
18 September 2017

intestazione repositorydell’ateneo

Following the Problem Organisation: A Design Strategy for Engineering Emergence / Noël, Victor; Zambonelli, Franco. -
STAMPA. - 570(2015), pp. 311-317. ((Intervento presentato al convegno 8th Symposium on Intelligent Distributed
Computing (IDC) tenutosi a Madrid, Spain nel Sep. 3-5 2014.

Original

Following the Problem Organisation: A Design Strategy for Engineering Emergence

Publisher:

Published
DOI:10.1007/978-3-319-10422-5_33

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 11380/1060818 since: 2017-05-04T17:19:02Z

Springer International Publishing

This is a pre print version of the following article:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/54007285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Following the Problem Organisation: A Design
Strategy for Engineering Emergence

Victor Noël and Franco Zambonelli

Abstract To support the development of self-organising systems, we explain and ra-
tionalise the following architectural strategy: directly mapping the solution decom-
position on the problem organisation and only relying on the problem abstractions
for the design. We illustrate this with an example from swarm robotics.

1 Introduction

Complex systems are made of simple elements and are characterised by the pres-
ence of non-linear interactions between them, no central control and the appearance
of emergent behaviours at the system level [12]. In particular, emergence is the ap-
pearance of high-level behaviours resulting from low-level simpler rules [5] and
an important mechanism governing these systems is self-organisation: autonomous
change of the elements organisation without external control [5]. Multi-Agent Sys-
tems (MAS) is one field where self-organisation and emergence are studied and ap-
plied to engineer self-adaptive systems [6]. Some aspects of the global functionality
are not explicitly pre-designed but emerge at runtime through this self-organising
process in an endogenous and bottom-up way: the agents are unaware of the organ-
isation as a whole [14]. Here, we assume self-organisation as the principle followed
to design the low-level rules that lead to emergence.

In this paper, the general challenge is engineering self-adaptive self-organising
complex systems that exist in and modify a complex context while meeting complex
requirements, in the continuation of [1, 4].Towards that goal, we propose to look at
practical methodological guidelines to accompany their design. In the following, we
use the term “Self-Organising MAS” (SOMAS) to denote such engineered system.

The contribution of this paper is proposing and rationalising the following design
strategy: when designing SOMAS, it is necessary to follow the problem organisa-

Victor Noël · Franco Zambonelli
DISMI, University of Modena and Reggio Emilia, Italy,
e-mail: {victor.noel,franco.zambonelli}@unimore.it

1



2 Victor Noël and Franco Zambonelli

tion. It means mapping the SOMAS decomposition on the problem decomposition
in elements (and not sub-problems), and relying only on the problem abstractions
for the behaviours. This strategy is not a method by itself but a complement to ex-
isting approaches and methods. It is illustrated with a running example: a swarm of
bots exploring and rescuing victims in an unknown environment. Everything pre-
sented is fully implemented (See http://www.irit.fr/~Victor.Noel/
unimore-ascens-idc-2014/).

2 Following the Problem Organisation

2.1 Problems, Requirements and Design Constraints

A problem to answer is made of a context and requirements: engineering is finding a
software solution, here the SOMAS, satisfying the requirements in that context [10].

As an example, in a robotics scenario, we look at the search and secure problem:
bots must explore an unknown environment to look for victims and then secure them
(supposedly to rescue them, but this is not covered in our example). The context is
composed of the bots (controlled by the software to build) with limited communi-
cation capabilities, the environment that have walls, the victims that must each be
secured by several bots. The requirements are to search and secure victims, to se-
cure them all, as fast as possible, to explore the accessible space fairly, to completely
explore the space in a non-random way, etc.

It is important to highlight the distinction between the problem answered by the
choice of using self-organisation and emergence, and the design constraints it im-
plies: existing works characterising self-organisation and emergence do not usually
explicit this distinction [5, 6, 11, 14].

The following can be part of the problem: to have self-adaptation, a distributed
deployment context, large-scale system, non-existence of an efficient centralised
solution or impossibility of expressing the global behaviour of the system [3]. In-
versely, the following are mandatory design constraints when engineering SOMAS:
the fact that the decision must be distributed and decentralised, that the global
macro-level behaviour and organisation can’t be predefined or that self-organisation
must be a bottom-up process initiated locally by the elements of the system [11].

2.2 The Strategy

When designing SOMAS, two main activities are of importance: decomposing the
solution in agents and giving them a self-organising behaviour. It is usual in software
engineering to first model the problem space before entering the solution space [10].
However, here, we closely map the solution decomposition in agents on the problem
organisation, and only rely on the problem abstractions to design their behaviours.

By problem organisation, we mean the identification of the various elements par-
ticipating in it and of the role they play with respect to the requirements. We call



Following the Problem Organisation: A Design Strategy for Engineering Emergence 3

it the “organisation” to avoid confusion with the meaning usually associated to a
decomposition of the problem in sub-problems.

In the robotic example, the elements participating in the problem are the bots,
but also the victims and the environment. Then, in relation with the requirements,
the elements play the following role in the problem: bots moves to directions they
choose, bots communicate with other bots, bots perceive victim, bots perceive walls,
victims are situated, victims need a specific number of bots to be secured, etc. In-
versely, an example of a potential decomposition in sub-problems would describe
the problem as being about exploring and discovering on one hand, and securing
collectively on the other hand.

The problem organisation can be imposed by the context (that the engineer can’t
control or modify) or must be chosen by the engineer when building the system.
How to do so is an open question that we don’t answer here.

Based on this modelling of the problem, we map elements of the solution (soft-
ware agents) to the elements of the problem, and we give them the same capabilities
as in the problem domain and not more. Their behaviour should be designed locally
with respect to the relations elements have in the problem. The decisions (including
those of their self-organising behaviour) they take should only rely on the problem
domain abstractions and no higher-level global abstractions should be introduced.

In the robotic example, bots must choose where is the best direction to go at every
given moment. For that, they can use what they directly see (victims and explorable
areas), and when they don’t know what to choose, they should rely on information
shared by other bots about the state of the world with respect to the problem: where
they are needed for victims or exploration. Hence, bots that see victims or explorable
areas advertise about it. This information can be propagated by the bots and they
can use it to decide where to go next.

Of course the complexity of the context and of the requirements (e.g., high num-
ber of bots, unknown scattering of the victims or limited perception means) are
likely to make all these choices difficult. Correctly choosing the best action to take
is thus an important questions: we don’t pretend to answer it in this paper, but, as
said before, we argue that such decisions must rely on the problem domain abstrac-
tions. Still, we comment on this question in the next section.

2.3 Relation to the Design of Self-Organisation

The strategy presented in the previous section can thus be used to design a SOMAS,
but, as we highlighted it, is not enough by itself. In particular, a very important point
is the problem of taking the correct local decision for the agents. Some approaches
to self-organisation propose local criteria to be followed by the agents in order to
drive the self-organisation. For example, the AMAS theory [9] is such an approach.
Its main design strategy is that agents must have a cooperative social attitude: the
whole approach rests on the theory that if the agents of a system are cooperative with
the system environment as well as internally, then the system will behave adequately
with respect to the objectives of the agents and of their environment. By identifying
local non-cooperative situations agents can face, the engineer designs the agents so



4 Victor Noël and Franco Zambonelli

that they prevent or correct such situations in order to put the system in a state as
cooperative as possible. Usually, a measure called criticality that is shared amongst
agents is used to reflect the importance of some state of the problem and to give an
agent a way to decide between several choices.

In the robotic example, a bot often has the choice between several directions and
do not see any victims. In order to take the most cooperative decision, he needs some
information about the state of the system: bots can advertise for example about the
direction they chose to go to and some measure (the criticality) of how much more
bots are needed in this direction. When a bot propagates this information (because
he chose the direction), it will update this criticality in order to reflect his and others
participations in the self-organisation process: its choice means that this direction
is a bit less critical now. Because bots assume they are all cooperative, they know
that a direction chosen by another bot is presently the most important one to go to:
choosing the most critical direction amongst all the neighbouring advertisements is
enough for a bot to decide where to go next. Every decision taken will then influence
how the bot computes this criticality, and inversely.

The way the self-organising process can be designed with this approach heav-
ily relies on the fact that the agents does not contain any pre-defined behaviour in
relation to the expected global behaviour, but only concepts manipulated in the defi-
nition of the problem itself, which serves to base the local decision on. For example,
the criticality measure used in the AMAS approach reflects some aspect of the prob-
lem state in a comparable form: no extra high-level characterisation of what is or not
a good global solution is used.

2.4 Rationale

The rationale behind the defended strategy, namely to follow the problem organ-
isation when designing a SOMAS, relies on the design constraints highlighted in
Section 2.1 and can be discussed in two cases: why follow the problem for decom-
position and why use the problem organisation as we defined it here.

If the the engineer of a SOMAS introduces extra concepts foreign to the problem
organisation, this means that when facing local decisions, the agents must translate
their interpretation of the current state of the problem to the extra abstractions. Go-
ing far from the problem implies that we pre-set how situations are interpreted by
the agents: it prevents them from interpreting correctly unforeseen situations be-
cause the concepts they manipulate can’t capture them. In other words, the farther
the design is from the problem, the lesser adaptive the system will be, and the lesser
adequate behaviours can emerge.

In the robotic example, if the bots are designed so that to explore, they move
in the direction of a repulsion vector from other bots (a typical algorithm for bots
dispersion), then the problem solved is not about exploring while securing anymore,
it is about dispersing bots in an environment: for example, in a hallway, a stopped
bot securing a victim will prevent other bots to go behind him. Inversely, if bots
behave as explained before, when the collective would profit from dispersing, then
bots disperse as a result of going in directions advertised by others where the less



Following the Problem Organisation: A Design Strategy for Engineering Emergence 5

bots are going and when there is only one direction to go (e.g., a hallway), bots just
go there because it is the only advertised direction.

Then, a problem decomposition in sub-problems calls for solving each sub-
problem separately (if it is not the case, then the decomposition in sub-problems
is useless for the design and this is out of the scope of the discussion here). This
means that the sub-solutions must then be integrated together in the agents, and
such integration is embedding the complexity of the problem.

In the robotic example, if the bots have a behaviour to explore and discover
victims, and another to go help other bots secure their discovered victims, it becomes
very difficult to handle at the agent level the choice between going in a direction or
not: it could be needed to secure a victim, but there may be already other bots going
there, so it must gather information about that, and then it could not be needed
because other bots are going, but then maybe there is more to explore behind the
victim, so it should go anyway, except in the case where there is still enough bots
going there for the same reason as it is, and so on. . .

This puts back the complexity of solving the problem at the agent level instead
of making it the result of the collective behaviour: it is the very reason why the
paradigm shift proposed by self-organisation and emergence engineering was pro-
posed in the first place. This matter has been discussed many times in the literature
(the “complexity bottleneck” [11]): we don’t bring new arguments for it.

3 Related Works and Discussion

The question of engineering emergence has been studied in various contexts, we
discuss some of them and show how they are different from our contribution. On the
whole, there is three ways of engineering emergences: ad-hoc, reusing or following
a well-defined methodological approached.

First, ad-hoc means there is no explicit rationale behind decisions taken during
the design: this is clearly out of scope of the current discussion as we are interested
in ways to improve the engineering of SOMAS.

Then, reusing is usually done through the reuse of existing self-organising mech-
anisms that are well-known and understood. The main example of that is nature-
inspired self-organisation [8]. These works rely on approaches or mechanisms de-
pendent to a certain class of problems: they are easier to apply and to reuse when
possible, but in exchange it is needed to translate the concepts manipulated in the
problem to the abstractions of the solution reused. It is on that point that it diverges
from our work: this means that part of the original problem is lost during that trans-
lation, and we precisely advocate for relying extensively on the problem.

Finally, methodological approaches are the closest to our work in terms of mo-
tivation. We cited in Section 2.3 the AMAS approaches and similar strategies are
for example well discussed in [7]. All these works mainly proposes way to design
the self-organising behaviour of the agents but mostly don’t discuss (or rationalise)
the decomposition in agents of SOMAS: this is what we do here. Other works note
that simulation can be used to accompany the engineering of emergence in order to



6 Victor Noël and Franco Zambonelli

iteratively change the design with respect to the observed results: it is called “co-
development” [2] or “disciplined exploration” [13]. Our contribution is well coher-
ent with these approaches, but of a different nature, and show that it is possible to
exploit the problem organisation to reduce the development effort of SOMAS.

4 Conclusion

In this paper, we defend the idea that the specificities of self-organisation and emer-
gence rationalise the need for decomposing the system by following the problem
organisation. Of course, such an absolute assertion must be instantiated differently
depending on the actual problem to solve: at the very least, this strategy and ratio-
nale improve the understanding of the relation between the problem and the solution
decomposition. There exist many more other issues to explore on this subject, like
how to well model the problem organisation, and other related subjects, like how the
problem and the solution decomposition impacts the decentralised decision making.

Acknowledgment
This work is supported by the ASCENS project (EU FP7-FET, Contract No. 257414).

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a general model for self-
adaptive systems. In: WETICE Conference, pp. 48–53. IEEE (2012)

2. Andrews, P., Stepney, S., Winfield, A.: Simulation as an experimental design process for emer-
gent systems. In: EmergeNET4 Workshop: Engineering Emergence (2010)

3. Arcangeli, J.P., Noël, V., Migeon, F.: Software Architectures and Multiagent Systems. In:
M. Oussalah (ed.) Software Architectures, vol. 2, pp. 171–208. Wiley (2014)

4. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collabo-
ration patterns for autonomic service ensembles. In: International Conference on Collabora-
tion Technologies and Systems, pp. 508–515. IEEE (2011)

5. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts but promising
when combined. In: S.A. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, R. Nagpal
(eds.) Engineering Self-Organising Systems, LNCS, vol. 3464, pp. 1–15. Springer (2005)

6. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in
mas: An overview. Informatica 30, 45–54 (2006)

7. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.): Self-Organising Software.
Natural Computing. Springer (2011)

8. Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F.: Engineering self-
organising systems: nature-inspired approaches to software engineering. LNCS (2004)

9. Georgé, J.P., Gleizes, M.P., Camps, V.: Cooperation. In: Di Marzo Serugendo et al. [7], pp.
193–226

10. Hall, J., Rapanotti, L., Jackson, M.: Problem-oriented software engineering: Solving the pack-
age router control problem. Transactions on Software Engineering 34(2), 226–241 (2008)

11. Heylighen, F., Gershenson, C.: The meaning of self-organization in computing. IEEE Intelli-
gent Systems, Section Trends & Controversies 18(4), 72–75 (2003)

12. Mitchell, M.: Complexity: A guided tour. Oxford University Press (2009)
13. Paunovski, O., Eleftherakis, G., Cowling, T.: Disciplined exploration of emergence using

multi-agent simulation framework. Computing and Informatics 28(3), 369–391 (2009)
14. Picard, G., Hübner, J.F., Boissier, O., Gleizes, M.P.: Reorganisation and Self-organisation in

Multi-Agent Systems. In: International Workshop on Organizational Modeling, pp. 66–80
(2009)


