PLS-DA point to some metabolites for the distinction of healthy
and neoplastic classes, and the signals of these metabolites were integrated
after normalization.

When Glc, Asc, Lac, Myo, Tau, PC, Cho, E, PE and Cr integrals were
compared (Fig. 5a), it was observed that the differences between all the
mean values of healthy and neoplastic distributions are significant at a p level

<0.0003, except for Cr (p = 0.8) and E (p = 0.05).

Fig. §

a Bar plots showing the integrals (mean = SD) of selected metabolite signals. b
ROC curve analysis of integrals of selected metabolites in healthy (0) and
neoplastic (1) samples. ¢ ROC curve analysis of combinations of integrals of
selected metabolites in healthy (0) and neoplastic (1) samples. Red dot optimal
cut-off levels (sensitivity, 1-specificity) and AUC ROC (95 % confidence
interval) are also reported
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ROC analysis of integrals of the same metabolites (Fig. 5b) confirmed that
those more promising for a classification of breast tissue are PE, Lac, PC,
Myo, Tau and Glc for which area under ROC curves (AUC) is above 0.8
(Xia et al. 2012b). Also some metabolites combinations (Fig. 5c¢) seem to be
useful for a classification. They were built combining the metabolites with
the highest AUC that enhance in neoplastic tissue (PE, Lac, PC and Tau)
and in healthy tissue (Glc and Myo). We tried also ratios, that are self-
normalized quantities and simplify the use of integrals.
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The ROC results point to PE (—Log(p) = 16.1), Lac (—Log(p) = 13.1), and
to some of their combinations with other metabolites as good indexes for the
healthy/neoplastic classification. In particular, Lac + Tau (—Log(p) = 26.3),
Lac + PE + Tau (—Log(p) = 27.9), PE + Tau (—Log(p) = 21.8), and the
ratios PE + Tau/Glc + Myo (—Log(p) = 10.4), Lac + Tau/Glc + Myo
(—Log(p) = 10.8), Lac + PE + Tau/Glc + Myo (—Log(p) = 11.1) seem
promising combinations of biomarkers. Moreover, the ratios are confined in
very narrow intervals for healthy samples, whereas they are found in wider
and fairly distinguished ranges for the neoplastic ones.

All of these metabolites are reported to be involved in cancer metabolism. An
increased consumption of glucose and high accumulated levels of lactate in
tumor samples are consistent with the Warburg effect. (Warburg 1956;
Vander Heiden et al. 2009 )- Hypoxia, inadequate oxygen supply to the cells,
is frequently found in solid malignant tumors and is characterized by
enhanced formation of Lac produced by anaerobic glycolysis. (Warburg
1956)- Lower Glc combined with higher Lac levels in cancer patients
indicate a difference in glycolytic activity between the two groups. High Lac
levels have been shown to correlate with malignancy, increased risk of
radiation resistance, metastasis, and reduced recurrence-free and overall
survival in several types of cancers. (Tripathi et al. 2012, 2013 ; Quennet et
al. 2006; Brizel et al. 2001 ; Walenta et al. 2000; Cheng et al. 1998)-

The ChoCC are of high interest in cancer research and abnormal choline
metabolism 1s frequently observed. (Tripathi et al. 2012, 2013 ; Glunde et
al. 2011)- Samples with high tumor cell content have higher levels of
ChoCC compared to healthy samples, with PC being especially elevated in
tumors. This reflects the increased proliferation rate in tumors, as Cho is an
important constituent of cell membranes through the formation of
phosphatidylcholine (PtdCho); PC and GPC are considered precursors and
breakdown products of this activity. (Ackerstaff et al. 2003 ; Esmaeili et al.
2014)- The abnormal PC and GPC levels in cancer have been linked to
altered enzyme activity, in particular of choline kinase (ChoK) and several
phospholipases. (Glunde et al. 2011; Podo 1999)- In mammals, ChoK is
encoded by two separate genes: ChoKA and ChoKB, catalyzing the
phosphorylation of Cho to PC. (Aoyama et al. 2004 )- The activity of these
enzymes depends on oncogenic signaling and microenvironmental parameters
such as hypoxia. (Jiang et al. 2012)-
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Also PE is precursor of the cell membrane phosphatidylethanolamine
(PtdEtn), and it is formed by degradation of PtdEtn by phospholipase C. PE
has been linked to cancer (Podo 1999) and a recent study on breast cancer
has reported that PE induces apoptosis directly through the mitochondrial
pathway, leading to a disruption of mitochondrial membrane potential
followed by a release of Cytochrome ¢ from mitochondria. Furthermore, the
arrest at the G1 phase of the cell cycle i1s in accordance with the observed
decrease in Cyclin D1 expression, strongly supporting that PE has a dual
mechanism of action i.e. it induces apoptosis and blocks the cell cycle in
MCF-7 tumor cells. (Ferreira et al. 2013)- Hence, PE has been proposed as
anticancer compound.

Elevated level of Tau, osmolite involved in many essential biological
functions such as antioxidation, membrane stabilization, and cell shrinkage
during apoptosis, should indicate that it is implicated in breast cancer
metabolism. (Choi et al. 2012)- Choi study showed higher concentrations of
Tau and Gly being associated with progesterone receptor (PR)
negative/receptor for human epidermal growth factor (HER2) positive
cancers and with a poor prognosis.

As for Gly, we observed only a slight increase in neoplastic samples with
respect to the healthy ones whereas in previous reports it has been found to
contribute to characterization of breast cancer tissues. (Jain et al. 2012; Cao
et al. 2012; Sitter et al. 2006)- Jain et al. (2012) identified the correlation of
Gly with rapid cancer cell proliferation, and that a higher expression of the
mitochondrial Gly biosynthesis pathway is associated with higher mortality in
breast cancer patients. High levels of Gly and Lac in breast cancer tissues
might potentially be associated with high grade malignancy and tumor
aggressiveness probably caused by altered glycolysis. (Peeling and
Sutherland 1992 ; Cao et al. 2012 )- Sitter et al. (2006) reported that Gly
concentrations were significantly higher in breast cancers larger than 2 cm
compared to those of smaller ones. Hence, since only 8 out of 22 samples
here studied were larger than 2 cm, we believe that the slight increase of Gly
in the neoplastic samples could be related to the small tumor dimensions and
to the early diagnosis.

4. Conclusions
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The samples collected through Modena BioBank have a thermal history
different with respect to that of samples snap frozen in liquid nitrogen
immediately after surgery, for the time elapsed between surgery and freezing
is around 30 min. During this time, only some metabolic changes have been
observed for rat brain cortex (Opstad et al. 2008) or liver (Cacciatore et al.
2013). In particular, significant changes have been observed for Lac, alanine
(Ala), y-aminobutyric acid and Glc in the case of rat brain, and for aspartate
and Gly in human liver in the first 30 min after sample excision. When our
spectra are compared to those reported by Bathen et al. (2013): and Li et al.
(2011) who immediately froze tissues in liquid nitrogen after excision or
biopsy, we can hardly infer clear differences, apart from the presence of the
signal at 3.34 ppm.

The changes observed during freezing affects significantly PC and Cho, and
seem also to influence other metabolites (Figs. 2¢, 3¢), even though at a
lesser extent. These findings suggest that care should be used when
employing only ChoCC signals for the distinction between neoplastic and
healthy tissues or the assessment of tumor grade.

Despite half an hour on ice before freezing, HR-MAS NMR spectra of
neoplastic samples remain sufficiently different from those of the healthy
one, and they cluster in two groups when PCA is run on CPMG spectra.
The differences between healthy and neoplastic tissues, as derived from
PCA and PLS-DA, correspond to the enhancement of Lac, Tau, PC, PE,
Cr, Asc and a slight enhancement of Gly, and to the lowering of X, Glc and
Myo in the neoplastic samples with respect to the healthy ones. The analysis
of integrals shows that only changes in Glc, Asc, Lac, Myo, Tau, PC, PE
and Cho are statistically significant at a p < 0.0003. These results are very
close to that observed and already discussed by Bathen et al., with few
differences probably due to the spectrometer field (we can hardly resolve
Gly from Myo) and to the longer total echo time employed by us.

The use of ROC curves helps in the discrimination between healthy and
neoplastic breast tissue. Good biomarkers for the classification seem to be
PE, Lac and combinations of Lac, PE, Tau, Myo and Glc. Among these,
some ratios, such as Lac + PE + Tau/Glc + Myo, are found in very narrow
intervals for healthy samples, well distinguished from the neoplastic ones.

5. Electronic supplementary material
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Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1309 kb)
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