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OPTION IMPLIED TREES AND IMPLIED MOMENTS 
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Abstract 

Implied trees are simple non-parametric discretizations of one- or two-dimension diffusions, aimed 

at introducing non-constant volatility in an option pricing model. The aim of the paper is twofold. 

First we investigate the ability of different option implied trees in pricing European options. Second, 

we compare the implied moments obtained with the use of option implied trees with the risk–neutral 

moments obtained with the use of Bakshi et al. (2003) formula and with realised physical moments. 

The comparison is pursued in the Italian market by analysing a data set which covers the years 2005-

2009 and span both a relatively tranquil and a turmoil period.  
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1. Introduction 

Given the stock-varying and time-varying volatility exhibited by financial data, several ways have 

been proposed in the literature in order to introduce non-constant volatility in an option pricing 

model. Deterministic smile consistent volatility models make volatility deterministically dependent 

on stock price and time. Among deterministic volatility models, some use forward induction in the 

derivation of the implied trees, others use backward induction (see Linaras and Skiadopoulos (2005) 

for a survey). The main disadvantage of deriving implied trees by forward induction is the 

occurrence of negative probabilities that indicate the presence of arbitrage opportunities. In this case, 

ad hoc methodologies to override the nodes that violate the no arbitrage condition have been 

proposed. Backward induction trees are by construction arbitrage free, however their main 

disadvantage is that they require a costly estimation of the ending risk neutral probabilities and they 

are not flexible enough to price path dependent options.  

Recently, the literature has also focused on the information content of higher moments of the stock 

return distribution, which capture key aspects of the risk neutral density. Historical moments are 

usually poor estimates of expected future higher moments. Instead, the moments inferred from 

option prices contain the most recent information available and are thus of importance to both 

academics and practitioners. At the CBOE, a measure of the implied skewness of the distribution 

(SKEW index) has been recently introduced in order to capture the perceived risk of extreme market 

moves (tail risk). A number of recent papers show that moments are very useful and widely used in 

different empirical applications. For instance, investors could use the predictive power of these 

implied moments on future returns (Han (2008), Figlewski (2009)) or for settling volatility trading 

strategies (Bali and Murray (2011)). Besides, many papers investigate the variation of risk neutral 

implied moments across firms and identify the characteristics which influence them (Neumann and 

Skiadopoulos (2012)) and the dynamics of implied moments in an autoregressive model (Hansis, et 



al. (2010)). Moreover, Zhang e Xiang (2008) show that changes in risk neutral volatility, skewness 

and kurtosis are related to the level, slope and curvature of the implied volatility surface, 

respectively. Last, Kang et al. (2010), confirm the relationship between higher risk neutral moments 

and the variance risk premium.  

The aim of the paper is twofold. First, we investigate the ability of different option implied trees in 

pricing European options. Second, we compare the implied moments obtained with the use of option 

implied trees with the risk–neutral moments obtained with the use of Bakshi et al. (2003) formula 

and with realised physical moments. The comparison is pursued in the Italian market by analysing a 

data set which covers the years 2005-2009 and span both a relatively tranquil and a turmoil period.  

Given the limited empirical evidence on option implied trees, the paper contributes to the existing 

literature, by providing an updated literature review on the implied trees and providing new evidence 

on how the pricing performance of the latter models varies in different market conditions. Moreover, 

as far as we know, this is the first attempt of comparing option implied trees in order to extract risk 

neutral moments of the underlying asset distribution.  

The paper proceeds as follows. In Section 2 we provide un updated literature review on option 

implied trees and briefly describe the implied trees used in the application. In Section 3 we recall the 

Bakshi et al. (2003) formula and the implied tree’s risk-neutral moments. In Section 4 we present the 

data-set and the methodology. Section 5 presents the results for the pricing performance and Section 

6 the ones for the implied moments and the variance, skewness and kurtosis risk premia. The last 

section concludes. 

 



 

2. Option implied trees: a literature review 

 

Implied trees are simple non-parametric discretizations of one- or two-dimension diffusions, aimed 

at introducing non-constant volatility in an option pricing model. The purpose of the construction of 

smile consistent models is both to look at the distribution of the underlying asset in the future for risk 

management purposes and to price American and other exotic options consistently with traded 

European options. Two are the basic approaches for the construction of a deterministic volatility 

model: backward and forward induction. Among forward induction implied trees, Derman and Kani 

(1994) are the first to construct an option implied tree consistent with the observed smile; a drawback 

of the model is the occurrence of negative probabilities which denote arbitrage violations and 

negatively affect the performance of the implied tree. Barle and Cakici (1998) introduce some 

modifications to the Derman and Kani (1994) implied tree, but do not resolve the negative 

probability problem at the edge of the tree, in particular in case of high interest rates and pronounced 

smile functions. Moriggia et al. (2009) develop a no arbitrage check and a procedure in order to 

substitute the nodes which imply arbitrage violations throughout the entire tree. Derman, Kani and 

Chriss (1996) propose a trinomial tree which offers a better adaptation than a binomial model to the 

real data, but presents problems in the choice of the state space and is not free from arbitrage 

violations in case of high volatility. Charalambous et al. (2007) propose a non-recombining tree 

which is more flexible than a recombining one, but very complex from the computational point of 

view. Among backward induction models, the first is Rubinstein (1994), which propose a two-step 

procedure in order to derive the tree: estimate the ending nodes and probabilities and derive the tree 

backwardly by the hypothesis that the paths who lead to the same ending node are equally probable. 

An optimization problem is solved in order to minimize the distance between an a-priori density and 

the real one, under the constraint of correctly pricing by no-arbitrage the options and the underlying 



asset. The model has at least two drawbacks: it cannot price options which expire before the maturity 

of the tree and path-dependent options. In order to overcome these problems, Jackwerth (1997) 

proposes a function to weight the different paths in the tree, on the other hand, Brown and Toft 

(1999)  and Herwig (2005) propose a methodology in order to calibrate the Rubinstein’s tree to 

intermediate maturity options. Last, Tian (2012) proposes a methodology to diminish the number of 

unknowns in the optimization problem of Rubinstein (1994), by grouping the final nodes.  

Form the empirical point of view, limited is the evidence about the pricing performance of the 

different implied trees. Dumas et al. (1998) find a poor performance of deterministic implied trees. 

Brandt e Wu (2002) and Linaras e Skiadopoulos (2005) compare in the UK and US market the 

performance of the Derman and Kani (1994) and Barle and Cakici (1998) implied trees with 

different smile estimation. Lim and Zhi (2002) and Kim and Park (2004) on the other hand, focus on 

the backward induction implied trees of Rubinstein (1994) and Jackwerth (1997) by looking at the 

UK and the Korean market respectively. The findings of these papers show an heterogeneous picture 

where it is difficult to assess the superiority of one model in absolute terms, given that the 

performance varies depending on moneyness, maturity and type of the options to be priced. 

As for the use of option implied trees in order to estimate the risk neutral distribution of the 

underlying asset, Jackwerth and Rubinstein (1996) argue that if we observe a sufficient number of 

option prices, all the different methods tend to be rather similar, except in the modeling of the tails of 

the distribution. Campa et al. (1998) prefer the implied tree approach for its flexibility and good 

representation of the data, however they observed many outliers in the tails of the Rubinstein (1994) 

tree. 

 

 

 

 



2.1.  The Enhanced Derman and Kani implied tree 

Derman and Kani (1994) construct an implied tree using forward induction. They build a 

recombining binomial tree which uses as inputs the market prices of European-style index options 

across all strikes and expirations. Their model has uniformly spaced levels ∆ 	apart.  

Let’s assume that the tree has already been constructed up to the time level	 1, and let us see how 

to derive the next level stock prices. The known stock price ,  can evolve in two states in the next 

level : the up one, , ,  and the down one, , . The risk neutral probability of an up jump is , .  

Arrow-Debreu prices ,  are defined as the sum over all paths leading to node , 	of the product of 

the risk neutral probabilities discounted at the risk-free rate at each node. If the level is odd, the 

centering condition is given by equation (1), if the level is even, the two central nodes have to satisfy 

equation (2): 

, ,                                                                  (1) 

/ ,
,

,

                                                                 (2) 

Let ,  and , 	be the price of a call and a put with strike , 	and maturity , respectively. 

These prices are computed using Black-Sholes formulas with constant volatility obtained from the 

smile function. In the upper part of the tree the recursive formula to compute , , given , , is: 

,
,

∆
, , , , ,

∆
, , , ,

		                                     (3) 

In the lower part of the tree the recursive formula to compute , , given , , is: 

,
,

∆
, , , , ,

∆
, , , ,

		                                     (4) 

where  is the risk-free rate, ∑ , , , ,	 ∑ , , ,  and 

, 	is the forward value of , . 

These equations can be used only if the level 	is odd, when the starting central node is equal to the 

current spot price. If the number of nodes is even, by combining equations (2) and (3) we get: 



,
,

∆
, , ,

, ,
∆

,
		                                           (5) 

The transition probability ,  of an up move is computed as: 

,
, ,

, ,
		                                                         (6) 

The main problem in the derivation of the implied tree is the presence of riskless arbitrage 

opportunities, which are represented by a risk neutral probability which falls outside the (0,1) 

interval. The Derman and Kani’s (1994) implied tree, even with the Barle and Cakici (1998) 

modifications, is not free from arbitrage, in particular at the boundary of the tree and may become 

numerically unstable, when the number of steps becomes large. Therefore we use the EDK 

methodology, which is aimed at ensuring the absence of no-arbitrage violations in the DK implied 

tree. The EDK methodology provides no-arbitrage checks and proposes no-arbitrage replacements for 

all the nodes in the tree (for more details see Moriggia et al. (2009)).  

 

2.2.  The Rubinstein’s implied binomial tree 

Rubinstein (1994) proposes an implied binomial tree using backward induction. The procedure can 

be split into two steps: first the risk-neutral probability distribution of underlying asset at the end of 

the tree is estimated; second, the tree is derived backwardly with a simple three step algorithm.  

The Rubinstein’s method consists of minimizing the square difference between prior and posterior 

risk-neutral probabilities, under some constraints. Let’s define ,  and ,  respectively the posterior 

and the prior probability at expiry date , , 	is found as the solution of the following optimization 

problem: 

			min∑ , , 			                                                       (7)      

subject to: 

∑ , 1 		 		 , 0														 	 0, … , 		                                                            

	              (8) 



 

where  and  are respectively the option bid and ask price quotes observed for the European call 

with strike  with 1,… , , expiring at  and  and  are the bid and ask prices of the 

underlying asset, 	is the price of a call with maturity 	and strike price : 

∑ , , 		                                           (9)                   

and 	is the value of underlying asset at time 0: 

∑ , , 				                                             (10) 

The posterior implied risk-neutral probabilities are called nodal probabilities since ,  is the 

probability to reach node  at expiry  whatever the path to reach that node. Indeed, the rather 

arbitrary and restrictive assumption of equal path probabilities allows to build the tree in a very 

simple way with a three step procedure. First, calculate the nodal probabilities at the preceding 

nodes, as follows: 

, 1 , ∗ , , ∗ , 								                               (11) 

 Second, compute the probability of an up move over the next time interval: 

, , ∗
,

,
																																	                            (12) 

This rules out negative probabilities. Finally, compute the stock price at the preceding level with the 

risk-neutral valuation formula, as follows: 

,
∆ 1 , ∗ , , ∗ , 													              (13) 

The implied tree is derived by repeating this simple algorithm up to the first node, , .  

 



 

3. Implied moments 

In order to obtain implied moments, in this paper we follow two different methods: we use both the  

Bakshi et al. (2003) formula and the risk-neutral densities estimated with the implied trees described 

above.   

Bakshi et al. (2003) developed a model-free method in order to extract volatility, skewness and 

kurtosis of the risk-neutral distribution on the expiry date from a cross section of call and put option 

prices. Their methodology is called model-free, since it is consistent with many underlying asset 

dynamics. Model-free variance, skewness and kurtosis are obtained from the following equations: 

, , , 																																																									 17  

,
, 3 , , 2 ,
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, , 	 															 22  

,
12 ln 4 ln

, ,

12 ln 4 ln
, , 														 23  

with , , 	and , , 	that are respectively the current price of a call and a put with maturity  and 

strike .  



The second approach is to calculate the moments  as integrals of the risk neutral density estimated 

from the implied trees as follows: 

															                                                 (24)       

with 1,2,3,4, 	   and  risk neutral density. As the implied tree yields a discrete 

cumulative distribution, a discrete summation over all nodes approximates the continuous integral in 

the formula (24). 

With these moments variance, skewness and kurtosis are easily obtained as follows: 

, 		                                                          (25)   

,
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,
4 6 3
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4. The data set and  the methodology 

The data set consists of closing prices on FTSE MIB-index options (MIBO), recorded from 1 

January 2005 to 31 December 2009. MIBO are European options on the FTSE MIB index, which is a 

capital weighted index composed of 40 major stocks quoted on the Italian market. As for the 

underlying asset, closing prices of the FTSE MIB-index recorded in the same time period are used. 

The FTSE MIB is adjusted for dividends as follows: 

                                              (28) 

where St is the FTSE MIB value at time t, t is the dividend yield at time t and t is the time to 

maturity of the option. As a proxy for the risk-free rate, Euribor rates with maturities one week, one, 

two and three months are used. Appropriate yields to maturity are computed by linear interpolation. 

t t
t tS S e  




The data-set for the FTSE MIB index and the MIBO is kindly provided by Borsa Italiana S.p.A, 

Euribor rates and dividend yields are obtained from Datastream.  

Several filters are applied to the option data set. First, we eliminate options near to expiry which may 

suffer from pricing anomalies that might occur close to expiration (in order to be consistent with the 

computation methodology of quoted volatility indexes, we choose to use the most conservative filter 

that eliminates options with time to maturity of less than eight days). Second, following Ait-Sahalia 

and Lo (1998) only at-the-money and out-of-the-money options are retained. Last, option prices 

violating the standard no-arbitrage constraints are eliminated. 

In order to get implied moments based on implied trees, we follow the methodology described below 

and we reiterate the process for both near and next term option in each date of the sample. The 

benchmark tree is the Cox-Ross-Rubinstein’s (1979) one, which is constructed by using a constant 

volatility equal to an average of at-the-money implied volatilities of a call and a put.  The benchmark 

tree is also used as initial input for the Rubinstein’s tree in order to have the prior estimate of the 

risk-neutral distribution which is used for the optimization process (equations (7-8)).  

In order to derive the Enhanced Derman and Kani’s tree, and to implement the Bakshi et al. (2003) 

formula, we first obtain the smile function by using an interpolation-extrapolation scheme. We 

recover Black-Scholes implied volatilities from traded option prices and interpolate between strikes 

by using cubic splines; we extrapolate volatilities outside the listed strike price range using a 

constant extrapolation scheme where the implied volatility is supposed equal to the volatility of the 

minimum or the maximum strike price respectively. We extrapolate outside the existing domain of 

strike prices by using a factor u=10 such that: S /(1+ u)  K  S(1+ u); in order to have a sufficient 

discretization of the integration domain, we compute strikes spaced by an interval K =10. The 

parameters u and K have been chosen, accordingly to Muzzioli (2010), in order to have 

insignificant truncation and discretization errors. All implied trees have been derived with 100 steps. 



In order to compare the pricing performance of the different implied trees, we resort to the following 

metrics widely used in the literature (see e.g. Moriggia et al. (2009)). In particular, we use the Mean 

Absolute Percentage Error (MAPE) and the Mispricing Index (MISP) defined as follows: 

∑ 											                                              (29) 

∑

∑
																																																											 30  

with 	and   which indicate respectively theoretical and market price of the options and  is the 

number of options in the class. 

In order to have a constant 30-days measure for the implied moments, we use linear interpolation, 

with the same formula which is used for the computation of the VIX index: 

365
30

365
30

∗ 365/30																																			 31 	

where  is the number of calendar days to expiry of the i-th maturity index option, 1,2, i=1 for 

near term and i=2 for next term. Near and next term moments are derived by using the near and the 

next term options, with maturity closest to 30-days, either by the use of option implied trees, or with 

the Bakshi et al. (2003) formula.  

The physical moments are obtained from daily log-returns of the underlying index by using a rolling 

window of about 22 working days (equivalent to a 30-day measure) and then annualised.  

In order to gauge the ability of the implied trees in order to forecast the physical moments, we 

compute the RMSE metric: 

1
																																																	 32  



where  is the number of observations in the sample, 	are the physical moments and  are the 

risk-neutral moments. 

Chang et al. (2013) propose two new types of contracts: skewness and kurtosis swaps, with payoffs 

similar to the one of the well-known variance swap (Carr and Wu (2009)), i.e. the difference between 

physical and risk neutral variance. In line with their approach, we measure the payoff of a variance, 

skewness, and kurtosis swap in Euro terms. In particular, we compute the Euro payoff of a long 

position in a (variance, skewness or kurtosis) swap with notional amount N=1 Euro, held up to 

expiry: 

RP =  ∑                   (33) 

Where	  are the days in the sample, 	are the physical moments and  are the risk-neutral 

moments. 

 

5. The pricing performance 

In order to verify the precision of the implied binomial trees, we have used them to price options in 

sample, since the aim of this exercise is to verify the ability of the different trees in reproducing the 

underlying asset distribution. The benchmark is the standard Cox-Ross-Rubinstein model (CRR), 

which has been derived with a constant volatility equal to an average of at-the-money call and put 

implied volatility. 

The results for the whole sample are reported in Table 1. The best model, according to the MAPE is 

the Enhanced Derman and Kani (EDK) one, followed by the Rubinstein (RUB) model. CRR obtains 

the worst performance. The mispricing index is negative in all the models, i.e. all the binomial trees 

substantially underprice options, the EDK model is the one with the highest underpricing, the CRR 

with the lowest one. Both EDK and RUB better price call than put options (the opposite holds for 

CRR) and the underpricing is higher for put options.  



In order to see which option class is the best priced in each model, we have split options into three 

moneyness categories: in-the-money calls (out-of-the-money puts) if K/S≤0.97, at-the-money calls 

and puts if 0.97<K/S<1.03, out-of-the-money calls (in-the-money puts) if K/S≥1.03, where K is the 

strike price and S is the underlying price. Differently from Moriggia et al. (2009), we have used a 

coarser partition, in order to have each day a homogeneous number of options in each class (around 5 

per class). The results are reported in Table 2. According to the MAPE, the best performance of the 

three models is attained for in-the-money options and it gradually deteriorates with the decrease in 

moneyness level. The EDK model performs better than both CRR and RUB for all moneyness 

classes, but the difference is the highest for in-the-money options. The Rubinstein model performs 

better than CRR only for out-of-the-money options. In terms of mispricing, CRR overprices in-the-

money options, while underprices at-the-money and out-of-the-money options. EDK and RUB 

underprice all options’ categories. Overall, the better performance of option implied trees w.r.t. CRR 

is given mainly by the better pricing of out-of-the-money options, in particular call options. The 

highest underpricing for EDK is attained for out-of-the-money options, while for RUB for at-the-

money options. Both EDK and RUB underprice most out-of-the-money puts, therefore attach a lower 

probability to the left tail of the risk neutral distribution. 

 The pricing performance in the two sub-periods is reported in Table 3. The low volatility period 

covers the years 2005-2007, while the high volatility period the years 2008-2009. Surprisingly, the 

pricing performance do not vary substantially across the two sub-periods, with the MAPE slightly 

lower for the CRR and the EDK models in the high volatility period. On the other hand, the RUB 

model obtains a better performance in the low volatility period. Both implied trees perform better 

than CRR in low and high volatility periods. EDK performs better than RUB in both sub-periods, but 

the difference is higher in the high volatility period. The underpricing is less severe for all the models 

in the high volatility period. 



In Tables 4 and 5 we report how the pricing performance varies by moneyness in the two sub-

periods. The pricing performance is quite similar across the two sub-periods. The best priced option 

class in both volatility periods, for all the models, remains the in-the-money one; the worst the out-

of-the-money one. By looking at the MAPE, CRR and RUB models obtain a better performance in 

the high volatility period for all moneyness’ classes, the EDK for at-the-money and out-of-the-

money. 

According to the MISP, CRR underprices (overprice) at-the-money and out-of-the-money (in-the-

money) options more in the low volatility period. For the EDK model, the underpricing is more 

severe in the high volatility period for out-of-the-money options; for other options’ classes it is more 

severe in the low volatility period. The RUB model underprices more severely in the low volatility 

period at-the-money and out-of-the-money options. 

Therefore, we can conclude that better performance of option implied trees w.r.t. CRR is given 

mainly by the better pricing of out-of-the-money options. Implied trees underprice all options’ 

categories. Among the two implied trees, the results points to a better performance of the EDK 

model w.r.t. other models in both sub-periods, which is mainly determined by a better pricing in the 

high volatility period and for in-the-money options. RUB performs fairly w.r.t. CRR for the pricing 

of out-of-the-money options. 

 

6. The results for the moments 

Risk neutral moments, computed both with the Bakshi et al. (2003) formula and the risk-neutral 

densities estimated with the implied trees described above, along with physical moments are reported 

in Table 6.  

Variance and kurtosis are consistent across different estimation methods and with physical ones, 

whereas for skewness the results are fairly different in sign and magnitude. The variance estimated 

with the EDK model is much higher than model-free variance, and both measures overestimate 



realised variance. On the other hand, the variance computed with the RUB model is the smallest one, 

even smaller than physical variance. Risk neutral skewness is negative for the EDK model, while it is 

close to zero for the MF model, and positive for the RUB model. Differently from Conrad et al. 

(2013), we find that risk neutral skewness is less negative than physical one. The underpricing of 

out-of-the-money puts in both implied trees models could be a reason for this result, since they attach 

a lower probability to the left tail of the distribution. Risk-neutral kurtosis is the highest for the EDK 

method and the lowest for the RUB implied tree. Risk-neutral kurtosis is higher than physical one for 

all the estimation methods, pointing to the existence of a negative kurtosis risk premium. In fact, in 

the EDK model the underpricing is more severe for out-of-the-money calls and puts w.r.t. at-the-

money. We report in Table 7 the forecasting ability, in terms of RMSE, of the risk neutral moments. 

The best forecasting method for realised moments is the MF one. EDK (RUB) is the second best for 

skewness (variance and kurtosis) respectively.  

We report in Table 8 the variance, skewness and kurtosis risk premia for all the models. In line with 

the literature, the variance risk premium is negative for the EDK and MF models. Strikingly, it is 

positive for the RUB model. The skewness risk premium is negative for all models, it is the smallest 

for the EDK model. The kurtosis risk premium is negative for all models and it is smallest for the 

RUB model. Overall, we find significant risk neutral density deviations from physical counterparty, 

which could signal profitable volatility, skewness and kurtosis trades (Blaskowitz, Hardle and 

Schmidt (2003)). 

In Table 9 we report the estimation of variance, skewness and kurtosis in the two sub-periods. The 

difference in physical variance among the two sub-periods is very high. Also risk neutral variance is 

much more higher in the high volatility period. Physical skewness is more negative in the low 

volatility period. On the other hand, risk neutral skewness tends to be more negative during turmoil 

periods (as noted by Dennis and Mayhew (2002)), the only exception being for the MF estimation  

method. Physical kurtosis is almost unvaried across the two periods, with a slightly higher value in 



the low volatility period. Accordingly, risk neutral kurtosis is a little higher in the low volatility 

period, for all the models.  

The forecasting performance of risk neutral moments in the two sub-periods is reported in Table 10. 

Overall, all the models present a worst performance in the high volatility period. As for the variance 

estimation, all the methods obtain a worse performance in the high volatility period. For skewness 

the performance is worse in the low (high) volatility period for RUB and MF (DK). For kurtosis, the 

performance improves in the high volatility period for EDK and MF, while it deteriorates for RUB 

model. The best performance for variance, skewness and kurtosis is obtained by the MF method in 

both sub-periods. EDK (RUB) is the second best for skewness (variance and kurtosis) in both sub-

periods. The variance, skewness and kurtosis risk premia in the two sub-periods are reported in Table 

11. Variance risk premia are negative for all the models in the low volatility period and they remain 

negative in the high volatility period except for the RUB model. As expected, variance risk premia 

are higher in the high volatility period, where variance trades are more profitable. Moreover, the 

existence and the pricing of jump risk, which is higher in the high volatility period is a determinant 

of the variance risk premium. On the other hand, skewness risk premia are higher in absolute terms 

in the low volatility period, for all the methods. The EDK method finds a positive skewness risk 

premium in the high volatility period. Kurtosis risk premia are higher in the low volatility period, 

except for the RUB method. This means that both skewness and kurtosis trades are more profitable 

in low volatility periods. The analysis of the determinants of the variance, skewness and kurtosis risk 

premia is left for future research. 

 

 

7. Conclusions  

In this paper we have implemented in the Italian index market two types of implied trees, based on 

backward or forward induction. We have analysed the pricing performance of the various implied 



trees and compared it with the Cox-Ross-Rubinstein tree, which is used as a benchmark. Moreover, 

we have extracted the risk neutral moments of the distribution from the implied trees and compared 

them with the risk neutral moments obtained with the Bakshi et al. (2003) formula. Physical risk 

neutral moments have been computed in order to analyse the existence of a variance, skewness and 

kurtosis risk premium. 

As for the pricing performance, the results prefer the Enhanced Derman and Kani model w.r.t. the 

Rubinstein’s one in both sub-periods. The result is mainly determined by smaller errors in the high 

volatility period and a better pricing of in-the-money call options and out-of-the-money put options, 

therefore a better estimation of the left tail of the distribution.  

Despite the good pricing performance in sample, the EDK model is not the best one for the moments 

estimation. The MF model remains one of the best for all moments. In fact, moments obtained from 

EDK implied tree are usually much higher than model-free ones. Moments obtained from the 

Rubinstein model are less reliable, since they are the less similar to physical ones.  

Overall, the results suggest the potential profitability of variance, skewness and kurtosis trades. In 

particular, the variance and kurtosis risk premium is found to be negative in all models (except in the 

Rubinstein’s one for variance), pointing to the evidence that investors are willing to pay a high fixed 

rate, in order to be hedged against peaks of variance and kurtosis, which are more present in turmoil 

periods and signal high perceived uncertainty and tail risk. More difficult is the interpretation of the 

skewness risk premium, since in the whole sample risk neutral skewness is found to be less negative 

than physical one: in the high volatility period physical skewness is much less than in the low 

volatility period. Notably, the EDK model is the only one which finds risk neutral skewness to be 

more negative than physical one in the high volatility period, where MF yields the opposite result. 

However, it has been noted in Conrad et al. (2013) that skewness estimates based on sample averages 

are prone to measurement errors more than other moments; therefore, we leave for future research 

the use of other asymmetry measures less sensitive to outliers. 



The results are of practical importance for traders who may rely on implied trees in order to price 

other less liquid exotic options consistently with European ones and for settling profitable trades on 

risk neutral moments. The paper could be extended in many directions. The determinants of 

variance, skewness and kurtosis risk premia are the first to deserve attention in future research. 

Moreover, the dynamics and the relationship among implied moments and the importance of risk 

neutral moments in the forecasting of future returns merit careful investigation.  
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Table 1. The pricing performance in the whole sample. 

  CRR EDK RUB 

MAPE 0,57785 0,19491 0,29391 

MAPE Call 0,81140 0,14371 0,12666 

MAPE Put 0,34430 0,24611 0,46117 

MISP -0,13398 -0,92463 -0,33374 

MISP Call 0,71515 -0,89157 0,12332 

MISP Put -0,98311 -0,95769 -0,79079 
 

Note: The Table shows the pricing errors measured by 		 ∑ , 	

∑

∑
			,					for the Cox-Ross-Rubinstein (CRR), Enhanced Derman and Kani (EDK),  and 

Rubinstein (RUB) models. 
 
 

 

 
 

  



Table 2. The pricing performance by moneyness (whole sample). 

Panel A: in-the-money CRR EDK RUB 

MAPE 0,0057 0,0016 0,0083 
MAPE Call 0,0020 0,0007 0,0023 
MAPE Put 0,0094 0,0026 0,0142 

MISP 0,0223 -0,9183 -0,0284 
MISP Call 0,9407 -0,9720 0,9307 
MISP Put -0,8960 -0,8845 -0,9874 

          

Panel B: at-the-money CRR EDK RUB 

MAPE 0,0373 0,0226 0,0593 
MAPE Call 0,0091 0,0117 0,0101 
MAPE Put 0,0654 0,0334 0,1086 

MISP -0,2522 -0,7735 -0,8093 
MISP Call 0,4835 -0,7545 -0,6422 
MISP Put -0,9878 -0,8005 -0,9764 

          

Panel C: out-of-the-money CRR EDK RUB 

MAPE 0,1603 0,0767 0,0903 
MAPE Call 0,1903 0,0497 0,0291 
MAPE Put 0,1313 0,1042 0,1524 

MISP -0,1118 -0,9383 -0,5500 
MISP Call 0,7691 -0,9045 -0,3806 
MISP Put -0,9928 -0,9720 -0,7195 

 

  
 
Note: The Table shows the pricing performance for in-the-money options (Panel A), at-the-money 
options (Panel B) and out-of-the-money options (Panel C). The pricing errors measured by	

∑ , 	
∑

∑
			,				for the Cox-Ross-Rubinstein (CRR), Enhanced Derman 

and Kani (EDK), and Rubinstein (RUB) models.  



Table 3. The pricing performance in the two sub-periods. 

Panel A: Low volatility     
CRR EDK RUB 

MAPE 0,5838 0,2073 0,2776 
MISP -0,1552 -0,9262 -0,4187 

    
 Panel B: High volatility       

CRR EDK RUB 
MAPE 0,5689 0,1763 0,3185 
MISP -0,1021 -0,9222 -0,2061 

 

 

Note: The Table shows the pricing errors measured by 		 ∑ , 	

∑

∑
			,					for the Cox-Ross-Rubinstein (CRR), Enhanced Derman and Kani (EDK), and 

Rubinstein (RUB) models. Panel A of the Table shows the result for the low volatility period (2005-
2007), Panel B of the Table for the high volatility period (2008-2009). 
 

 

  



Table 4. The pricing performance by moneyness (Low volatility period). 

Panel A: in-the-
money  

   

CRR EDK RUB 
MAPE 0,0068 0,0013 0,0096 
MISP 0,0398 -0,7412 -0,0249 

          

Panel B: at-the-
money 
 

   

   CRR EDK RUB 
MAPE 0,0418 0,0233 0,0675 
MISP -0,3018 -0,8039 -0,8911 

           

Panel C: out-of-the 
money 

   

   CRR EDK RUB 
MAPE 0,2109 0,0935 0,0914 
MISP -0,1508 -0,9247 -0,71 

 

Note: The Table shows the pricing performance in the low volatility period (2005-2007) for in-the-
money options (Panel A), at-the-money options (Panel B) and out-of-the-money options (Panel C). 

The pricing errors are measured by	 ∑ , 	
∑

∑
			,				for the Cox-

Ross-Rubinstein (CRR), Enhanced Derman and Kani (EDK), and Rubinstein (RUB) models. 

 
 

  



Table 5. The pricing performance by moneyness (High volatility period). 

 Panel A: in-the- 
money 

CRR EDK RUB 

MAPE 0,004 0,0021 0,0063 
MISP -0,1775 -0,7278 -0,6864 

           

Panel B: at-the- 
money 
 

CRR EDK RUB 

MAPE 0,0305 0,0214 0,047 
MISP -0,0039 -0,6432 -0,071 

 Panel C: out-of-
the-money 
 

CRR EDK RUB 

MAPE 0,0843 0,0515 0,0886 
MISP -0,0533 -0,9586 -0,3097 

 
The Table shows the pricing performance in the high volatility period (2008-2009) for in-the-money 
options (Panel A), at-the-money options (Panel B) and out-of-the-money options (Panel C). The 

pricing errors measured by	 ∑ , 	
∑

∑
			,				for the Cox-Ross-

Rubinstein (CRR), Enhanced Derman and Kani (EDK), and Rubinstein (RUB) models. 

 

 
  



Table 6. Higher Moments (whole sample). 

  EDK RUB MF PHYSICAL 

Variance 0,1318 0,0639 0,1030 0,0853 

Skewness -0,1148 0,0313 -0,0170 -0,1711 

Kurtosis 3,2678 3,0847 3,1103 3,0366 
 

Note: Risk-Neutral Moments are all calculated over a 30-days period by interpolating the moments 
of the near and next maturity for the Enhanced Derman and Kani (EDK), and Rubinstein (RUB) 
models. For model-free Moments (MF) we used the Bakshi et al. (2003) formula. Physical moments 
are obtained with a rolling analysis over a 22-working days period (equivalent to 30 days). 

 

  



Table 7. The Forecasting performance of Higher Moments (whole sample). 

  EDK RUB MF 

RMSE Var 0,1288 0,1122 0,0812 

RMSE Skew 0,6234 0,7008 0,5741 

RMSE Kurt 3,5631 1,5197 0,9669 

Note: The Table shows the forecasting errors for the Enhanced Derman and Kani (EDK), Rubinstein 

(RUB) and Bakshi et al. (2003) (MF) models, measured by ∑ , where 

 is the risk neutral moment and  is the physical moment for variance, skewness and kurtosis. 

 

 

  



Table 8. Risk premia (whole sample). 

  EDK RUB MF 

Variance -0,0465 0,0214 -0,0176 

Skewness -0,0563 -0,2023 -0,1540 

Kurtosis -0,2311 -0,0480 -0,0736 

Note: The Table shows the risk premia in Euro terms, for Enhanced Derman and Kani (EDK), 
Rubinstein (RUB) and Bakshi et al. (2003) (MF) models. Risk premia are computed as the difference 
between physical and risk neutral moments. 

 
 
 
 
 
 
 
 
 
  



Table 9. Higher Moments in the two sub-periods 
 
Panel A:  
Low volatility EDK RUB MF PHYSICAL 

Variance 0,0482 0,0393 0,0347 0,0253 

Skewness -0,0937 0,0552 -0,0381 -0,2631 

Kurtosis 3,3247 3,0938 3,1470 3,0646 
 

Panel B:  
High volatility EDK RUB MF PHYSICAL 

Variance 0,2601 0,1015 0,2078 0,1774 

Skewness -0,1470 -0,0054 0,0154 -0,0295 

Kurtosis 3,1804 3,0709 3,0537 2,9904 
 
Note: The Table shows the moments in the low volatility period (2005-2007) in Panel A and in the 
high volatility period (2008-2009) in Panel B. Risk-neutral moments are calculated over a 30-days 
period by interpolating the moments of the near and next maturity for the Enhanced Derman and 
Kani (EDK), Rubinstein (RUB) and Bakshi et al. (2003) (MF) models. Physical moments are 
obtained with a rolling analysis over a 22-working days period (equivalent to 30 days). 
 

 

  



Table 10. The Forecasting performance of Higher Moments in the two sub-periods. 

Panel A:  
Low volatility 
 EDK RUB MF 

RMSE Var 0,0379 0,0239 0,0191 

RMSE Skew 0,6198 0,7440 0,5931 

RMSE Kurt 4,3897 1,3659 0,9830 
 

Panel B:  
High volatility EDK RUB MF 

RMSE Var 0,1997 0,1763 0,1272 

RMSE Skew 0,6289 0,6285 0,5438 

RMSE Kurt 1,6108 1,7296 0,9526 

Note: The Table shows the result in the low volatility period (2005-2007) in Panel A, in the high 
volatility period (2008-2009) in Panel B. The Table shows the forecasting errors for the Enhanced 
Derman and Kani (EDK), Rubinstein (RUB) Bakshi et al. (2003) (MF)  models, measured by 

∑ , where  is the risk neutral moment and  is the physical 

moment for variance, skewness and kurtosis. 

 

 

 

 

 

  



Table 11. Risk Premia in the two sub-periods. 

Panel A:  
Low volatility 

 
EDK RUB MF 

Variance -0,0229 -0,0139 -0,0094 

Skewness -0,1694 -0,3184 -0,2250 

Kurtosis -0,2600 -0,0292 -0,0823 
 

Panel B:  
High volatility EDK RUB MF 

Variance -0,0825 0,0759 -0,0303 

Skewness 0,1175 -0,0240 -0,0449 

Kurtosis -0,1867 -0,0771 -0,0658 

Note: The Table shows the risk premia in the low volatility period (2005-2007) in Panel A, in the 
high volatility period (2008-2009), in Panel B. Risk premia are computed as  the difference between 
physical and risk neutral moments for the Enhanced Derman and Kani (EDK), Rubinstein (RUB) 
and Bakshi et al. (2003)(MF) models. 

 


