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Abstract 

Nowadays the necessity to reveal the hidden information from complex data sets is increasing due 

to the development of high-throughput instrumentation. The possibility to jointly analyze data sets 

arising from different sources (e.g. different analytical determinations/platforms) allows capturing 

the latent information that would not be extracted by the individual analysis of each block of data.  

Several approaches are proposed in the literature and are generally referred to as data fusion 

approaches. In this work a mid level data fusion is proposed for the characterization of three 

varieties (Salamino di Santa Croce, Grasparossa di Castelvetro, Sorbara) of Lambrusco Wine, a 

typical P.D.O. wine of the District of Modena (Italy). Wine samples of the three different varieties 

were analyzed by means of 1H-NMR spectroscopy, Emission-Excitation Fluorescence Spectroscopy 

and HPLC-DAD of the phenolic compounds.   

Since the analytical outputs are characterized by different dimensionality (matrix and tensor), 

several multivariate analysis were applied (PCA, PARAFAC, MCR-ALS) in order to extract and 

merge, in a hierarchical way, the information present in each data set. 

The results showed that this approach was able to well characterize Lambrusco samples giving also 

the possibility to understand the correlation between the sources of information arising from the 

three analytical techniques. 
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1 Introduction 

Data fusion is nowadays an emerging branch in chemometrics [1-8], in fact the possibility to jointly 

analyze by means of different analytical techniques a given set of samples enhances the quantity 

and the quality of the information which can be extracted. The nature and dimensionality of the data 

obtained by several instruments require the use of multivariate data analysis tools in data 

elaboration and fusion with the aim of capturing latent information that would not be extracted by 

the individual analysis of each block of data. When the analysis of a sample is performed at the 

same time by means of variables of different nature, not only the goodness of the sample 

characterization could improve, but also the correlation and the similar/different information 

content pertaining to the different variables can be assessed. 

Several data fusion frameworks are reported in literature, and depending on the field of application, 

many terms are used interchangeably to indicate the same procedure, e.g. low-level data fusion is 

synonymous of concatenated or merged data fusion. In chemometrics data fusion techniques are 

commonly classified in three main groups [1,2]: (a) low-level data fusion, which consists of the 

simple concatenation of the data of different nature; (b) mid-level or hierarchical data fusion, which 

corresponds to the fusion of features extracted from the original data, i.e. prior to the fusion step 

some data reduction is operated, either by multivariate tools, e.g. Principal Component Analysis 

(PCA) retaining the scores for a given number of components, or through features selection 

strategies; (c) in high-level or decision level data fusion different models are built separately for 

each block of data and then the model responses are merged to produce a final “fused” response.  

In particular, dealing with mid-level data fusion methodologies there are two levels of modeling: a 

low level, where data reduction is operated obtaining a latent variables model for each single 

analytical platform, and an higher multivariate data analysis level, where these latent variables are 

fused to build the final model. The main issues to face concern the features to retain from each 

model, the scaling to adopt and the most efficient method to be used for data reduction. 

In the field of food analysis, which contemplates in almost all cases the presence of complex 

matrices, interferences, additional uncontrolled variability due to biological, chemical and physical 

transformations, the necessity to unveil the hidden information related to the investigated product is 

a crucial task to face and data fusion methodologies may represent a very efficient tool. 

This work focuses on the development of a model able to distinguish between three Lambrusco 

wines with Protected Denomination of Origin (PDO), typical of the District of Modena (Italy). 



Lambrusco wines are the most exported wines all over the world (more than 450.000 hL/year 

produced) and are the oldest wines in the Region of Emilia Romagna.  

Since the three varieties, considered in this study, belong to the same family of grapes and the 

production procedure are quite similar, all Lambrusco are red sparkling wines produced with a 

second fermentation in pressurized tanks, investigating the differences between the three typologies 

of wines from a chemical point of view is a difficult task to face. 

The aim of this work is twofold: on one hand to develop a classification model for the identification 

of the three typologies of Lambrusco wines, on the other hand, to better understand the correlation 

and analogy between the considered sources of information. In order to characterize Lambrusco 

wines a mid-level data fusion approach is proposed. Lambrusco wine samples were analyzed by 

means of Nuclear Magnetic Resonance (1H-NMR), Fluorescence Excitation-Emission Matrix 

Spectroscopy (EEM), and liquid chromatography (HPLC-DAD). The first two are non-destructive 

techniques useful to acquire a fingerprint of the food product, while HPLC-DAD was used to 

extract and characterize the phenolic fraction.  

The data arising from the three analytical techniques, considered in this study, are arranged as two 

and three way arrays. Thus, appropriate different data analysis tools such as PCA, Parallel Factor 

analysis (PARAFAC) and Multivariate Curve Resolution (MCR), were used as explorative analysis 

and data reduction tools, in particular PCA for 1H-NMR data, parallel factor analysis (PARAFAC) 

for EEM data and multivariate curve resolution (MCR) was used to resolve the phenolic fraction 

from HPLC-DAD data. The features extracted in the data reduction step (PCA scores, mode one 

PARAFAC loadings and the peaks areas of MCR resolved components) were then merged together 

and a classification model based on PLS-DA was finally computed for the merged data set. In 

addition, to compare the results of data fusion with the performance of the single set of data, three 

classification models, based on PLS-DA and NPLS-DA were built for the three separate data sets, 

respectively. 

 

2 Materials and methods 

2.1 Experimental 

According with their regulation (DM July 27, 2009; GU no. 184-187-188, 13/08/2009) four 

typologies of Lambrusco wines can be produced as PDO product, namely: Lambrusco Grasparossa 

di Castelvetro PDO, Lambrusco di Sorbara PDO, Lambrusco Salamino di Santa Croce PDO and 

Lambrusco di Modena PDO. The ampelographic composition, set by the production codes, is 

defined as follow: at least 60% of Lambrusco di Sorbara grapes, up to 40% of Lambrusco Salamino 



grapes, up to a maximum 15% of other Lambrusco grapes either of one variety or in combination 

for Lambrusco di Sorbara; for Lambrusco Salamino di Santa Croce and Lambrusco Grasparossa di 

Castelvetro at least 85% of grapes from vines of the same name, respectively, and the remaining 

15% of other Lambrusco (Ancellotta, Fortana, and Malbo Gentile) grapes; at least 85% of 

Lambrusco grapes of the three PDO different varieties, up to a maximum 15% of grapes from 

Ancellotta, Malbo Gentile, and Fontana vines for Lambrusco di Modena. 

Fifty-eight Lambrusco wine samples, produced in the 2009 harvest, were provided by several local 

wineries through the producers consortium. A total of nineteen Lambrusco Grasparossa di 

Casltelvetro PDO, twenty Lambrusco Salamino di Santa Croce PDO and nineteen Lambrusco di 

Sorbara PDO were analyzed with the three analytical techniques described below.  

2.1.1 1H-NMR data 

The acquisition of the 1H-NMR spectra is described in detail in [10]. Wine samples were buffered at 

pH 2.00 in order to avoid the chemical-shift variation of pH dependent signals and then lyophilized 

to reduce the ethanol signals. 1H-NMR spectra were acquired with a Bruker FT-NMR Avance 400 

spectrometer (Bruker Biospin GmbH Rheinstetten, Karlsruhe, Germany) operating at 400.13 MHz. 

The experiments were performed at a temperature of 300 K and non-spinning. The 1H NMR data 

were acquired using the Bruker spin−echo sequence “cpmgpr.fb” (Carr−Purcell−Meiboom−Gill, 

Bruker Library) with water presaturation, applied to suppress broad resonance signals. [11]. 

2.1.2 EEM data 

The acquisition of EEM signals was performed on degased wine samples using a FLS920 

fluorescence spectrometer (Edinburgh Photonics) equipped with a variable-angle front-face 

accessory, to ensure that reflected light, scattered radiation, and depolarization phenomena were 

minimized. The angle of incidence, defined as the angle between the excitation beam and a 

perpendicular to the cell surface, was 30°. Wine samples were placed in a 3 mL quartz cell, and 

spectra were recorded at 20 °C. The excitation range spanned the region from 340 nm to 240 nm (5 

nm steps), the emission range considered was from 500 nm to 300 nm (1nm steps). The landscapes 

were registered as multiple emission spectra at decreasing excitation wavelengths (from 340 nm to 

240 nm), total scanning time per sample was about ten minutes. 

2.1.3 HPLC-DAD data 

The chromatographic runs conditions are treated in detail in our previous works [9] here only main 

analysis steps will be recalled. Separation of the phenolic compounds by means of solid phase 

extraction, Supelco DSC-18 cartridges with 6 mL tubes, was performed prior to the acquisition of 

the chromatograms. Samples were analyzed by reverse phase liquid chromatography by using a 



Beckman System Gold coupled with a diode array detector. The column used was a reverse-phase 

Atlantis dC18 Waters-Milford-MA. The mobile phase used was formed by two solvents: solvent A: 

water (0.1% TFA); solvent B: 80 % acetonitrile and 20% water (0.1% TFA). An elution linear 

gradient was used. The wavelength range in the diode array detector was from 220 to 430 nm with a 

resolution of Δλ=2 nm. 

 

2.2 Data analysis 

2.2.1 Decomposition Methods 

Since the analytical techniques considered in this study produce outputs that are characterized by 

different data structure, i.e. data matrix and three way arrays, several chemometric algorithms were 

applied in order to extract and merge, at mid-level fusion, the information presents in each data set.  

The NMR data set was compressed by principal component analysis (PCA); the EEM data array 

was analyzed by parallel factor analysis (PARAFAC) [12], in fact a PARAFAC model ideally 

decomposes the fluorescence landscapes into trilinear components according to the number of 

fluorophores present in the samples. Finally, for HPLC-DAD data, considering the presence of shift 

in the retention time and also the interest in quantifying some of the phenolic compounds, 

multivariate curve resolution (MCR) was used to resolve the chemical components present and, the 

peaks areas of the resolved components were then used in building the fused data set.   

PARAFAC [12] is a trilinear decomposition method for multi-way arrays. It assumes that the data 

are organized in a trilinear structure and can be decomposed as a sum of triple outer product of 

vectors: 

       Eq. (1) 

 

The three sets of vector, a, b and c, are called loadings (the term scores is also used for the loadings 

of the first or samples mode). Constraints such as non-negativity, unimodality etc. can be eventually 

applied in order to obtain a chemical meaningful solution.  

Multivariate Curve Resolution (MCR) is a bilinear decomposition method [13] based on the multi-

wavelength extension of Beer’s absorption law: X =C×ST +E , where C holds the concentration 

profiles and S the pure components spectra. In this work the alternating least squares (ALS) 

algorithm MCR-ALS [14] was used. In MCR the resolved components are not forced to be 

orthogonal. Moreover MCR suffers from, rotational as well as intensity ambiguity and in order to 

minimize these issues several constraints can be applied. The constraints, or rather, the translation 

in a mathematical way of a chemical/physical behavior, help the resolution step and at the same 



time assist in giving chemical meaningful sense to the resolved profiles. Two types of constraints 

can be applied: soft constraints, such as non-negativity, unimodality, selectivity and closure, allow 

reducing rotational ambiguity; hard constraints, based on physicochemical models such as kinetic or 

equilibrium model, reduce at the same time both rotational and intensity ambiguities. 

2.2.2 Classification Methods 

The discriminant partial least squares regression methods (PLS-DA) [15] and its multi-way 

extension, multilinear PLS-DA (NPLS-DA) [16], were used in this work. These two classification 

techniques derive from the well-known regression algorithms PLS and NPLS where the dependent 

variable block, Y, holds the class information: as many y-variables as number of classes are defined 

as dummies variables assuming values one/minus one to indicate class membership (one/zero 

notation can be used as well). We adopted as classification rule that samples are assigned to the 

class for which the predicted y-value is higher, e.g. if the predicted vector of responses for an 

unknown sample, is: [-0.7 0.7 0.2] (in the case of a three classes problem), it will be assigned to 

class two. 

In order to assess PLS-DA/NPLS-DA dimensionality, i.e. number of components, the minimum 

classification error rate in cross-validation (venetian blind, ten splits) was considered. 

2.2.2.1 NPLS-DA 

Briefly, considering an X array of dimension I×J×K, the NPLS model is obtained by modeling X as 

in Tucker3 decomposition:  

X= TGX( WK�WJ )T + EX    Eq. (2) 

where X is the X array unfolded to an I×JK matrix, T holds the first mode scores (samples mode), 

WJ and WK are the second and the third mode weights, respectively. The symbol � denotes the 

Kronecker product. GX is the matricized core array of size F×F×F where F is the number of NPLS 

components (factors) and it is defined by:  

GX = T+X((WK)+� (WJ)+)T   Eq. (3) 

In the case of a two-ways data matrix, YI,M is defined by: 

Y = UQ + EY     Eq. (4) 

where U holds the Y scores and Q is the Y-loadings matrix. EX and EY hold X and Y residuals, 

respectively (EX is in matricized form I×JK ).  

In analogy with the two-ways PLS algorithm, the weights are determined such that the scores 

obtained from the X decomposition (T) have maximum covariance with the scores obtained from Y 



decomposition (inner relation: U = TB + EU). Regression coefficients that apply directly to X(I×JK) 

may also be derived [17] to re-express the NPLS model as:   

Y = X BPLS     Eq. (5) 

 

2.3 Data split 

The dataset, which contains 58 samples, was split in training (forty-five samples, fourteen 

Lambrusco Grasparossa, sixteen Lambrusco Salamino and fifteen Lambrusco Sorbara) and test set 

(thirteen samples, five Lambrusco Grasparossa, four Lambrusco Salamino and four Lambrusco 

Sorbara) using the Duplex algorithm [18] on the NMR data set. The same split was maintained for 

the other data sets and the fused data set, after checking, by exploratory data analysis, that both sets 

spanned the whole variability domain.  

 

2.4 Preprocessing and analysis of separate data set 

2.4.1 NMR data set 

Prior to data analysis, several preprocessing were tried and applied on NMR signals. The region 

below 1.24 ppm was cut, since containing ethanol signals not completely removed in the 

lyophilization step. To remove the inhomogeneous pH dependent chemical shifts, all spectra were 

aligned by means of Icoshift [19]. Weighted least squares WLS [20] was used for baseline 

correction. The 1H-NMR spectra of wines samples are characterized by region in which a lot of 

intense signals are present (e.g. 3ppm–5ppm) and regions with low intensity signals (e.g. aromatic 

region at 7ppm). For these reasons, after normalization (1-norm), block scaling was applied in order 

to give to each region the same variance. In practice block scaling applies the same weight, equal to 

the inverse of the standard deviation of the block, to each variable belonging to the same block. As 

a result, each block will have variance equal to one after block scaling, but the ratio of the variance 

between any two variables inside a block is preserved. This is different compared to block 

autoscaling where each variable is first scaled to unit variance (autoscaling), and then each block is 

scaled to equal variance. As a result each block will have unit variance and each variable inside a 

block will have the same variance equal to 1/nblock, where nblock is the number of variables in a given 

block. 

Three regions were defined for block scaling, the first one from 1.23 ppm to 3.14 ppm, the second 

from 3.15 ppm to 5.32ppm and the last one from 5.33 ppm to 7.93 ppm. Results of preprocessing 

for 1H-NMR signals are reported in Figure 1.  



Then, a PCA model, based on four principal components, chosen according to minimum RMSECV 

and explaining 86% of total variance, was considered and the extracted scores vectors were used to 

build the fused dataset. 

2.4.2 EEM data set 

Regarding the EEM data, some regions were cut because affected by noise and Rayleigh scattering. 

In particular, the excitation regions below 250 nm and the emission region over 450nm. A 

PARAFAC model, with no pretreatment applied, based on four factors constrained for non-

negativity in the second and third mode, was built considering the best compromise between 

explained variance, core consistency and split half analysis [21] results. 

 2.4.3 HPLC-DAD data set 

The data analysis related to the HPLC-DAD dataset is described in detail in our previous work  [9]. 

To summarize, a multiset MCR-ALS approach was used to resolve the chromatographic runs. The 

whole elution domain was divided in eight elution windows, reported in Table 1, in order to better 

achieve a complete resolution of the system under investigation. The elution windows will be 

mentioned in the text with the name of a compound, for example Gallic Acid or p-Coumaric Acid, 

presents in that windows. Two windows, namely Windows1 and Windows2 were mathematically 

resolved by the MCR-ALS approach but not labeled as the others since no one of the compounds 

present was confirmed using reference standards. The MCR-ALS setting were the same for each 

elution window, namely the number of components was determined by PCA, and initial estimation 

of the pure spectral profile by Simplisma. Some constraints were applied to resolve rotational 

ambiguity:  non-negativity in both concentration and spectra, and unimodality was applied to 

concentration profiles; finally selectivity or local rank were applied where we have further 

information about the system, for example for chromatographic runs of standards, or in the case in 

which the chromatographic profile of an experiment is known and some components are absent in 

some windows profiles. 

From the resolved concentration profiles of each elution window the peaks areas of each chemical 

component were calculated by integration. Thus the thirty-nine peak areas obtained were analyzed 

by PCA, applying autoscaling, to have an overview of Lambrusco varieties separation by this 

technique. 

 

2.5 Mid- Level Data fusion  

A mid-level data fusion approach was adopted for the joint analysis of wine samples using the 

HPLC-DAD, 1H-NMR and EEM information. In Figure 2 a schematization of the data fusion 



framework is proposed. In this case, since the data sets are of different order (two and three way 

arrays), the low-level approach based on simple concatenation and scaling of the variables of 

different nature, was not considered.  

As shown, the fused data set was assembled by using the four PCA scores from NMR data, the four 

PARAFAC samples loadings from EEM data and the areas of the thirty-nine resolved components 

by MCR of HPLC-DAD data. Both autoscaling and block-scaling (each data set corresponding to 

an analytical techniques was considered as a block) were tested as data preprocessing for the fused 

data set. Based on explorative PCA of the training set, autoscaling was finally selected as giving 

better categories separation. Then a PLS discriminant model was calculated on the fused data set. 

 

2.6 Software 

Multivariate Curve resolution was carried out by means of MCR-ALS GUI 

(http://www.ub.edu/mcr/web mcr/mcrals.html). Preprocessings, fusion of data, classification rate 

(as well in CV) for PLS-DA and NPLS-DA were assessed by using homemade Matlab routines 

(Mathworks, MA, USA); PCA, PARAFAC, PLS-DA and NPLS-DA models were calculated by 

using the PLS Toolbox 6.5 (distributed by Eigenvector Research Inc., WA, USA). 

 

3. Results and discussion 

This section is articulated in four parts. In the first three, the description of exploratory analysis 

results, classification models and features extraction, are presented for the separate datasets, 

namely, “ 1H-NMR (NMR) dataset ”, “ EEM dataset ” and  “ HPLC-DAD dataset ”. 

In the last part, the fused dataset is considered and the application of the mid-level approach is 

described in detail. 

 

3.1 1H-NMR dataset 
1H-NMR signals acquired on complex matrices are characterized by having a great number of 

peaks, high overlapping and a huge number of variables, which can difficultly be reduced by simple 

down sampling of the data because peaks width are very narrow. An analytical resolution of these 

signals by means of curve resolution techniques could be a difficult task. Signals present in NMR 

spectra of complex matrices, are referred to hundreds or even thousands of molecules and span in 

some cases the whole spectral region. In order to extract the majority of the information presents 

and to reduce the number of variables to be used for the data fusion step we decided to use NMR 



spectra as a fingerprinting technique, hence, a PCA model was built on the training set. A four 

components PCA model, chosen on the basis of minimum cross validation error and able to 

describe the 86% of the total variance was calculated using the data preprocessing described in 

previous section 2.4.1. 

As shown in Figure 3a, there are several part of the spectra having high loadings values for all 

components. As an example, the doublet at 1.4 ppm, attributable to CH3 group of lactic acid, is 

positively associated to the first, second and fourth component and negatively to the third. On the 

other hand, several regions of the spectra cannot be associated to a single signal since many 

overlapped multiplets are present, e.g. anomeric region from 3 ppm to 5 ppm or aromatic region 

over 7 ppm. In these cases, an overall contribution, related to a class of compound, could be 

attributed to a given component, as in the case of aromatic region, in which polyphenol signals 

present high loadings for the third component, or the case of sugars signals present in the anomeric 

region and positively correlated with the fourth component. Considering the scores plot in Figure 3b 

it appears that the separation of the samples belonging to the three classes is not clear as they 

overlap. The third component, highly related to the aromatic region of the signal, seems to be able 

to distinguish, but not completely, at positive values Salamino and Grasparossa samples from 

Sorbara samples present at negative values.  

The classification results obtained by PLS-DA on this data set are reported in Table 1 together with 

the classification models obtained for each separate data set. For all classification models presented 

in this work, the dataset was split in a training set of 45 samples and a test set of 13 samples, as 

described in the previous section 2.3.  

The PLS-DA results show that few Salamino samples are misclassified for the training and one 

Salamino and one Sorbara samples for the test. The same Sorbara sample is misclassified for the 

test set in all models. 

 

3.2 EEM dataset 

The EEM data array (45 training samples, 161 emission wavelengths and 21 excitation 

wavelengths) was analyzed by means of PARAFAC. For the development of the most suitable 

model, second and third modes were constrained using non-negativity. A four factors model was 

chosen representing the best compromise between explained variance (99%), core consistency and 

split half analysis results. 

The model obtained presents results that are in good agreement with works presented in literature 

[22]. In figure 4a, loadings for second (emission) and third (excitation) modes are reported. The first 



resolved factor presents a broad maximum in excitation at 260 nm – 280 nm and a corresponding 

maximum in emission at 360 nm, very similar to the profile of vanillic acid. The second factor has 

fluorescent properties close to p-Coumaric acid, trans-resveratrol, trans-piceid and gentisic acid. 

The third factor well matches the wavelengths of catechin and epicatechin, having maximum in 

excitation at 280 nm and 320 nm in emission. The fourth factor cannot be directly attributed to a 

molecule or class of molecules and deepest investigations must be performed in order to 

characterize it. From the first mode loadings plot in Figure 4b, it is difficult to highlight a separation 

of samples belonging to the different classes. The first factor score values of Sorbara samples, on 

average, present higher values with respect to Grasparossa and Salamino samples, hence, higher 

concentration for vanilic acid or molecules having the same fluorescent properties. 

A classification model based on NPLS-DA was built using nine latent variables, (lowest cross 

validation classification error rate), results are reported in Table 1. In this case, only one 

Grasparossa sample is misclassified for the training set. Concerning the test set, as for the PLS-DA 

model based on 1H-NMR signals, the same Sorbara sample is misclassified; also one Grasparossa 

sample is misclassified.  

 

3.3 HPLC-DAD dataset 

Outputs from HPLC-DAD analysis are arranged in a cube in which the first mode is related to 

samples, the second to the UV spectra at different elution times and the third to chromatograms at 

different wavelengths. The multiset MCR approach can be applied to this kind of data unfolding the 

original three-way array in a multiset structure via column-wise augmentation. Having the dataset a 

very high chemical rank, hence, high rank for the resolution using MCR, we decided to split in eight 

windows the elution path, and then, to resolve separately each window applying constraints of non-

negativity, unimodality and local rank as described in detail in reference [9]. A chromatogram, in 

which the elution windows are reported, is shown in Figure 5. Since each window presents different 

number of compounds, each MCR model was built considering different number of components. In 

Table 2 the number of components used to resolve each windows and the explained variances of all 

models are reported. 

Thirty-nine areas, extracted from the eight MCR-ALS models, were merged together in a new block 

of variables. A PCA analysis was performed on this dataset on autoscaled variables (four 

components explain 60% of total variance). From the scores plot of the first two components, 

reported in Figure 6a, can be highlighted a rough separation of the three typologies of Lambrusco 

wines. In particular, all Grasparossa samples have negative scores values on PC2, Salamino 



samples have positive values on PC2 and almost all Sorbara samples have negative scores values 

on PC1 and positive scores values on PC2; Salamino category overlaps with the other two. This 

result confirms the ability of phenolic compounds used as “fingerprinting technique” for the varietal 

discrimination of wines [22-25]. From the loadings plot, Figure 6b, is possible to point out that, 

having almost all the loadings a positive contribution for the first component, the separation 

between Sorbara samples and the other two varieties is manly due to a global lower concentration 

of phenolic compounds on this typology of Lambrusco wine. Regarding the second component, 

mainly responsible of the separation between Grasparossa and the other two categories, a complex 

loadings profile is present; hence, many compounds are present at different concentration in the two 

wines. For example, (+)-catechin and unassigned compounds SC3 (in the window of syringic and 

caffeic acids) and p-C5 (in the window of p-coumaric acid), having high positive loadings, are 

influent in giving positive scores values to Sorbara and most of Salamino samples, on the other 

hand, variables such as SC4 and Quer5 are important, having high negative loading, to characterize 

Grasparossa samples. 

The peaks areas of resolved components by MCR models were used to build a classification model 

based on PLS-DA obtaining good discrimination (Table 1). 

Summarizing, PLS-DA results are best for the model based on resolved areas from HPLC-DAD. In 

general the models performance is similar, as well as the models dimensionality (except for the 

EEM data). 

 

3.4 Mid level data fusion 

Once obtained, from the single data sets, the new blocks of variables (scores, peaks areas, etc.), the 

data-fusion step has to be completed merging them in a unique new block of variables. This step is 

the most crucial when dealing with mid-level data fusion. As in the case of low-level 

methodologies, the way in which the different variables are concatenated, normalized and scaled, 

the number and typology of extracted variables and their magnitude can bring to models that could 

be very different. In many cases, a “trials and errors” approach can be followed and the comparison 

of the obtained models can help the choice of the best one. Depending on the data analysis used in 

the first step of reduction, some consideration can be done in order to provide the best way to merge 

the new variables together without other “a priori” information. If the reduction step is obtained for 

example via variable selection, hence, the more representative of original variables are maintained, 

the quantity of information that each variable carries is far less than the information which is carried 

out by a latent variable extracted by means of a decomposition method. The intrinsic variance that 



each variable bring, with respect to the original data, can be a suitable way to scale the variables in 

the new fused block. In this work, the extracted variables arise from decomposition methods; in the 

HPLC-DAD case each peak area is referred to a single compound, in the cases of EEM and 1H-

NMR to a group or class of compounds. The thirty-nine peaks areas from HPLC-DAD, the four 

scores from NMR dataset and the four PARAFAC loadings from EEM are able to describe most of 

the variance of the original data. For these reasons it was decided to circumscribe the scaling 

options for the merging procedure to few possibilities, namely, block scaling to equal variance for 

each block, block-autoscaling (the difference between these types of scaling is discussed in section 

2.4.1) and autoscaling. Even if few minor differences were noticed in the PCA based explorative 

analysis, with respect to other scaling procedures, the classification model obtained on fused dataset 

using autoscaling gave better results. 

Indirectly, using autoscaling as merging strategy, a higher importance is given to the block of 

variables more numerous, hence, the HPLC-DAD part. Being the HPLC-DAD analysis the only one 

that is referred to analytically resolved concentration, attributable to individual compounds, was 

decided to accept the fact that the global weight of these variables was higher if compared to the 

others extracted from NMR and EEM datasets. 

In Figure 7a the scores plot of the first two components of the PCA model (three principal 

component chosen by minimum CV error, 51% variance explained) built using the autoscaled fused 

dataset are reported. A similar clustering of the three categories with respect to the one observed in 

the scores plot reported in Figure 6a, related to HPLC-DAD dataset, is observed. In particular, 

Grasparossa samples have negative scores values on the second component, Salamino samples 

have positive scores values on PC2 and Sorbara samples have negative scores values on PC1 and 

positive scores values on PC2. Some improvements can be noticed in the separation of samples 

belonging to different classes, as matter of fact, no one of the Sorbara samples is confused within 

the Salamino cluster in the first quarter. In Figure 7b the first two components loadings plot is 

reported and highlights that all variables contribute to the position in the scores space of the 

samples. In particular, the first and second factors from the EEM dataset seem to be most of all 

responsible of the improvement in the separation of Salamino and Sorbara samples, having high 

negative weight for second component, while the fourth EEM factor seems characteristic for 

Grasparossa class. Almost all the variables arising from the HPLC-DAD dataset are located at 

positive values for the first component. The third component extracted from the NMR dataset show 

positive loadings in both PCs contributing to separation of Salamino samples from Sorbara ones 

while the second component seems characteristic of Grasparossa samples. 



A PLS-DA model, based on five latent variables chosen accordingly to minimum cross validation 

classification errors, was built using the fused dataset and the same scaling procedure adopted for 

the explorative PCA analysis. Results of the model, reported in Table 3, confirm the improvement 

with respect to the models obtained from the separate datasets.  Figure 8a shows the scores plot of 

the first three latent variables and highlights the good separation among the three varieties of 

Lambrusco wines. In particular, all Salamino samples are placed at negative values for the first and 

second latent variable, Sorbara samples are situated at positive values for the third latent variable 

and close to zero for the others, whilst Grasparossa samples present high positive values for the 

second latent variable.  

The close examination of the PLS weights plot, reported in Figure 8b, allows identifying which are 

the variables that most of all are responsible of the separation of the samples belonging to different 

classes and on the other hand to evaluate the correlation among them. 

Considering Sorbara samples, many variables seem to be relevant, in particular the first and second 

factors from EEM dataset, p-Coumaric acid, Caffeyc acid and two unassigned compounds 

belonging to the window2 cluster and myrecitin elution window. As described above, the second 

EEM component extracted by the PARAFAC model presents fluorescent properties compatible 

with several compounds such as, trans-resveratrol, trans-piceid, gentisic acid and p-Coumaric acid, 

which was one of the resolved compound by MCR analysis of HPLC-DAD data and stays very 

close to the second EEM factor in the scores space obtained by the PLS-DA model. The first factor 

from EEM is placed close to a group of unassigned compounds resolved starting from HPLC-DAD 

part, hence, future investigations will be oriented to the assessment of the presence of vanillic acid 

in that cluster of compounds. Also the first component extracted from the 1H-NMR dataset, which 

brings mainly the information of the anomeric region of the NMR signal, seems to give a relevant 

contribution for the discrimination of Sorbara samples. 

The third component from the 1H-NMR signals elaboration, mainly associated with the phenolic 

signal region, and a wide group of variables obtained via HPLC-DAD analysis, such as Gallic acid, 

myrecitin, quercytin etc., are relevant for the classification of Salamino samples. 

Grasparossa samples, on the other hand, are described mostly by the fourth component arising 

from the EEM data and syringic acid and other molecules obtained from the analysis of HPLC-

DAD data. 

Finally, on the basis of the PLS weights plot (Figure 8b) and the VIP scores (plot not shown for 

sake of brevity) in order to evaluate if using a reduced number of features from the HPLC-DAD 

data set, which requires longer acquisition time and higher computational complexity in the 



resolution step, could be sufficient to achieve a satisfactory classification model, a data fused model 

was considered including only the concentration of the compounds resolved in the window of 

syringic and caffeic acids together with the four PCA scores from NMR data and the four 

PARAFAC samples loadings from EEM. The results were quite satisfactory, showing the same 

classification performance on the test set and two classification errors in the training set, one 

Grasparossa and one Sorbara sample, respectively.  

 

4 Conclusions 

In food analysis the presence of interferences, uncontrolled variability due to biological and 

chemical-physical transformation combined with the development of new high-throughput 

analytical platforms make mandatory the use of chemometrics in order to unveil the hidden 

information able to characterize, discriminate, evaluate the products under investigation. The 

overall approach proposed, based on a mid-level data fusion application, allowed to deal with data 

of different nature and dimensionality (matrices and tensors) in a global way. In this respect, it 

suggests a suitable strategy generally applicable, whose potentiality may be also better appreciated 

in more complex cases with respect to the actual one. The possibility to treat jointly several 

analytical data was useful to develop a classification model for the three P.D.O. Lambrusco wines 

and to understand the correlations between the features extracted from the original separate datasets. 

In particular, we have seen that part of information extracted by complete resolution of several 

phenolic compounds through MCR analysis of HPLC-DAD data set can be recovered by faster 

approaches, such as EEM or NMR.  

When the a priori knowledge about the investigated samples is not complete, the data fusion 

approach has proven to be a powerful tool for features/information discovery, since complementary 

knowledge can be point out when the problem is tackled in a comprehensive way.    

Moreover, better results in classification were obtained when data fusion approach was used with 

respect to the analysis of separate datasets. 

However, it may be that especially in the case of three way data structure in the compression step 

not all the information can be properly recovered. Thus, a further step will be the use of techniques 

that allow to extract common latent structure from the shared mode of the different source of data 

(in this case of study the sample mode) such as Coupled Matrix Tensor Factorization (CMTF) [26]. 
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Captions of Figures 

Figure 1: Effects of preprocessing on 1H-NMR signals 

Figure 2: Data analysis flow and schematization of the mid-level data fusion process 

Figure 3: a) Loadings plot of the PCA model built using “ 1H-NMR dataset ”, b) Scores plot of the 
PCA model built using “ 1H-NMR dataset ” 

Figure 4: a) Loadings of second and third modes of the PARAFAC model built using “EEM 
dataset”, b) Loadings of the first (samples) mode of the PARAFAC model built using “EEM 
dataset” 

Figure 5: HPLC-DAD TIC chromatogram of a sample: the sub division in elution windows is 
shown 

Figure 6:  Scores plot (a) and loadings plot (b) of the PCA model built using “HPLC-DAD 
dataset”. Variables labels in loadings plot as reported in Table 1.  

Figure 7: a) Scores plot of the PCA model built using “Fused dataset”, b)  Loadings plot of the 
PCA model built using “Fused dataset” 

Figure 8: a) Scores plot of the PLS-DA model built using “Fused dataset”, b)  Weights plot of the 
PLS-DA model built using “Fused dataset” 
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Table 2: Results from MCR analysis of HPLC-DAD data set 

 

Eluition Windows Window name in 
figures 

Resolved MCR 
components 

Explained Variance 
% 

Gallic Acid GA 3 99.2 

(+)-Catechin C 3 98.0 

Window 1 Window1 3 97.1 

Caffeic and Syringic 

Acids 

CS 4 98.8 

p-Coumaric Acid p-C 7 99.3 

Window 2 Window2 9 98.6 

Myricetin Myr 4 99.5 

Quercetin Quer 6 99.7 
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