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An acute triangulation of a polygon is a triangulation whose triangles have all their angles less than 𝜋/2. The number of triangles
in a triangulation is called the size of it. In this paper, we investigate acute triangulations of trapezoids and convex pentagons and
prove new results about such triangulations with minimum size. This completes and improves in some cases the results obtained
in two papers of Yuan (2010).

1. Introduction and Preliminaries

A triangulation of a planar polygon is a finite set of nonover-
lapping triangles covering the polygon in such a way that
any two distinct triangles are either disjoint or intersect in a
single common vertex or edge. An acute (resp., nonobtuse)
triangulation of a polygon is a triangulation whose triangles
have all their angles less (resp., not larger) than 𝜋/2. The
number of triangles in a triangulation is called the size.
Burago and Zalgaller [1] and, independently, Goldberg and
Manheimer [2] proved that every obtuse triangle can be
triangulated into seven acute triangles and this bound is the
best possible. Cassidy and Lord [3] showed that every square
can be triangulated into eight acute triangles and eight is
the minimum number. This remains true for any rectangle
as proved by Hangan et al. in [4]. Acute triangulations of
trapezoids, quadrilaterals, and pentagons were investigated
in [5–8]. Further information, historical notes, and problems
about acute triangulations of polygons and surfaces can be
found in the survey paper [9]. LetK denote a family of planar
polygons, and for 𝐾 ∈ K, let 𝑓(𝐾) be the minimum size
of an acute triangulation of 𝐾. Then, let 𝑓(K) denote the
maximum value of 𝑓(𝐾) for all𝐾 ∈K. The following results
are known.

Theorem 1. (i) Reference [7]: let T denote the family of all
trapezoids, that is, quadrilaterals with at least one pair of

parallel sides.Then, 𝑓(T \R) = 7, whereR is the family of all
rectangles (also including squares).

(ii) Reference [6]: let Q be the family of all quadrilaterals.
Then, 𝑓(Q) = 10.

(iii) Reference [5]: let Q
𝑐
be the family of all convex

quadrilaterals. Then, 𝑓(Q
𝑐
) = 8.

(iv) Reference [8]: let P denote the family of all planar
pentagons. Then, 𝑓(P) ≤ 54.

In this paper, we discuss acute triangulations of trape-
zoids and convex pentagons and prove new results of such
triangulations with minimum size. For example, we get the
following characterization of the right trapezoids: they are the
only trapezoids needing exactly six triangles and one interior
vertex for an acute triangulation of minimum size. For the
family of convex pentagons, we show that the bound stated
in Theorem 1(iv) can be improved under some additional
conditions.

Let Γ be a convex planar polygon. A vertex 𝑃 of Γ is called
an acute (resp., right) corner if the interior angle of Γ at 𝑃
is less than (resp., equal to) 𝜋/2; otherwise, 𝑃 is called an
obtuse corner. Let T be an acute triangulation of Γ. A vertex
or edge of T is called a boundary (resp., interior) vertex or
edge if it lies on the boundary of Γ (resp., lies inside Γ). Let
𝑛, 𝑛
𝑖
, and 𝑛

𝜕
be the number of vertices, interior vertices, and

boundary vertices of T. Let 𝑚, 𝑚
𝑖
, and 𝑚

𝜕
be the number of

edges, interior edges, and boundary edges of T. Clearly, we
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have 𝑛 = 𝑛
𝑖
+ 𝑛
𝜕
,𝑚 = 𝑚

𝑖
+ 𝑚
𝜕
, and 𝑛

𝜕
= 𝑚
𝜕
. For each vertex

𝑃 in T, the number of edges incident to 𝑃 is called the degree
of 𝑃, denoted by deg(𝑃). Let 𝜈

𝑘
denote the number of vertices

in T of degree 𝑘. Let 𝑓 denote the number of triangles in T.
The following lemma is easily verified (cf. [6, Lemma 1]).

Lemma 2. Let T be an acute triangulation of a planar convex
n-gon Γ. Then, one has

(1) 𝑓 = 𝑚 − 𝑛 + 1 = 𝑛 + 𝑛
𝑖
− 2 = 𝑚

𝑖
− 𝑛
𝑖
+ 1,

(2) 3𝑓 = 2𝑚 − 𝑚
𝜕
= 2𝑚
𝑖
+ 𝑛
𝜕
,

(3) 𝜈
1
= 0; 𝜈

2
+ 𝜈
3
≤ 𝑛,

(4) 𝑛
𝜕
= 𝑚
𝜕
≤ 𝑓 + 𝜈

2
; 4𝑓 + 𝜈

2
≥ 2𝑚,

(5) If a vertex 𝑃 of T is an interior vertex, then deg(𝑃) ≥ 5,
if 𝑃 lies within a side of Γ, then deg(𝑃) ≥ 4, and if 𝑃 is
an obtuse or right corner of Γ, then deg(𝑃) ≥ 3.

2. Characterizations of Trapezoids

2.1. Parallelograms. Let𝐴𝐵𝐶𝐷 be a parallelogram with acute
corners at 𝐵 and 𝐷 and |𝐴𝐵| ≤ |𝐵𝐶|. If the diagonal 𝐴𝐶
divides the angles at 𝐴 and 𝐶 into acute angles, then 𝐴𝐵𝐶𝐷
is triangulable with exactly two acute triangles. Otherwise,
we have the following lemma that completes Theorem 2.1 in
Section 2 of [7].

Lemma 3. Let 𝐴𝐵𝐶𝐷 be a parallelogram with acute corners
at 𝐵 and 𝐷. Suppose that the diagonal 𝐴𝐶 does not divide the
angle at𝐴 (or𝐶) into acute angles.Then,𝐴𝐵𝐶𝐷 is triangulable
with four acute triangles, and this bound is the best possible.

Proof. Let 𝑓 be the smallest number of triangles in an acute
triangulation T of the parallelogram 𝐴𝐵𝐶𝐷. Some edge of T
incident with 𝐴 (resp., 𝐶) must meet the interior of 𝐴𝐵𝐶𝐷.
Denote 𝐴𝑃 to be such an edge, and suppose that 𝑃 is an
interior vertex of 𝐴𝐵𝐶𝐷, that is, 𝑛

𝑖
≥ 1. Then, the vertices 𝐵

and𝐷 have degree at least 2, the vertices𝐴 and𝐶 have degree
at least 3, and the vertex 𝑃 has degree at least 5. Summing up,
we have 2𝑚 ≥ 2 × 2 + 2 × 3 + 5 = 15, hence 2𝑚 ≥ 16. Since
𝜈
2
≤ 2, by Lemma 2(4), we get 4𝑓+2 ≥ 16, so 𝑓 ≥ 4. Assume

now that 𝑛
𝑖
= 0.Then, 𝑃 lies in the interior of the edge 𝐵𝐶 (or

𝐷𝐶). Otherwise, if 𝑃 = 𝐶, at least one of the vertices𝐴 and 𝐶
must have degree ≥ 4 by hypothesis. This implies that there
is a neighbor of it with degree ≥ 4, giving a contradiction as
𝑛
𝑖
= 0. Thus, 𝑛

𝜕
= 𝑛 and 𝑚

𝑖
≥ 3 as the degree of 𝑃 is at least

4, and the degree of 𝐴 (resp., 𝐶) is at least 3. By Lemma 2(1),
we get 𝑓 = 𝑚

𝑖
− 𝑛
𝑖
+ 1 ≥ 4. Now, for a parallelogram as in the

statement, an acute triangulation with 4 triangles is given in
[7, Section 2].

2.2. Trapezoids. Following [7], we say that a trapezoid is a
quadrilateral with at least one pair of parallel sides. Let𝐴𝐵𝐶𝐷
be a trapezoid with parallel sides 𝐴𝐷 and 𝐵𝐶 with |𝐴𝐷| <
|𝐵𝐶|. Let 𝐸 (resp., 𝐹) be the orthogonal projection of𝐴 (resp.,
𝐷) on the straight line ℓ

𝐵𝐶
containing 𝐵𝐶. Suppose that 𝐸

is interior to 𝐵𝐶 and 𝐹 exterior to 𝐵𝐶. If the diagonal 𝐴𝐶
divides the angles at𝐴 and𝐶 into acute angles, then𝐴𝐵𝐶𝐷 is
triangulable with exactly two acute triangles. Otherwise, we

have the following lemma which can be proved in the same
manner as Lemma 3.

Lemma 4. Let 𝐴𝐵𝐶𝐷 be a trapezoid with acute corners at 𝐵
and𝐷, parallel sides 𝐴𝐷 and 𝐵𝐶 with an obtuse angle 𝐵

∧

𝐴 𝐶,
and an acute angle 𝐶

∧

𝐴 𝐷. Then, 𝐴𝐵𝐶𝐷 is triangulable with
four acute triangles, and this bound is the best possible.

Let 𝐴𝐵𝐶𝐷 be a trapezoid with two adjacent acute angles
at 𝐵 and 𝐶, parallel sides 𝐴𝐷 and 𝐵𝐶, and, consequently,
|𝐴𝐷| < |𝐵𝐶|. If there exists an interior point 𝑃 on 𝐵𝐶 such
that the triangles 𝐵𝐴𝑃,𝐴𝑃𝐷, and 𝑃𝐷𝐶 are acute, then𝐴𝐵𝐶𝐷
is triangulable by 3 acute triangles. Otherwise, we have the
following lemma.

Lemma 5. Let 𝐴𝐵𝐶𝐷 be a trapezoid with two adjacent acute
angles at 𝐵 and 𝐶 and parallel sides 𝐴𝐷 and 𝐵𝐶. Suppose that
there is no interior point 𝑃 on 𝐵𝐶 such that 𝐵𝐴𝑃, 𝐴𝑃𝐷, and
𝑃𝐷𝐶 are acute triangles. Then,𝐴𝐵𝐶𝐷 is triangulable with five
acute triangles, and this bound is the best possible.

Proof. Let 𝑓 be the smallest number of triangles in an acute
triangulation T of any trapezoid as in the statement. Some
edge 𝐴𝑃 must meet the interior of 𝐴𝐵𝐶𝐷. Suppose that
𝑃 is an interior point of 𝐴𝐵𝐶𝐷, that is, 𝑛

𝑖
≥ 1. Then, it

immediately follows that deg (𝑃) ≥ 5 and so 𝑓 ≥ 5. Suppose
that there is no interior vertex in 𝐴𝐵𝐶𝐷, that is, 𝑛

𝑖
= 0 and 𝑃

is a boundary vertex. Some edge 𝐷𝑄 must meet the interior
of 𝐴𝐵𝐶𝐷, and 𝑄 is also a boundary vertex. We can assume
that 𝑃 ̸=𝑄 since at least one of the triangles 𝐵𝐴𝑃, 𝐴𝑃𝐷, and
𝑃𝐷𝐶 is not acute by hypothesis. This implies that 𝑚

𝑖
≥ 4. By

Lemma 2(1), 𝑓 = 𝑚
𝑖
− 𝑛
𝑖
+ 1 ≥ 5. Now, for a trapezoid as in

the statement, an acute triangulation with 5 triangles is given
in [7, Section 3].

The following result gives a characterization of the right
trapezoids.

Proposition 6. Every trapezoid with exactly two right angles
is triangulable with six acute triangles and one interior vertex,
and this bound is the best possible.

Proof. Let 𝑓 be the smallest number of triangles in an acute
triangulation T of any trapezoid 𝐴𝐵𝐶𝐷 with exactly two
right corners at 𝐷 and 𝐶. Let 𝐵 be an acute corner, thus
|𝐴𝐵| ≤ |𝐵𝐶|. Some edge𝐴𝑃must meet the interior of𝐴𝐵𝐶𝐷.
Suppose that 𝑃 is an interior vertex of 𝐴𝐵𝐶𝐷 and 𝑛

𝑖
= 1.

Then, 𝑃 is an end vertex of five interior edges. At least one
neighbour of 𝑃 is interior to a side of the trapezoid and is
therefore incident of a further interior edge. So,𝑚

𝑖
≥ 6, 𝑛

𝑖
= 1

and 𝑓 = 𝑚
𝑖
− 𝑛
𝑖
+ 1 ≥ 6. Suppose that 𝑃 is an interior vertex

and 𝑛
𝑖
≥ 2. Then, there are at least two interior vertices with

degree ≥ 5, the degree of𝐴 (resp., 𝐶 and𝐷) is ≥ 3, the degree
of 𝐵 is ≥ 2, and there is at least one vertex of degree ≥ 4.Then,
we have 2𝑚 ≥ 3×3+2×5+4+2 ≥ 25, so 2𝑚 ≥ 26. Since 𝜈

2
≤ 1

by Lemma 2(4), we get 4𝑓 + 1 ≥ 26, so 𝑓 > 6. Suppose that
𝑛
𝑖
= 0 and 𝑛

𝜕
= 𝑛. Some edge of𝐴𝑃must meet the interior of

𝐴𝐵𝐶𝐷. Then 𝑃 cannot lie on the edge 𝐷𝐶; otherwise, some
edge incident to 𝐷 must meet the interior of 𝐴𝐵𝐶𝐷, and we
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get an interior vertex against the fact that 𝑛
𝑖
= 0. So, 𝑃 must

be in the interior of 𝐵𝐶. If the angles at 𝑃 are not right, we
get a contradiction since 𝐴𝑃𝐶𝐷 is a trapezoid with only two
right angles which admits an acute triangulation of at least
size𝑓. But this contrasts with the minimum size 𝑓 ofT. If the
angles at 𝑃 are right, then 𝐴𝑃𝐶𝐷 is a square. But any acute
triangulation of a square must have at least an interior vertex.
So, we get again a contradiction as 𝑛

𝑖
= 0. Now, for a trapezoid

as in the statement, an acute triangulationwith 6 triangles and
one interior vertex are given in [7, Section 3].

Lemma 7. Let 𝐴𝐵𝐶𝐷 be a trapezoid with acute corners at 𝐵
and 𝐷, parallel sides 𝐴𝐷 and 𝐵𝐶, and 𝐸 and 𝐹 both exterior
to 𝐵𝐶. Then, 𝐴𝐵𝐶𝐷 is triangulable with seven acute triangles.
This bound is the best possible among the acute triangulations
of such a trapezoid which have at least one interior vertex.

Proof. Let T be an acute triangulation with at least one
interior vertex for a trapezoid as in the statement. Let 𝑓
denote the size of T. Suppose that 𝑛

𝑖
= 2. Then, there are two

interior vertices 𝑃 and 𝑆 in T, and at least two neighbours of
𝑃 and/or 𝑆 have degree at least 4. Since 𝑚

𝑖
≥ 9 and 𝑛

𝑖
= 2,

Lemma 2(1) gives 𝑓 = 𝑚
𝑖
− 𝑛
𝑖
+ 1 ≥ 8. Suppose that 𝑛

𝑖
≥ 3.

Then, there are at least three interior vertices 𝑃, 𝑅, and 𝑆with
degree ≥ 5. The degrees of 𝐴 and 𝐶 are ≥ 3, and those of
𝐵 and 𝐷 are ≥ 2. There are at least two neighbours of 𝑃,
𝑅 and/or 𝑆 with degree ≥ 4. Summing up, we have 2𝑚 ≥
3× 5+ 2× 3+ 2× 2+ 2× 4 = 33, hence 2𝑚 ≥ 34. Since 𝜈

2
≤ 2,

by Lemma 2(4), we get 4𝑓 + 2 ≥ 34, hence 𝑓 ≥ 8. So, we can
assume that 𝑛

𝑖
= 1.The interior vertex𝑃 cannot be connected

to all the vertices of 𝐴𝐵𝐶𝐷. Otherwise, there is a neighbour
of 𝑃 which is interior to a side of the trapezoid. It is therefore
adjacent to a further interior vertex of the trapezoid, that is,
𝑛
𝑖
≥ 2. This contradicts 𝑛

𝑖
= 1. If 𝑃 is connected to exactly

three vertices of the trapezoid, say 𝐴, 𝐵, and 𝐶, there are two
neighbours of 𝑃 which have degree ≥ 4. Further, at least one
of the obtuse corners𝐴 and𝐶must have degree ≥ 4.Then, we
have𝑚

𝑖
≥ 7,𝑚

𝜕
= 𝑛
𝜕
= 𝑛−1 and 𝑛+𝑓−1 = 𝑚

𝑖
+𝑚
𝜕
≥ 7+𝑛−1,

hence 𝑓 ≥ 7. If 𝑃 is joined to exactly two vertices of 𝐴𝐵𝐶𝐷,
then there are three neighbours of 𝑃 with degree ≥ 4. The
degree of the two vertices of 𝐴𝐵𝐶𝐷 joined with 𝑃 is ≥ 3, and
the remaining two vertices have degree ≥ 2. Summing up, we
get 2𝑚 ≥ 5 + 2 × 2 + 2 × 3 + 3 × 4 = 27, hence 2𝑚 ≥ 28.
Since 𝜈

2
≤ 2, by Lemma 2(4), we have 4𝑓 + 2 ≥ 28, hence

𝑓 ≥ 7. If 𝑃 is joined to exactly one vertex of 𝐴𝐵𝐶𝐷, then
four neighbours of 𝑃 have degree ≥ 4. Thus, 𝑚

𝑖
≥ 7, and, by

Lemma 2(1), 𝑓 = 𝑚
𝑖
− 𝑛
𝑖
+ 1 ≥ 7. Now, for a trapezoid as in

statement, an acute triangulation with 7 acute triangles was
described in [7, Section 3].

3. Acute Triangulations of Pentagons

The following proposition follows directly from the results
proved in [5].

Proposition 8. Every convex quadrilateral admits an acute
triangulation of size at most eight, such that there are at most
two new vertices introduced on each side.

It was shown in [8, Lemma 3.1] that every pentagon with at
least one acute corner can be triangulated into at most 32
acute triangles. Under the hypothesis of convexity, we have
the following.

Proposition 9. Every convex pentagon with at least one acute
corner can be triangulated into at most 25 acute triangles.

Proof. Let Γ = 𝐴𝐵𝐶𝐷𝐸 (in the anticlockwise order) be a
convex pentagon with at least one acute corner, say 𝐴. We
distinguish some cases.
Case 1. The triangle 𝐴𝐵𝐸 is acute. By Proposition 8, the
convex quadrilateral 𝐵𝐶𝐷𝐸 has an acute triangulation with
size ≤ 8 such that there are at most 2 side vertices on 𝐵𝐸.
Subcase 1.1.There is no side vertex on 𝐵𝐸. Then, Γ admits an
acute triangulation with at most 9 triangles.
Subcase 1.2. There is precisely one side vertex, say 𝑃, on 𝐵𝐸.
By Lemma 4 of [6], since 𝐴𝐵𝐸 is an acute triangle, for any
point 𝑃 on the side 𝐵𝐸, there are two points 𝑅 on 𝐴𝐸 and 𝑆
on𝐴𝐵 such that the line segments𝑃𝑅,𝑅𝑆, and𝑃𝑆 divide𝐴𝐵𝐸
into four acute triangles. Then, we get an acute triangulation
of Γ into at most 12 triangles.
Subcase 1.3. There are exactly two side vertices, say 𝑀 and
𝑁, on 𝐵𝐸. In this case, the convex quadrilateral 𝐵𝐶𝐷𝐸 has
an acute triangulation of size 7, as shown in [5]. Suppose that
𝑀 is an interior point of 𝐸𝑁. Let 𝑃 be the point on 𝐴𝐸 such
that 𝑃𝑁 is parallel to 𝐴𝐵. Then, the triangle 𝑃𝑁𝐸 is acute.
By Lemma 4 of [6], the triangle 𝑃𝑁𝐸 can be triangulated
into four acute triangles with 𝑀 as the only side vertex on
𝐸𝑁 and two new vertices 𝑅 and 𝑆 on the edges 𝐸𝑃 and 𝑁𝑃,
respectively. Let𝐻 and 𝐾 be the orthogonal projections of 𝑆
and𝑁 on the edge 𝐴𝐵. The segments𝑁𝐾 and 𝑆𝐾 divide the
right trapezoid𝐻𝐵𝑁𝑆 into three right triangles. By [7, Section
3], there is an acute triangulation of the right trapezoid𝐴𝐻𝑆𝑃
of size 6 without new vertices introduced on the sides 𝑃𝑆 and
𝐻𝑆. Then, we can slightly slide 𝐾 and 𝐻 in direction from
𝐵 to 𝐴 such that the triangles 𝑆𝐻𝐾, 𝑆𝐾𝑁, and 𝐵𝐾𝑁 become
acute. This gives an acute triangulation of Γ whose size is at
most 20.
Case 2. The triangle 𝐴𝐵𝐸 is nonacute, that is, 𝐸, for example,
is a nonacute corner.
Subcase 2.1. There is no side vertex on 𝐵𝐸. Then, there
exists an acute triangle, say 𝐸𝐵𝑃, which belongs to an acute
triangulation of 𝐵𝐶𝐷𝐸with size ≤ 8. Let𝐻 be the orthogonal
projection of 𝑃 on the side 𝐵𝐸. By Theorem 2 of [6], since
𝐴𝐵𝐸 is a triangle with nonacute corner 𝐸, for any point 𝐻
on the side 𝐵𝐸, there is an acute triangulation of 𝐴𝐵𝐸 with
size 7 such that 𝐻 is the only side vertex lying on 𝐵𝐸. Such
an acute triangulation of 𝐴𝐵𝐸 has new vertices 𝑅 (resp., 𝑆
and 𝑇) introduced on the side𝐴𝐸 (resp.,𝐴𝐵). Finally, we can
slightly slide 𝐻 away from 𝐸𝐵𝑃 in direction perpendicular
to 𝐻𝑃 such that the triangles 𝐸𝐻𝑃 and 𝐵𝐻𝑃 become acute.
This gives an acute triangulation of Γ into at most 16 acute
triangles.
Subcase 2.2.There is precisely one side vertex 𝑃 on 𝐵𝐸. As in
the previous subcase, by Theorem 2 of [6], for any point 𝑃
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on the side 𝐵𝐸, there is an acute triangulation of the triangle
𝐴𝐵𝐸 with size 7 such that 𝑃 is the only side vertex lying on
𝐵𝐸.This gives an acute triangulation of Γ into at most 15 acute
triangles.
Subcase 2.3.There are exactly two side vertices, say𝑀 and𝑁,
on 𝐵𝐸. In this case, 𝐵𝐶𝐷𝐸 has an acute triangulation of size 7
by [5]. Suppose that𝑀 is an interior point of𝐸𝑁. Let𝑃 be the
point on𝐴𝐸 such that 𝑃𝑁 is parallel to𝐴𝐵.Then, the triangle
𝐸𝑁𝑃 has a nonacute corner 𝐸. ByTheorem 2 of [6], 𝐸𝑁𝑃 can
be triangulated into 7 acute triangles with𝑀 as the only side
vertex on 𝐸𝑁 and new vertices 𝑅, respectively, 𝑆 and 𝑇 on the
edges𝐸𝑃, respectively,𝑁𝑃. Let𝐻,𝐾, and 𝐿 be the orthogonal
projections of 𝑆, 𝑇, and 𝑁 on the edge 𝐴𝐵, respectively. The
line segments𝑁𝐿, 𝑇𝐿, 𝑇𝐾, and 𝑆𝐾 divide the right trapezoid
𝐻𝐵𝑁𝑆 into 5 right triangles. By [7, Section 3], there is an acute
triangulation of the right trapezoid 𝐴𝐻𝑆𝑃 of size 6 without
new vertices introduced on the sides 𝑃𝑆 and 𝐻𝑆. Then, we
can slightly slide 𝐿, 𝐾, and 𝐻 in direction from 𝐵 to 𝐴 such
that the triangles 𝐵𝐿𝑁, 𝑇𝑁𝐿, 𝐾𝑇𝐿, 𝐾𝑇𝑆, and 𝑆𝐻𝐾 become
acute. This gives an acute triangulation of Γ whose size is at
most 25.

Corollary 10. Every convex pentagon with at least two nonad-
jacent acute corners can be triangulated into at most 16 acute
triangles.

Proof. By the hypothesis and the results from [5], we can
avoid subcases 1.3 and 2.3 in the above proof. The remaining
cases give the requested bound.

The following proposition follows directly from the results
proved in [3, 4, 7].

Proposition 11. Every trapezoid (resp., rectangle) admits an
acute triangulation of size at most 7 (resp., 8) such that there
are at most one new vertex introduced on each side.

Proposition 12. Let Γ be a convex pentagon which has at least
one acute corner and two parallel sides, nonincident to it.Then,
Γ can be triangulated into at most 14 acute triangles.

Proof. Let Γ = 𝐴𝐵𝐶𝐷𝐸 (in the anticlockwise order) be
a convex pentagon with at least one acute corner, say 𝐷,
and two parallel sides 𝐴𝐸 and 𝐵𝐶 with |𝐴𝐸| ≤ |𝐵𝐶|. We
distinguish some cases.
Case 1. The triangle 𝐶𝐷𝐸 is acute.
Subcase 1.1. Let 𝐻 and 𝐾 be the orthogonal projections of 𝐴
and 𝐸, respectively, on the straight line ℓ

𝐵𝐶
containing the

edge 𝐵𝐶. Suppose that𝐻 (resp.,𝐾) is interior (resp., exterior)
of 𝐵𝐶. By [7, Section 2], the trapezoid𝐴𝐵𝐶𝐸 admits an acute
triangulation of size at most 4 such that there are no new
vertices on the side 𝐶𝐸. Then, Γ has an acute triangulation
of size at most 5.
Subcase 1.2. Suppose that the above orthogonal projections
𝐻 and 𝐾 are interior to the edge 𝐵𝐶. By [7, Section 2], the
trapezoid𝐴𝐵𝐶𝐸 admits an acute triangulation of size at most
5 such that no new vertices are introduced on𝐶𝐸.Then, Γ has
an acute triangulation of size at most 6.

Subcase 1.3. Suppose that 𝐴𝐵𝐶𝐸 is a right trapezoid (this
implies that the triangle 𝐶𝐷𝐸 is acute). By [7, Section 3],
𝐴𝐵𝐶𝐸 can be triangulated into 6 acute triangles such that
there are no new vertices on 𝐶𝐸. Then, Γ has an acute
triangulation of size at most 7.
Subcase 1.4. Suppose that the above orthogonal projections𝐻
and 𝐾 are exterior to 𝐵𝐶. By [7, Section 3], 𝐴𝐵𝐶𝐸 admits an
acute triangulation of size at most 7 such that there is only
one vertex, say 𝑃, on the side 𝐶𝐸. By Lemma 4 of [6], for any
point 𝑃 in the side𝐶𝐸, there are two points 𝑅 on𝐷𝐸 and 𝑆 on
𝐶𝐷 such that the line segments 𝑃𝑅, 𝑃𝑆, and 𝑅𝑆 divide 𝐶𝐷𝐸
into 4 acute triangles.Then, Γ can be triangulated into atmost
11 acute triangles.
Case 2. The triangle 𝐶𝐷𝐸 is nonacute, that is, the corner 𝐸,
for example, is nonacute.
Subcase 2.1. Let 𝐴𝐵𝐶𝐸 be as in subcase 1.1. There is an acute
triangle, say 𝐶𝐸𝑃, which belongs to the triangulation of size
≤ 4 of 𝐴𝐵𝐶𝐸. Let 𝑅 be the orthogonal projection of 𝑃 on the
edge 𝐶𝐸. ByTheorem 2 of [6], there is an acute triangulation
of 𝐶𝐷𝐸 with size 7 such that 𝑅 is the only side vertex on 𝐶𝐸.
Then, Γ has an acute triangulation of size at most 12.
Subcase 2.2. Let 𝐴𝐵𝐶𝐸 be as in subcase 1.2. Reasoning as in
the previous subcase gives an acute triangulation of Γ with
size ≤ 13.
Subcase 2.3. Let 𝐴𝐵𝐶𝐸 be as in Subcase 1.4. By Theorem 2 of
[6] the triangle 𝐶𝐷𝐸 can be triangulated into at most 7 acute
triangles such that the only side vertex on 𝐶𝐸 is 𝑃. This gives
an acute triangulation of Γ with size ≤ 14.
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