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                                                          Abstract 

 

In this paper we investigate short-run co-movements before and after the Lehman Brothers’ 

collapse among the volatility series of US and a number of European countries. The series under 

investigation (implied and realized volatility) exhibit long-memory and, in order to avoid miss-

specification errors related to the parameterization of a long memory multivariate model, we rely 

on wavelet analysis.  

More specifically, we retrieve the time series of wavelet coefficients for each volatility series for 

high frequency scales, using the Maximal Overlapping Discrete Wavelet transform and we apply 

Maximum Likelihood for a factor decomposition of the short-run covariance matrix.  

The empirical evidence shows an increased interdependence in the post-break period and points at 

an increasing (decreasing) role of the common shock underlying the dynamics of the implied 

(realized) volatility series, once we move from the 2-4 days investment time horizon to the 8-16 

days. Moreover, there is evidence of contagion from the US to Europe immediately after the 

Lehman Brothers’ collapse, only for realized volatilities over an investment time horizon between 8 

and 16 days. 
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1. Introduction  

In this paper we study implied and realized volatility co-movements, taking into account the 

long-memory properties of the series. Implied volatility embed the investor’s perception on future 

uncertainty, whereas realized volatility measures the actual volatility experienced in the market. 

Evidence of long memory in volatility measures is well documented. The studies of Baillie et al. 

(1996), Andersen and Bollerslev (1997), Comte and Renault (1998) give evidence of long-run 

dependencies, described by a fractionally integrated process, in GARCH, realized volatilities, and 

stochastic volatility models, respectively. More recently, empirical studies show that the volatility 

implied from option prices exhibits properties well described by a fractionally integrated process. 

The long run relationship between implied and realized volatilities is analyzed through fractional 

cointegration by Bandi and Perron (2006) and Christensen and Nielsen (2006), focusing on the 

stock market; by Kellard et al. (2010), focusing on the currency market. Moreover, Bollerslev et al. 

(2013) employ a co-fractional VAR to model long run and short run dynamics of realized variance, 

implied variance and stock return in the US market. All the aforementioned studies focus on the US 

stock market. The only study analyzing spillovers effects across different volatility indices for the 

US and Europe (with emphasis on the role played by news) is the one by Jiang et al. (2012). 

However, the authors’ focus is on first differences of implied volatilities.   

Given that the implied volatility indexes represent a measure of market expectations of near-

term volatility of the underlying stock index, conveyed by option prices, they are deemed by market 

participants to capture the so-called “market fear”: high index values are associated with high 

uncertainty in the underlying market, low index values with stable conditions (Muzzioli, 2013). 

Therefore, our first contribution to Jiang et al. (2012) is to focus on the levels of such “market fear” 

indices and not on their first order differences. Second, we extend the analysis to the actual ex-post 

realized volatilities. Third, to our knowledge, we are the first to explore co-movements in implied 

and realized volatility in terms of interdependence and contagion. According to Forbes and Rigobon 
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(2002), interdependence is the co-movement driven by common shock;  (shift) contagion is defined 

as a significant and temporary increase in cross-market linkages (beyond the one driven by common 

shocks). We are particularly interested in analyzing whether contagion from the volatility of the US 

stock market to the one of European countries (UK, Germany, France, Netherlands and 

Switzerland), occurred during the period immediately after the Lehman Brothers’ collapse (between 

mid-September 2008 and the end of year 2008).   

  In the first stage of the analysis we confirm (using daily data) the findings of Bandi and 

Perron (2006) regarding the existence of long memory in the level of implied and realized 

volatilities not only for the US, but also for the European stock markets. In a second stage, we 

provide a methodological contribution to modelling the dynamics of long-memory time series in a 

multivariate setting.  More specifically, we prefer not to rely on a Fractionally Integrated Vector 

Autoregressive Model (e.g. Bollerslev et al. (2013)) or a Vector Autoregressive Model with a 

common factor following an ARFIMA process (see Cassola and Morana, 2008) to explore co-

movements, since we want to avoid model misspecification errors related to the lag order of the 

VAR model or to the use of a biased estimate of the fractional integration parameters. Therefore, we 

use wavelet analysis to explore short run (i.e. the ones associated to high frequencies) volatility co-

movements both in terms of contagion and interdependence.  

In line with Percival and Walden (2000) we use the Maximal Overlapping Discrete Wavelet 

Transform, MODWT, to estimate the covariance matrix of a pair of fractionally integrated time 

series at different scales (each associated with a given frequency range). Then, we explore the 

contribution of common and idiosyncratic shocks to the variability of the level of each volatility 

index at different scales through a factor decomposition of a given scale covariance matrix.  The 

factor decomposition is obtained by Maximum Likelihood and inference is carried out via 

bootstrap. Moreover, since the highest frequency range considered by wavelet decomposition is 
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between two and four days, we are also able to overcome the problem of asynchronous data, 

without losing any observation
1
.   

The structure of the paper is as follows. Section 2 describes the empirical methodology; 

Section 3 provides the empirical evidence and Section 4 concludes. 

 

2 Univariate and multivariate analysis of long memory series 

2.1 Long memory definition and univariate analysis 

Let the implied volatility series, impt , be described by an ARFIMA(p,d,q) process: 

tt
d LimpLL )()1)((            (1) 

where εt is an iid Gaussian process with variance 
2
 . The AR component is given by a polynomial of 

degree p (with roots outside the unit circle): 

p
pLLLL   ...1)( 2

21                        (2) 

and the MA component is described by a polynomial of degree q (with roots outside the unit circle): 

q
qLLLL   ...1)( 2

21            (3) 

The fractional differencing operator (1 – L)d
 can be derived from a power series expansion as 

follows: 









0 )1()(

)(
1)1(

z

zd L
zd

dz
L              (4) 

It turns out that, for 0 < d < 0.5, the process impt is stationary and invertible. For such processes, the 

effect of a shock ε at time t on imp at time t+h decays as h increases, but the rate of decay is much lower 

than for a process integrated of order zero, hence the autocorrelation function for a fractionally 

integrated process decays hyperbolically. If  0.5 < d < 1, then the process is long-memory non-

stationary and it is characterized by an infinite variance. 

                                                 
1
 Forbes and Rigobon (2002) use a moving average across two consecutive days to circumvent the problem of 

asynchronicity, halving the number of available observations. 
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The most prevalent method for estimating the fractional differencing parameter is the method 

proposed by Geweke and Porter-Hudak (1983, hereafter GPH) which is based on the low frequency 

spectral behavior of the time series, exploiting the property that the spectral density of a long memory 

processes is infinite at frequency zero. In practice, the GPH estimator is simply the slope of the sample 

log periodogram: 

jjjTx dcI   ))2/sin(2ln(2)(ln ,         (5) 

where )(, sTxI   is the sample periodogram at the jth Fourier frequency 
T

j
j




2
 , with T/2 ,…1,= j , 

and T is the sample size. The log-periodogram regression uses observations pertaining to 

frequencies ranging from j equal to 1 up to m.  In line with the study of Bandi and Perron (2006), 

the maximum number of frequencies m involved in log periodogram regression is set either to 

 T
0.5

, or to T
0.6

, or to T
0.7

. The asymptotic standard error of the parameter d, equal to 
m

1

24

2














, 

was obtained by Robinson (1995a) in the presence of stationary data and by Velasco (1999) in the 

presence of non-stationary data with 
1 3

2 4
d  .  

The local Whittle estimator developed by Kunsch (1987) and by Robinson (1995b) 

maximizes a 

frequency-domain Gaussian likelihood for frequencies in the neighborhood of zero, i.e.: 


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1
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The asymptotic standard error of the parameter d has been derived by Robinson (1995b) and it is 

equal to 
m

1

4

1
.                          (7) 
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2.2 Multivariate analysis: an introduction to multi-resolution analysis 

Once we have investigated the long memory properties of the implied volatility series, we 

turn our focus on multivariate analysis. A Fractionally Integrated Vector Autoregressive Model (e.g. 

Bollerslev et al. (2013)) or a Vector Autoregressive Model with a common factor following an 

ARFIMA process (see Cassola and Morana, 2008) could then be employed to explore co-movement 

and causal linkages between long memory time series. The choice of the lag length and the 

estimation of the fractional integration parameters could be a potential source of model 

misspecification. We circumvent the problem using wavelet analysis.  

Since we need to retrieve information both from time and frequency domain, we suggest the 

use of a multi-scale decomposition of each volatility time series through wavelet analysis. 

Frequency domain approaches provide an insightful representation of econometric data by 

decomposing it into sinusoidal components at various frequencies, which have intensities that vary 

across the frequency spectrum. The shortcoming of Fourier analysis is related to the assumption of  

intensities constant through time. This feature makes Fourier methods ineffective in analyzing 

signals containing local irregularities, such as spikes or discontinuities, which, we argue, are a 

feature of financial time series. Wavelets can be a particular useful tool when the signal is localized 

in time as well as frequency. Consequently, wavelet transforms can localize a process in time and 

scale, revealing long-run, or high-scale, features of the process in a more flexible manner than 

Fourier analysis.  

The wavelet transform (see Appendix for more details) decomposes a time series into time 

scale components, each reproducing the evolution over time of the original series for a particular 

level  j of decomposition, associated to a given frequency range. In particular,  at level  j and scale  

λj= 2
j-1 

, the time series of wavelet coefficients are able to capture frequencies spanning cycles with 

periodicity between j2  and 12 j
. The lower scales are associated to the highest frequency range and 

the highest scales (up to maximum level of decomposition J) correspond to the lowest frequency 

range. Given the definition of financial contagion as a temporary, hence short-tem, phenomenon 
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occurring during a period of financial turmoil, we investigate co-movements for investment time 

horizon between two and four days, between four and eight days and  between eight and sixteen 

days (hence we do not go beyond  level 3 of decomposition). Since the highest frequency range 

considered is between two and four days, then we are able to bypass the issue of asynchronous data 

without losing any observation.   

 

2.3 Factor model description and estimation 

In order to examine co-movements, in terms of interdependence and contagion, among the 

volatilities of the US market and of the European markets, before and after the Lehman Brothers’ 

collapse, we suggest to use two different factor models. For the pre-crisis period, we model the 

volatility (either implied or realized)  for the i
th

 country stock market at time t and for scale j, using 

the following factor model specification:  

j j j

itit t ivol u                         (8) 

where u is the common shock with the associated factor loading γ
j
, and it is the idiosyncratic shock 

for market i whose size (proxied by the corresponding standard deviation) is given by 
j

i . The 

unobservable common shock u is meant to proxy macroeconomic news (e.g. shocks to 

fundamentals) driving market interdependencies (see for instance Jiang et al., 2012). 

For the post-crisis period, co-movements are analyzed through the following factor model 

for all countries (except the US): 

,

j j j j j

it us tit t i i usvol u                (9) 

 

where j

i  measures the contagion from the US to European country i, for an investment time 

horizon associated with the jth level of decomposition.  In this setting,  in case of contagion from 

the US market to a European market, we expect a positive . Given the short time period considered 
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for the crisis regime, we treat US as the only potential originator of contagion, implying a zero 

coefficient  when equation (9) applies to the dynamics of the US volatility index. 

Using matrix notation, if we define 
_

j

tvol the 16 vector of volatilities (for the US, UK, 

Germany, France, Netherlands and Switzerland stock markets) at time t and for scale j, the 

following factor model specification applies to the non-crisis (k=nc) period: 

_ _

k

j j j

tt k tvol u       

and the following factor model specification is defined for the crisis (k=c) period: 

_ _
j j j j

tt k t kvol u                

where k=c,nc;  u is the common shock with the associated factor loadings: 

k
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_

t is the 16 vector of idiosyncratic shocks with covariance matrix 2 j

k , where j

k  is defined as:  
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and 
j
 is the spillover effects matrix given by: 
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Therefore, before 15 September 2008 volatility co-movements are shaped only by a common shock; 

after the Lehman Brothers’ collapse, both a common shock and a shock to the US stock market, 

drive co-movements. 

The estimation is carried through the following steps. In the first stage, we apply the 

Maximal Overlapping Discrete Wavelet Transform, MODWT (see Percival and Walden, 2000; 

Whichter et al., 2000) to obtain a decomposition of each time series into different scales (each 

associated to a given frequency range) localized in time (see Appendix for more details). Unlike the 

Discrete Wavelet Transform (DWT), the MODWT, by producing a decomposition of a given time 

series into components having the same size as the original time series, is better suited than DWT to 

locate  potential structural breaks.  

In the second stage of the analysis, we employ a factor decomposition of the covariance 

matrix for the ith volatility series across different scales. As shown by Percival and Walden (2000) 

(see also Whichter et al, 2000), the wavelet covariance between two fractionally integrated time 

series X and Y (with the orders of integration d1 and d2, respectively) for scale λj= 2
j-1

is defined as 

)( j  and it is given by: 






1

1

,,
1 N

Ll

Y

tj

X

tj
j

j

ww
N

                (10) 
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where tjw ,  are the non-boundary (stationary) wavelet coefficients for scale λj, obtained from a 

wavelet transform using a filter of length L; Nj =N - Lj + 1, Lj=(2
j
-1)(L-1)+1 is the filter length at 

level  j.
2
  

The existence of a finite variance-covariance equation as given by (10) between two 

fractionally integrated time series relies on the stationary property of the wavelet coefficients. The 

choice of filter length to achieve stationarity in the wavelet coefficients depends on the trade-off 

between leakage and boundary affected coefficients: the longer the filter, the closer to an ideal high 

pass filter, but also the higher the number of boundary coefficients.  For that reason, in presence of 

time series exhibiting an high degree of persistence, the condition suggested by Percival and 

Walden (2000), L > 2d (where d is the fractional integration parameter), ensuring stationary 

wavelet coefficients would suggest the use of a filter with length L, at least equal to two. However, 

the longer is the filter, the higher is the number of boundary affected coefficients. In this study we 

use both the Haar filter (i.e. L equal to 2) and the Least Asymmetric filter of length L equal to 4 

(e.g. the LA4 filter). 

In the final stage of the analysis we apply a factor decomposition of level j covariance 

matrix through Maximum Likelihoood estimation. More specifically, we maximize the following 

Gaussian log-likelihood function fitted to the 6 1  vector of wavelet coefficients jtW :  





T

Tt

jjjjj
jt

T

t

jjj
jt WLWL

1

_

1

_

1

1

)'';()';(

       (11) 

where L(.) is the multivariate Gaussian log-density at time t  and for scale j. The first addend of L(.) 

involves observations for the tranquil period (starting from 2/1/2002 to 14/9/2008) and the second 

                                                 
2
 Non boundary coefficients are those not influenced by the end-effect problem. The wavelet transform, and its variants, 

such as the MODWT, makes use of circular filtering. The series under investigation, x, is treated as if it is a portion of a 

periodic sequence with period N. In other words, the transform considers xN-1, xN-2…. as useful surrogates for the 

unobserved x-1 , x-2 … . A problem with the periodic extension can occur when there is a large discontinuity between the 

end of one replication of the sample and the beginning of the next. In such cases the coefficients produced by the 

transform result remarkably high and the reconstructed details are affected. 
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addend involves observations for the crisis period (from the 15th of September 2008 to the 31st of 

December 2008). Given that the focus is on the short-run horizon, we focus on the ML estimation 

for the first three scales (that is, for a level of decomposition j equal to 1, 2 and 3). The total number 

of coefficients is 19, whereas we have a total of 42 moment conditions (21 per regime given six 

endogenous variables), giving 23 over-identifying restriction.  

Inference on the coefficients and a likelihood ratio test for the over-identifying restriction 

are carried through a block bootstrap, which is obtained by re-sampling (with replacement) the  

wavelet coefficients associated to each regime (either tranquil or crisis period). The re-sampling is 

obtained from random draws from a uniform distribution and it is repeated 250 times. At each 

replication, the structural form parameters in eq. (10) and the maximized log-likelihood function are 

estimated by ML. Then, the p-value for the test of the null of a zero coefficient against the 

alternative of a positive one is obtained by counting the number of replications for which the ML 

estimate exceed zero and dividing by the total number of replications. The p-value for the likelihood 

ratio test for the over-identifying restrictions is obtained by counting the number of replications for 

which the likelihood ratio statistics is below the one associated to the point estimates
3
.  

 

3 Data and empirical evidence 

The volatility series for  US, UK, Germany, France, Netherlands and Switzerland are 

observed at daily frequency from 2/1/2002 till 31/12/2008.  The annualized implied volatilities 

indices (in percentage values) are the risk neutral expectations for near term volatility (e.g. for the 

next 30 days) and they are available from DASTREAM. The annualized realized volatility (in 

percentage values) series have been obtained from the daily realized variances in (hundreds) 

available from the OXMAN Realized library
4
.  

                                                 
3
 The log-likelihood for the reduced form model is obtained by using the sample covariance matrix of the wavelet 

coefficients (for a given scale) in the log-likelihood function given by eq. (10). 
4
 We use the daily realized variance obtained from 5minute squared returns  using 1-minute subsamples. The dataset is 

available from the website http://realized.oxford-man.ox.ac.uk/ 

http://realized.oxford-man.ox.ac.uk/
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Descriptive statistics for pre and post break (that is over the 2/1/2002-14/9/2008 sub-sample 

and over the 15/9/2008-31/12/2008 sub-sample, respectively)  are reported in Table 1. We can 

observe that the US implied volatility index is the one experiencing the largest increase (equal to 

195% ),  in its mean value after the Lehman Brothers’ collapse. In particular, there is a rise from a 

pre break mean value of 18.541 to a post break mean value of 54.718, which is the largest among 

the countries under investigation. Similarly the largest increase in the standard deviation of the 

implied volatility index, equal to 88%, is for the US, rising from a pre-break value of 6.751 to a post 

break value of 12.702. These findings are confirmed by the realized volatilities series: there is a rise 

from a pre break mean value of 12.460 to a post break mean value of 48.889, and a rise from a pre 

break standard deviation value of 6.510 to a post break standard deviation value of 20.773, which is 

the largest among the countries under investigation. The lowest increment in implied  and realized 

volatility from pre to post break is attained for Germany. For all the countries implied volatility is 

fairly higher than realized volatility both in the pre and in the post break period, showing the 

existence of a negative variance risk premium (i.e. investors are willing to pay a high fixed rate in 

order to be hedged against peaks of realized volatility, which usually are associated with bad market 

conditions). If implied volatility is perceived as the investors’ sentiment on the future value of 

realized volatility, by looking at co-movements in implied or realized volatility, we are able to see if 

they concern more the investors’ perceptions on volatility (implied volatility) or the actual volatility 

experienced in the market (realized volatility).   

The empirical evidence given in Tables 2 and 3, where we report the GPH and Local Whittle 

estimates of the long memory parameter using the full sample, suggests the existence of non- 

stationary long memory for both implied and realized volatilities series across all markets. In 

particular, the realized volatilities series exhibit a smaller degree of persistence when compared to 

the implied volatilities series (as in Bandi and Perron, 2006). Although results in Tables 2 and 3 

point at non stationary long memory,  we can observe a variety of point estimates for the fractional 

integration parameters of each series. Therefore, we prefer to bypass the use of a parametric long 
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memory multivariate model relying on the fractional difference operator d estimated in the first 

stage of the analysis. 

  We now turn our focus on the multivariate analysis based on the time scale decomposition 

via wavelets. From Tables 4-7 we can notice that the bootstrapped p-values for the likelihood ratio 

test suggest that the over-identifying restriction are not rejected.  As for the implied volatilities 

indices, we can observe from Table 4 and 5 that there is a pronounced increase in the influence of 

the common shock once we move from lower to higher scales, and this is especially true once the 

focus shifts from tranquil to crisis regime.  In particular, from Table 4, the empirical evidence based 

on the Haar filter shows that, as for the tranquil period,  the common factor loading increases from 

0.521 to 0.917 once the focus shifts from an investment time horizon between two and four days 

(e.g. scale 1), to investment time horizon between eight and sixteen days (e.g. scale 3). These 

findings are even more pronounced  when we concentrate on the crisis period: the common factor 

loading increases from 2.209 to 3.826 once the focus shifts from an investment time horizon 

between two and four days to investment time horizon between eight and sixteen days. The use of 

the LA4 filter (see Table 5) confirms the empirical findings obtained from the use of the Haar filter 

(although the point estimates of the common factor loading are lower than the ones associated to the 

shorter filter).   

 For a given regime (either tranquil or crisis period), the role of the idiosyncratic shocks to 

the implied volatility of US decreases once we move from the first to the third scale. In particular, 

immediately after the Lehman Brothers’ collapse, the size of the US shock (proxied by the standard 

deviation) decreases from a value of 2.068 to 1.438 once the focus shifts from an investment time 

horizon between two and four days to an investment time horizon between eight and sixteen days 

(Haar filter). A similar pattern for the crisis period is shared by the idiosyncratic shocks to UK 

(even if the decrease is non-monotonic with the time scale, displaying a hump shape) Germany and 

France (this latter country is the one experiencing the largest decrease, from 2.215 to 0.831, in the 

size of the idiosyncratic shock once the focus shifts from scale 1 to scale 3). Switzerland and 
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Netherlands are the only countries where the role of idiosyncratic shocks increases when we move 

towards a longer investment horizon and to the crisis period. The use of the LA4 filter (see Table 5) 

confirms the empirical findings regarding the size of idiosyncratic shocks obtained from the use of 

the Haar filter. Finally, there is no evidence of contagion from the US implied volatility to the other 

European implied volatilities, given that the bootstrapped p-values of the coefficients j

i ’s show a 

very low probability of getting a positive value (indicating contagion).  

 The empirical findings for realized volatilities are somehow different from those obtained 

for the implied volatility series. From Tables 6 and 7 we can observe that, for a given regime, the 

loadings of the idiosyncratic and of the common shock decrease once we move from level 1 to level 

3 of the decomposition (the only exception being Germany in the post break period). However, for a 

given scale, in a way similar to the implied volatility case, there is an increased loading of the 

idiosyncratic and of the common shock once we move from the pre-break to the post break regime. 

Finally, there is evidence of contagion from the US to other markets realized volatilities if we refer 

to level 3 of the decomposition.   

 

4. Conclusions 

In this paper we investigate short-run co-movements before and after the Lehman Brothers’ 

collapse among long memory time series:  the implied and realized volatility series of US, UK, 

Germany, France, Netherlands and Switzerland. Our contribution to previous studies of volatility 

co-movements is in avoiding the potential miss-specification errors (due to the choice of wrong lag 

order and the use of biased estimate of the fractional integration parameter) which might be 

associated to the use of a Fractionally Integrated Vector Autoregressive Model (e.g. Bollerslev et al., 

2013) or a Vector Autoregressive Model with a common factor following an ARFIMA process (see 

Cassola and Morana, 2008). For this purpose we employ a two stage analysis.  In the first one, we 

use the Maximal Overlapping Discrete Wavelet transform to obtain the wavelet coefficients  for 
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each volatility series and for high frequency scales. Since, as shown by Percival and Walden (2000), 

the variance-covariance matrix of each pair of (fractionally integrated) raw data for different scales 

is obtained from the associated (stationary) wavelet coefficients, we apply, in a second stage, 

Maximum Likelihood for a factor decomposition of the covariance matrices for the high frequency 

scales. To our knowledge, we are the first to explore co-movements in implied and realized 

volatility in terms of interdependence and contagion. Since the highest frequency range considered 

is between two and four days, we are able to circumvent the issue of asynchronous data, without 

losing any observation.  

The empirical findings show that in the crisis period there is evidence of increased co-

movements among European countries and the US both in the investor’s perception on future 

uncertainty and in the actual realized volatility. However, contagion from the US stock market is 

evident only in the actual realized volatilities for an investment time horizon between 8 and 16 

days. Moreover, the higher the frequency, the higher are the co-movements in realized volatility 

(which can be explained as in Blasco et al., 2012, with herding behavior detected at high 

frequency). Finally, the higher the frequency, the lower are the co-movements in investor’s 

sentiment on future uncertainty. These empirical findings from multivariate analysis confirm the 

univariate results (e.g. the long memory parameter for implied volatility is higher than the one for 

realized volatility). This is what we could expect given that implied volatility is an average 

consensus on future realized volatility. 
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Table 1: Descriptive Statistics for pre and post break volatilities 

Implied Volatilities 

 US UK GER FRA NED SWI 

Mean 18.541  

54.718    
19.220 

49.885   
22.228 

46.656   
22.207    

49.850    
23.542  

55.921    
19.214 

49.631 
Std dev 6.751 

12.702  
8.355 

12.272 
9.717 

11.722 
9.631 

12.143 
11.245 

12.421 
8.288 

12.897 
Min 9.890     

30.300   
9.099 

30.950 
10.980 

26.060 
9.242 

26.640 
10.121 

32.180 
9.239 

27.894 
Max 45.080    

80.860    

57.137   

75.540    

58.250   

74.000     

61.463    

78.050    

65.669    

81.220    

53.037 

84.896 

Realized Volatilities 

 US UK GER FRA NED SWI 

Mean 12.460 

 48.889    
11.574    

35.417    
17.213    

44.113    
15.089   

42.904     
14.774    

42.295    
12.848 

35.050 
Std dev 6.510   

20.774      
7.173    

13.467    
11.024   

19.362      
9.008 

17.651       
9.485    

15.106     
7.388 

12.745 
Min 3.378 

17.343    
3.294   

14.294      
3.418   

12.707    
3.890     

16.62 
4.316   

13.987 
4.790 

16.050 
Max 56.087    

146.739    

89.284    

88.339 

94.096    

110.789   

86.755  

108.767      

85.373   

97.373  

65.960 

77.142 

Footnote: The top number of each entry gives the value of the pre-break (e.g.over the 2/1/2002-14/9/2008 sub-sample) 

descriptive statistic. The bottom number of each entry gives the value of the post-break (e.g.over the 15/9/2008-

31/12/2008 sub-sample) descriptive statistic. 
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Table 2: GPH estimates of parameter d  

Implied Volatilities 

US UK GER FRA NED SWI 

m = T
0.5

 

0.844 

 

0,821 

 

0,948 

 

0,840 

 

0,820 

 

0,919 

 

m = T
0.6

 

0.902 

 

0.765 

 

0.859 

 

0.838 

 

0.865 

 

0.854 

 

m = T
0.7

 

0.911 

 

0.915 

 

0.889 

 

0.867 

 

0.991 

 

0.975 

 

Realized Volatilities 

US UK GER FRA NED SWI 

m = T
0.5

 

0.659 

 

0.6128 

 

0.7257 

 

0.6335 

 

0.6681 

 

0.7482 

 

m = T
0.6

 

0.6852 

 

0.7106 

 

0.8629 

 

0.7266 

 

0.8290 

 

0.7446 

 

m = T
0.7

 

0.6424 

 

0.6504 

 

0.6353 

 

0.6531 

 

0.7219 

 

0.6621 

 

Footnote: the maximum number of frequencies ω involved in the estimation of the fractional integration  

parameter is given by m. The asymptotic standard errors are  equal to 0.101, 0.069, 0.048 for m=T
0.5

,  

m= T
0.6

, and T
0.7

, respectively.  
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Table 3: Whittle estimates of parameter d                                                             

Implied Volatilities 

US UK GER FRA NED SWI 

m =T
0.5

 

0.937 0.880 0.942 0.846 0.890 0.940 

m =T
0.6

 

1.006 0.879 0.929 0.862 0.955 0.947 

m =T
0.7

 

0.994 

 

0.953 

 

0.922 

 

0.900 

 

0.998 

 

1.016 

 

Realized Volatilities 

US UK GER FRA NED SWI 

m =T
0.5

 

0.747 0.693 0.750 0.725 0.697 0.751 

m =T
0.6

 

0.752 0.743 0.819 0.747 0.813 0.784 

m =T
0.7

 

0.660 0.639 0.625 0.648 0.689 0.666 

Footnote: the maximum number of frequencies ω involved in the estimation of the fractional integration  

parameter is given by m. The asymptotic standard errors are  equal to 0.078, 0.054, 0.037 for m=T
0.5

,  

m= T
0.6

, and T
0.7

, respectively.  
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Table 4: Factor decomposition of scale covariance matrices for the  

implied volatilities time series      (Haar filter)     

 

 SCALE 1 SCALE 2 SCALE 3 

Parameter Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

σUS 0.610            

(0.000)  

2.068            

(0.000)  

0.516            

(0.000)  

 1.515            

(0.000)  

0.535 

(0.000) 

1.438            

(0.000)  

σUK  0.375            

(0.000)  

1.598            

(0.000)  

0.312            

(0.000)  

 1.662            

(0.000)  

0.343            

(0.000)  

1.142            

(0.000)  

σGER 0.229            

(0.000)  

1.451            

(0.000)  

0.263            

(0.000)  

  1.126            

(0.000)  

0.316            

(0.000)  

 1.023            

(0.000)  

σFRA  0.513            

(0.000)  

2.215            

(0.000)  

0.450            

(0.000)  

 1.929            

0.000  

0.523            

0.000  

 0.831            

0.000  

σNED 0.400           

(0.000)  

0.814            

(0.000)  

0.462            

(0.000)  

 0.818            

(0.000)  

0.569            

(0.000)  

0.916            

(0.000)  

σSWI 0.376            

(0.000)  

1.113            

(0.000)  

0.281            

(0.000)  

1.571            

(0.000)  

0.330            

(0.000)  

1.517            

(0.000)  

γ 0.521 

(0.000) 

2.209 

(0.000) 

0.653 

(0.000) 

2.882 

(0.000) 

0.917  

(0.004)            

3.826 

(0.000) 

δUK  0.109            

(0.296)  

  -0.690            

(0.984)  

   0.004            

(0.860)  

δGER  -0.048           

( 0.668)  

  -0.295            

(0.808)  

   -0.414            

(0.992)  

δFRA  -0.032            

(0.700)  

  -0.939            

(0.996)  

   -0.487            

(0.992)  

δNED  0.053            

(0.496)  

  -0.513            

(0.984)  

   -0.082            

(0.980)  

δSWI  -0.296            

(0.940)  

  -0.877            

(0.976)  

   -0.675            

(0.992)  

Test over-

identifying 

restrictions 

(bootstrapped 

p-value): 

0.852 0.628 0.208 

Note: Bootstrapped p-values for testing the null of zero against the alternative 

hypothesis of  a positive coefficient are given in parenthesis. The p-value for  

the over-identifying restriction test is obtained by computing the number of  

bootstrap replications for which the likelihood ratio statistics exceed the one  

associated with the point estimates. The pre-break sample period runs from  

2/1/2002 until 14/9/2008. The post-break sample period runs from 15/9/2008  

until 31/12/2012 
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Table 5: Factor decomposition of scale covariance matrices for the  

implied volatilities time series   (LA4 filter)     

 

 SCALE 1 SCALE 2 SCALE 3 

Parameter Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

σUS 0.532            

(0.000)  

2.083            

(0.000)  

 0.490            

(0.000)  

1.657            

(0.000)  

0.513            

(0.000)  

1.021            

(0.000)  

σUK 0.328            

(0.000)  

1.750            

(0.000)  

 0.293            

(0.000)  

1.651            

(0.000)  

0.323            

(0.000)  

1.117            

(0.000)  

σGER  0.218            

(0.000)  

 1.514            

(0.000)  

 0.240            

(0.000)  

1.065            

(0.000)  

 0.291            

(0.000)  

0.948            

(0.000)  

σFRA 0.418            

(0.000)  

 2.630            

(0.000)  

0.416            

(0.000)  

1.979            

(0.000)  

 0.521            

(0.000)  

0.788            

(0.000)  

σNED 0.356            

(0.000)  

 0.702            

(0.000)  

0.415            

(0.000)  

0.685            

(0.000)  

0.540            

(0.000)  

0.988            

(0.000)  

σSWI  0.274            

(0.000)  

1.614            

(0.000)  

0.256            

(0.000)  

1.534            

(0.000)  

0.283            

(0.000)  

1.607            

(0.000)  

γ 0.445 

(0.000) 

1.836 

(0.000)             

0.558 

(0.000) 

2.472 

(0.000)             

0.776 

(0.000) 

3.284 

(0.004)             

δUK  -0.120            

(0.652)  

 -0.581            

(0.972)  

  -0.337           

(0.676)  

δGER  -0.183            

(0.884)  

  -0.163            

(0.800)  

  -1.008            

(0.992)  

δFRA  -0.251            

(0.804)  

 -0.780            

(0.988)  

  -1.071            

(0.992)  

δNED  -0.101            

(0.722)  

 -0.412            

(0.980)  

 -0.478           

(0.976)  

δSWI  -0.235            

(0.944)  

  -0.734            

(0.984)  

 -1.472            

(0.996)  

Test over-

identifying 

restrictions 

(bootstrappe

d p-value): 

0.500 0.436 0.288 

Note: see note to Table 4 
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Table 6: Factor decomposition of scale covariance matrices for the  

realized volatilities time series      (Haar filter)     

 

 SCALE 1 SCALE 2 SCALE 3 

Parameter Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

σUS 1.958            

(0.000)  

8.246            

(0.000)  

1.432            

(0.000)  

6.558            

(0.000)  

1.232            

(0.000)  

6.601            

(0.000)  

σUK 1.409            

(0.000)  

1.555            

(0.000)  

1.093            

(0.000)  

0.970            

(0.000)  

0.785            

(0.000)  

0.954            

(0.000)  

σGER 1.362            

(0.000)  

3.499            

(0.000)  

1.047            

(0.000)  

4.213            

(0.000)  

0.798            

(0.000)  

3.692            

(0.000)  

σFRA 0.769            

(0.000)  

2.763            

(0.000)  

0.607            

(0.000)  

2.426            

(0.000)  

0.470            

(0.000)  

1.751            

(0.000)  

σNED 0.926            

(0.000)  

 2.336            

(0.000)  

0.791            

(0.000)  

2.206            

(0.000)  

0.641            

(0.000)  

1.783            

(0.000)  

σSWI 1.042            

(0.000)  

 2.216            

(0.000)  

0.780            

(0.000)  

1.452            

(0.000)  

0.651            

(0.000)  

1.283            

(0.000)  

γ 1.948            

(0.004)  

6.396 

(0.000) 

1.839            

(0.000) 

5.479 

(0.000) 

1.734            

(0.004) 

4.822 

(0.000) 

δUK  0.047            

(0.476)  

  -0.017            

(0.571)  

 0.259            

(0.096)  

δGER  0.181            

(0.296)  

 0.126            

(0.200)  

 0.541            

(0.056)  

δFRA  0.178            

(0.312)  

 0.097            

(0.286)  

 0.421            

(0.076)  

δNED  0.101            

(0.344)  

 -0.016            

(0.600)  

 0.292            

(0.092)  

δSWI  0.121            

(0.248)  

 0.131            

(0.114)  

 0.358            

(0.088)  

Test over-

identifying 

restrictions 

(bootstrappe

d p-value): 

0.544 0.743 0.524 

Note: see note to Table 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

Table 7: Factor decomposition of scale covariance matrices for the  

realized volatilities time series      (LA4 filter)     

 

 SCALE 1 SCALE 2 SCALE 3 

Parameter Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

Pre 

break 

Post 

break 

σUS 1.938            

(0.000)  

8.037            

(0.000)  

1.396            

(0.000)  

 6.233            

(0.000)  

1.197            

(0.000)  

6.658            

(0.000)  

σUK 1.399            

(0.000)  

1.563            

(0.000)  

1.085            

(0.000)  

 1.102            

(0.000)  

 0.768            

(0.000)  

1.099            

(0.000)  

σGER 1.344            

(0.000)  

3.135            

(0.000)  

1.062            

(0.000)  

 4.228            

(0.000)  

 0.786            

(0.000)  

3.672            

(0.000)  

σFRA 0.756            

(0.000)  

2.651            

(0.000)  

0.605            

(0.000)  

 2.631            

(0.000)  

 0.469            

(0.000)  

1.740            

(0.000)  

σNED 0.902            

(0.000)  

2.253            

(0.000)  

0.794            

(0.000)  

 2.205            

(0.000)  

0.643            

(0.000)  

1.731            

(0.000)  

σSWI 1.032            

(0.000)  

2.194            

(0.000)  

0.775            

(0.000)  

 1.398            

(0.000)  

0.643            

(0.000)  

1.202            

(0.000)  

γ 1.862            

(0.004) 

6.124 

(0.000) 

1.800            

(0.000) 

5.450 

(0.000) 

1.690            

(0.004) 

4.512 

(0.000) 

δUK   0.035            

(0.436)  

  -0.080            

(0.766)  

 0.256            

(0.028)  

δGER  0.172            

(0.288)  

  0.035            

(0.489)  

 0.600            

(0.012)  

δFRA  0.162            

(0.300)  

   0.042            

(0.383)  

 0.426            

(0.028)  

δNED  0.094            

(0.308)  

  -0.082            

(0.660)  

 0.277            

(0.028)  

δSWI   0.098            

(0.280)  

  0.100            

(0.213)  

 0.362            

(0.028)  

Test over-

identifying 

restrictions 

(bootstrappe

d p-value): 

0.580 0.426 0.512 

Note: see note to Table 4 
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Appendix 

  

In case of a dyadic multi-resolution analysis, the dilated and translated family of wavelets 

functions can be defined as
5
: 

Ikjktt jj
kj   ,);2(2)( 2/

,              (A.1) 

Where j and k are the integer parameters governing the scale resolution (i.e.2
-j
) and translation in 

time, respectively. All the wavelet basis functions, ψj,k, are self-similar, namely, they differ only by 

translation and change of scale from one another. These functions result from a mother wavelet, 

ψ(t), which is any oscillating function with zero mean, finite support and unit energy, i.e.: 
















1)(

0)(

2
dtt

dtt





           (A.2) 

The object of a wavelet analysis is to associate an amplitude (wavelet) coefficient w to each 

of the wavelet. The task is accomplished by the Discrete Wavelet Transform which is implemented 

via the pyramid algorithm of Mallat (1987). If certain conditions are satisfied, these coefficients 

completely characterize the signal which is resolved in terms of a coarse approximation and the sum 

of fine details: 

 
k j k

kjkjkJkJ wtvtx ,,,, )()(               (A.3) 

Here J is the highest possible level of decomposition; kJ ,  is the set of translated orthogonal scaling 

functions spanning the lower frequency range [0, π/2
(J)

). Therefore, the first term
k

kJkJ tv )(,,   in eq. 

                                                 
5
Given a time series with T observations, conventional dyadic multi-resolution analysis applies to a succession of 

frequency intervals in the form of (π/2
(j)

, π/2
(j-1)

), with the decomposition level  j running from 1 to J. The bandwidths 

are halved (down-sampled by 2) repeatedly descending from high to low frequencies. By the j
th

 round, there will be j 

wavelet bands and one accompanying scaling function band. At the decomposition level j, one obtains a set of T/2
j
 

mutually orthogonal wavelets functions given by equation (7), separated from each other by 2
j
 points. 
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(A.3)   is the coarse approximation of the signal, and the second term 
j k

kjkjw ,,   in eq. (A.3) is 

the sum of fine details.  

 The scaling and wavelet coefficients kjv , and kjw ,  are the following projections of x(t) on 

the bases kj,  and kj,  respectively: 

 dtttxv kjkj )()( ,,                      (A.4) 

 dtttxw kjkj )()( ,,                     (A.5) 

The signal can then be written as a set of orthogonal components at resolutions 1 to J: 

11 ......)( DDDStx JJJ                     (A.6) 

At level j the  detail component jD  captures frequencies spanning cycles with periodicity between 

j2  and 12 j and the smooth jS   captures cycles with periodicity greater than 12 J  periods. 

 A disadvantage of the conventional dyadic wavelet analysis is the restriction on the 

sample size T which has to be a power of 2. A further problem lies in the fact that the DWT 

depends upon anon-symmetric filter that is liable to induce a phase lag in the processed data. These 

difficulties can be circumvented by means of the Maximum Overlapping Discrete Wavelet 

Transform (MODWT), through which, the filtered output at each stage of the pyramid algorithm is 

not subjected to down-sampling, as in DWT analysis. As a consequence, the number of coefficients 

generated at the j-th stage of the decomposition, are in number equal to the sample size, T, instead 

that equal to T/2
j
. 
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