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Abstract 

Corridor implied volatility is obtained from model-free implied volatility by truncating the 

integration domain between two barriers. Empirical evidence on volatility forecasting, in 

various markets, points to the utility of trimming the risk-neutral distribution of the 

underlying stock price, in order to obtain unbiased measures of future realised volatility (see 

e.g. [9], [3]). The aim of the paper is to investigate, both in a statistical and in an economic 

setting, the optimal corridor of strike prices to use for volatility forecasting in the Italian 

market, by analysing a data set which covers the years 2005-2010 and span both a relatively 

tranquil and a turmoil period.  
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1. Introduction 

How to extract a volatility forecast from the cross section of option prices is still an open 

debate. Model-free implied volatility, introduced by Britten-Jones and Neuberger [3], not only 

uses the whole cross-section of traded option prices, but requires interpolation and 

extrapolation of implied volatilities in order to reproduce a continuum of option prices in 

strikes, ranging from zero to infinity (a condition that cannot be met in the reality of financial 

markets). Corridor implied volatility, introduced in Carr and Madan [4], is obtained from 

model-free implied volatility by truncating the integration domain between two barriers. 

Corridor implied volatility can be convenient in at least two cases. First it can be used to cope 

with the problem of estimating the tails of risk-neutral distribution, due to the lack of liquid 

options for very high and very low strikes (see e.g. the computation of market volatility 

indexes, such as the VIX index at CBOE). Second it can be used in order to obtain a measure 

of volatility which focus either on a particular part of the risk neutral distribution of the 

underlying asset or on a given option class (e.g. call versus put), thereby incorporating the 

views of an hypothetical investor that can be more or less bullish or bearish. 

Empirical evidence on volatility forecasting, in various markets, points to the utility of  

trimming the risk-neutral distribution of the underlying stock price, in order to obtain an 

unbiased  measure of future realised volatility.  However, the optimal choice of the corridor is 

still an open debate [see e.g. [1], [2], [8]]. In particular, in the Italian market, looking at 

different data-sets characterised by different volatility regimes, [9] and [10] find different 

corridors for the best volatility estimate.  

The aim of the paper is twofold. First, we thoroughly investigate the optimal corridor of strike 

prices to use for volatility forecasting in the Italian market, on a data-set which spans the 
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years 2005-2010 and which covers both a relatively tranquil and a turmoil period. Second, we 

investigate different corridors with asymmetric cuts, and compare the results with the findings 

in [9], [10]. The different corridors are evaluated both in a statistical and an economic setting, 

by employing trading strategies based on delta neutral straddles as in [9].  

The paper supplements existing literature by providing an answer to the choice of the optimal 

symmetric corridor to use in the Italian market, which is one of the most important European 

markets. Moreover, the results are important in order to assess if using asymmetric cuts or a 

pre-specified options’ category (call or put) may yield superior forecasts. The answer to the 

above questions is provided in different volatility regimes (before and after the Lehman’s 

collapse). 

The results of the paper could be of practical importance both at the micro and macro level. 

Option traders and portfolio managers would benefit from the analysis of the economic 

significance of the different volatility forecasts, which shows how the different measures 

perform in settling a trading strategy and deeply analyse the usefulness of focussing on a pre-

specified option’s category, depending on the current market conditions. Policy makers may 

rely on volatility forecasts as barometers for the vulnerability of financial markets and use the 

latter as an early warning in order to improve financial stability.  

The paper proceeds as follows. Section 2 recalls the concept of corridor implied volatility. 

Section 3 presents the details for the computation of corridor implied volatility and the choice 

of the optimal interval of strikes. Sections 4 presents the results for the forecasting 

performance of corridor implied volatility in the two sub-periods characterized by low and 

high volatility respectively. Section 5 addresses the economic significance of the different 

forecasts and show how it varies in different market conditions. The final section concludes. 
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2. Corridor implied volatility measures  

The notion of “corridor variance” has been introduced in [6]. A corridor variance 

contract pays realised variance only if the underlying asset lies between two specified barriers 

B1 and B2, Therefore corridor integrated variance can be defined as follows: 
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where I(B1,B2) is the indicator function that is equal to 1 only when the underlying is inside 

the two barriers and determines if variance is accumulated or not.  

Carr and Madan [4] show that it is possible to compute the expected value of corridor 

variance under the risk-neutral probability measure, by using a portfolio of options with 

strikes ranging from B1 to B2, as follows: 
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Equation (2) is known as corridor implied variance and its square root as corridor implied 

volatility (CIV). By choosing different levels for the barriers, we obtain CIV measures with 

wider or narrower corridors. CIV measures are implicitly linked with the concept that the tails 

of the risk-neutral distribution are estimated with less precision than central values, due to the 

lack of liquid options for very high and very low strikes. Upside and downside corridor 

implied variance is obtained by using formula (6) with barriers (B1=B, B2=∞) and (B1=0 , 

B2=B), respectively.  

If B1=0 and B2=∞, then corridor variance coincides with model-free variance ([3]), therefore 

in the following we refer to model-free implied volatility as the no-barriers corridor implied 

volatility.  
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3. The choice of the optimal cut 

In this application, corridor implied volatility is computed as a discrete version of the square 

root of equation (2): 
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and the trapezoidal rule for integration is used. 

The barriers B1 and B2 are computed by looking at the risk-neutral distribution obtained by 

fitting an implied binomial tree (with the Enhanced Derman and Kani model, see e.g. [7]). 

How to optimally choose the corridor of strike prices to use for volatility forecasting is 

still an open question. Corridor implied volatility can be seen as a function of p  (the 

probability that we cut symmetrically in the two tails) or more generally of 
1

p  (the probability 

that we cut in the left tail) and 
2

p  (the probability that we cut in the right tail). The problem 

boils down to the solution of: 
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where 
1 2

( , )C IV p p is corridor implied volatility, 
R

  is the subsequent realised 

volatility, and i=1,…,n is the i-th date in the sample. Unfortunately, given the complexity in 

computing corridor implied volatility (which requires spline interpolation of implied 

volatilities, the construction of option implied tree to determine the barriers, the computation 

of equation (3) for near and next term options and finally the linear interpolation in time in 

order to get a 30-day constant maturity estimate, see [10] for a detailed discussion), solving 

the problem (8) will be computationally infeasible.  

Therefore in this paper we analyse different corridors in order to assess, by inspection 

of the ranking functions, a clear pattern that points to the optimal cut. Based on the 

preliminary results in [10], we add more corridors, which are used in [9] on a limited data-set 

of six months characterised by high volatility. We compute a total of eight corridor measures: 

four with symmetric cuts and four with asymmetric cuts. The four symmetric corridor 

measures are CIV0, CIV0.2, CIV0.3, CIV0.4, which correspond to p1 = p2 = p, with p =0, 0.2 

0.3, 0.4 respectively, and )(
1

1
pHB


 , )1(

1

2
pHB 

 . CIV0 corresponds to the no-barriers 

implied volatility i.e. to model-free implied volatility, which is used as a benchmark. From 

CIV0.2 to CIV0.4 we explore narrower corridor implied volatility measures.  

Moreover, in order to assess whether the lower part of the risk neutral distribution is 

more informative about future realized volatility than the upper part, we also compute 

corridor measures with asymmetric cuts of the risk neutral distribution: CIV0.1-0.3 cuts 0.1 in 

the upper part and 0.3 in the lower part (p1 = 0.1, p2 =0.3, 1

1 0
(0 .3 )B H


  and 1

2 0
(0 .9 )B H


 ) 

while CIV0.3-0.1 cuts 0.3 in the upper part and 0.1 in the lower part (p1 = 0.1, p2 =0.3, 

1

1 0
(0 .1)B H


  and 1

2 0
(0 .7 )B H


 ), therefore CIV0.1-0.3 relies more on call prices than on put 

prices, while CIV0.3-0.1 relies more on put prices than on call prices. Finally, in order to 

separate the effect of out of the money call and put prices, which are sensitive to increases or 

decreases in the underlying asset, we compute upside and downside corridor measures CIVUP 
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(CIVDW) with barriers B1=F and )1(
1

max2


 HKB  ( )0(

1

min1


 HKB  and B2=F) 

respectively, where F is the forward price. 

To ease comparison with [10], we use the same data set made of closing prices on FTSE 

MIB-index options (MIBO), and FTSE MIB index recorded from 1 January 2005 to 31 

December 2010 which has been kindly provided by Borsa Italiana S.p.A. Euribor rates and 

dividend yields are obtained from Datastream. Realised volatility (
R

 ) is obtained from 

Datastream, and is computed, in annual terms, as the standard deviation of the returns over the 

next 30 days. The data set has been cleaned according to the same filtering constraints used in 

[10].  

 

4. The results for the volatility measures 

Descriptive statistics for the volatility series are reported in Table 1. The volatility series in 

our sample period are plotted in Figure 1 (symmetric-cut corridor implied volatilities) and 

Figure 2 (asymmetric-cut corridor implied volatilities). The no-barriers implied volatility is 

overwhelmingly higher than realized volatility. Symmetric CIV measures are lower than 

realised volatility and diminish on average as the corridor width shrinks from CIV0.2 to 

CIV0.4. Asymmetric cut CIV measures are lower on average than realized volatility; CIVUP 

is lower than CIVDW, reflecting the lower implied volatility of out of the money call options 

with respect to out of the money put options. All the volatility measures display positive 

skewness and excess kurtosis and the hypothesis of a normal distribution is rejected. 

In order to compare the results with [9] and [10] we gauge the forecasting performance of the 

different volatility measures, by resorting to the same metrics widely used in the literature 

(see e.g. [12]). In particular, we use the MSE, the RMSE, the MAE, the MAPE and the 
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QLIKE, defined as follows: MSE = 2
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i
  is the 

volatility forecast (i=CIV0, CIV0.2, CIV0.3, CIV0.4, CIV0.1-0.3, CIV0.3-0.1, CIVUP, 

CIVDW), 
R

  is the subsequent realized volatility, k=1,…,m, m is the number of observations.  

The evaluation measures for the volatility forecasts are reported in Table 2. In order to see 

whether the differences in forecasting performance are significant from a statistical point of 

view, we compare the predictive accuracy of the forecasts by computing the Diebold and 

Mariano test statistic (for more details see [6]) by using the MSE function which is considered 

as robust to the presence of noise in the volatility proxy (see [11]). The pair-wise comparisons 

are reported in Table 3 (t-statistics along with the p-values). Note that a negative (positive) t-

statistic indicates that the row model produced smaller (larger) average loss than the column 

model. The Diebold and Mariano test statistic under the null of equal predictive accuracy is 

distributed as a N(0,1).  

According to all the indicators CIVDW obtains the best performance, closely followed by 

CIV0.2. Also CIV0.3-0.1, which favours put prices, according to the MSE and the MAE is 

one of the best measures. As for symmetric corridor measures, wide corridor measures obtain 

a better performance than narrow corridor measures: the performance improves when the 

corridor widens. Among asymmetric measures, the one which relies more on put prices 

(CIV0.3-0.1) performs better than the one which relies more on call prices (CIV0.1-0.3), but 

looking at the Diebold and Mariano tests of equal predictive accuracy, the two measures are 

not distinguishable. CIV0.3-0.1 performs better than narrow symmetric corridor measures. 

CIVDW, focusing on put option prices, performs fairly better than CIVUP, focusing on call 

option prices, and the difference is significant according to the Diebold and Mariano test. As a 
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result we can say that put prices which carry information on the probability of a downturn 

move of the underlying asset convey the best information about future realized volatility.  

Overall we can conclude that the results point to the utility of trimming the risk neutral 

distribution asymmetrically, by favouring  put option prices, that account for downside risk. 

In order to better understand the behaviour of the measures in times of high or low volatility, 

we split the sample into two sub-periods: the first covers the period before the Lehman’s 

collapse and is characterised by low volatility and stable market condition, the second covers 

the period after the Lehman’s collapse and is characterised by high volatility and market 

turmoil. The descriptive statistics of the volatility series are reported in Table 4. Average 

realised volatility is 15% in the pre-Lehman period and doubles to 30% in the post-Lehman 

period. The average value of corridor measures more than double in the post-Lehman period. 

The no-barriers implied volatility and the upside and downside corridor measures are the ones 

which increase less if compared to the other corridor measures. In the post-Lehman period the 

series are more affected by positive skewness and excess kurtosis, which point to increased 

market tension (not only the volatility is higher, but extreme movements in volatility are more 

present). As a result, in the high volatility period the predictive ability of all the measures 

decreases substantially. 

The predictive accuracy of the various corridor measures in the two subsamples is reported in 

Table 5. In the low volatility period, according to the MSE and the QLIKE the no-barriers 

implied volatility is one of the best measures. According to the MAE and the MAPE, CIV0.2 

is the best one. Among the top performers we find also CIVDW and CIV0.1-0.3. In the high-

volatility period, the no-barriers implied volatility performs poorly. CIVDW is the preferred 

one for all the indicators (except the MAPE, for which is at the second place after CIVUP). 

The other measures obtain a different place in the top list, depending on the performance 

measure. As for the MSE and the QLIKE, which are robust measures to the presence of noise, 



10 

CIV0.2 and CIV0.3-0.1 are the second best.  

In Figure 3 is reported the pattern of the MSE in the whole sample and across the two sub-

periods. To ease the comparison with [10] and in order to assess the optimal symmetric cut, 

CIV0.1, CIV0.05 and CIV0.025 (which cut p=0.1, p=0.05, and p=0.025 in each tail, 

respectively) have been added to the picture. We can see that the optimal value of the 

symmetric cut remains around the 10% in each tail. However, both in the whole period and in 

the high volatility period, the MSE is minimal for CIVDW.  

On the other hand in the low volatility period the optimal level is attained for the no-barriers 

implied volatility CIV0. Among asymmetric measures CIVDW is better than CIVUP in both 

sub-periods, CIV0.1-0.3 performs better (worse) than CIV0.3-0.1 in the low (high) volatility 

period. The Diebold and Mariano test has been computed w.r.t. the MSE and the results 

provided in Tables 6 and 7, confirm the ranking. To conclude, we can say that in both sub-

periods CIVDW is the best. Overall symmetric corridor measures perform better (worse) than 

asymmetric corridor measures in the low (high) volatility period.  

 

5. The economic significance of volatility forecasts  

In this section we study the economic significance of the prediction ability of the different 

volatility forecasts by looking at the profitability of volatility trading strategies. In particular, 

we examine whether a hypothetical trader, who could go long or short (depending on the 

different volatility forecasts) on a delta neutral straddle on FTSE-MIB (see e.g. [5]), could 

gain positive and statistically significant trading profits. For ease of comparison, we follow 

the same methodology of [10], with the only difference that transaction costs on FTSEMIB 

options are taken into account (0,41 Euro per contract). 

The summary statistics of average daily trading returns for each volatility forecasts are 
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reported in Table 8, for the whole sample and in Table 9, for the two sub-samples. Average 

daily returns are ascertained to be statistically different from zero by using t-statistics adjusted 

for serial dependence, according to Newey-West (lag 30 days). 

The time evolution of the strategy is plotted in Figure 4. We can see that the no-barriers 

implied volatility end up in a negative total profit and the performance worsen in the high 

volatility period. On the other hand, all corridor measures obtain a positive profit which for 

some measures (CIV0.4 and CIVUP) starts stable and gains a lot in the high volatility period, 

for some other measures (CIV0.2, CIV0.1-0.3 and CIV0.3-0.1), gains in the low volatility 

period and loses in the high volatility period. In the whole period, the no-barriers implied 

volatility loses on average (statistically significant at the 5% level), while all corridor 

measures obtain a positive average return. CIV0.4 and CIV0.3 are among the best measures 

(statistically significant at the 10% level), followed by CIVUP and CIVDW.  

The performance obtained in the high volatility period impact the most the overall 

performance, therefore the ranking remains almost the same in the high volatility period, 

where the profits/losses are very much higher than in the low volatility period. On the other 

hand, in the low volatility period (where neither measure is statistically significant), the no-

barriers implied volatility obtains a positive return, which turns out negative in the high 

volatility period and therefore in the whole period. Other measures which gain in the low-

volatility period and then lose in the high volatility period are CIV0.2, and the two 

asymmetric cut measures CIV0.1-0.3 and CIV0.3-0.1. In the low volatility period CIVDW is 

the best one, followed by CIV0.3, CIV0.1-0.3. In Figure 5 we report a visual comparison with 

the measures used in [10]: the strategies based on CIV0.025, CIV0.05, CIV0.1 (corridor 

implied volatility with symmetric cut of p=0.025, p=0.05 and p=0.1, in each tail respectively) 

and SHORT (a strategy which goes always short in volatility) have been recomputed with the 

methodology used in this paper for ease of comparison. 
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We can see that neither strategy beats the naïve strategy of going short on volatility, which is  

the best one. Trading strategies based on the no-barriers implied volatility, along with wide 

corridor measures (from CIV0.025 to CIV0.2) are not profitable on average and should be 

preferred in low volatility periods. Narrow corridor measures (CIV0.4 and CIV0.3) are much 

more profitable on average. In the low volatility period, CIVDW and CIV0.1-0.3 are 

confirmed by profitable trading strategies to be among the best measures. On the other hand, 

in the high volatility period, corridor measures whit narrow corridor (CIV0.4 and CIV0.3) are 

among the best, along with CIVUP. Narrow corridor measures and CIVUP and CIVDW are 

more stable across high and low volatility periods, whereas slightly asymmetric corridor 

measures, and wide corridor measures change the sign and magnitude of the performance 

most across the two periods. 

 

6. Conclusions  

In this paper we have provided an answer to the problem of selecting an optimal cut of the 

risk neutral distribution, which corresponds to an optimal corridor of strike prices to use, in 

order to get an implied volatility forecast. We have thoroughly investigated the forecasting 

performance of measures which cut the risk neutral distribution of the underlying asset in 

order to focus on particular options’ classes either symmetrically (by eliminating out-of-the-

money options) or asymmetrically (focus more on call or put option prices). The forecasting 

performance of the volatility measures is evaluated both in a statistical and an economic 

setting. 

The results highlight that, put prices, which carry information on the probability of a 

downturn move of the underlying asset, convey the best information about future realized 

volatility. Differently from [10], where only symmetric corridors were investigated, in the 
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whole sample, and in particular in the high volatility period, focussing on put prices 

(CIVDW) yields the best forecasting result. Put prices (CIVDW) convey better information 

than call prices (CIVUP) in both sub-periods, but in the high volatility period the superiority 

is more pronounced. Among symmetric corridors, we can safely say that the optimal cut is 

around 10% of the risk neutral distribution. The no-barriers implied volatility is on top of the 

list only if the period is characterised by low volatility, while in the high volatility it obtains a 

poor performance. 

In assessing the economic significance of the different volatility forecasts, trading strategies 

based on CIVDW yield a positive but not significant trading profit. Neither measure obtains a 

significant profit in the low volatility period, and only the narrowest corridor measure CIV0.4 

obtains a significant profit in the high volatility period.. Overall, narrow corridor measures 

obtain a positive return, whereas trading strategies based on the no-barriers implied volatility 

obtain on average a negative (and significant) return, along with wide corridor measures. 

Therefore, from an economic point of view, there is evidence for the preference of corridor 

measures with narrow corridor. However, neither strategy beats the naïve strategy of going 

short on volatility, which remains the best one. 

The present paper lends itself to further development in many directions. High on the research 

agenda is the investigation of the determinants of the variance risk premium in the Italian 

market and the assessment of the unbiasedness and efficiency of the different volatility 

forecasts. 
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Figure 1. Realized volatility and corridor implied volatility with symmetric cuts. 

 

 

Figure 2. Realized volatility and corridor implied volatility with asymmetric cuts. 

 

 

Figure 3. The Mean Squared Error of the forecasts in the whole sample and in the two sub-

periods (comparison with [10]). 
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Figure 4. The time-evolution of the different strategies (total profit/loss). 

 

 

 

Figure 5. Average return of the different strategies (comparison with [10]). 
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Table 1.  Descriptive statistics for the volatility series (all sample). 

Statistic R CIV0.2 CIV0.3 CIV0.4 CIV0

Mean 0.21 0.20 0.17 0.13 0.24 

Std dev 0.13 0.11 0.10 0.08 0.12 

Skewness 1.91 1.09 1.05 1.15 1.20 

Kurtosis 7.04 4.21 4.08 4.47 4.35 

Jarque 

Bera 
1804 365 326 435 441 

p-value 0.00 0.00 0.00 0.00 0.00 

Statistic CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW

Mean 0.19 0.20 0.16 0.19 

Std dev 0.10 0.11 0.08 0.10 

Skewness 1.07 1.19 1.29 1.44 

Kurtosis 4.07 4.82 4.87 5.57 

Jarque 

Bera 
334 526 595 872 

p-value 0.00 0.00 0.00 0.00 

The Table presents the descriptive statistics for the volatility series used in the analysis: R = realized volatility, 

CIV  = corridor implied volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = 

corridor implied volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied 

volatility with upper cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, 

CIVDW  = downside corridor implied volatility, CIV0 = model-free implied volatility. 
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Table 2. Predictive accuracy of the different volatility measures (all sample).  

 CIV0.2 CIV0.3 CIV0.4 CIV0

MSE 0.0072 0.0088 0.0139 0.0073 

RMSE 0.0848 0.0940 0.1177 0.0849 

MAE 0.0519 0.0589 0.0816 0.0620 

MAPE 0.2371 0.2638 0.3732 0.3299 

QLIKE -0.6822 -0.6408 -0.4604 -0.6846 

 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW   

MSE 0.0078 0.0070 0.0090 0.0063   

RMSE 0.0881 0.0835 0.0951 0.0791   

MAE 0.0537 0.0535 0.0581 0.0484   

MAPE 0.2420 0.2513 0.2396 0.2144   

QLIKE -0.6732 -0.6644 -0.6503 -0.6860   

 

The Table presents the indicators of the goodness of fit of the volatility series used in the study for the whole 

sample: MSE = 2
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 , where 

i
  is the volatility forecast, 

R
   is the subsequent 

realized volatility, m is the number of observations, CIV  = corridor implied volatility (p = 0.2, 0.3, 0.4  

respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied volatility with upper cut equal to 0.1 and 

lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper cut equal to 0.3, and lower cut equal to 

0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside corridor implied volatility, CIV0 = model-free 

implied volatility. 
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Table 3. Diebold and Mariano tests: pair-wise comparisons (MSE, all sample). 


CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW CIV0

CIV0.2 -3.45 -5.39 -1.79 0.51 -2.51 1.90 -0.01 

 0.00 0.00 0.07 0.61 0.01 0.06 0.99 

CIV0.3  -6.26 3.04 2.45 -0.45 3.57 1.31 

  0.00 0.00 0.01 0.66 0.00 0.19 

CIV0.4   5.55 4.90 6.91 5.86 3.46 

   0.00 0.00 0.00 0.00 0.00 

CIV0.1-0.3    1.10 -2.02 2.11 0.53 

    0.27 0.04 0.04 0.60 

CIV0.3-0.1     -2.28 2.37 -0.36 

     0.02 0.02 0.72 

CIVUP      3.50 1.33 

      0.00 0.19 

CIVDW       -1.19 

       0.23 

        

        
 

The Table reports the t-statistic and associated p-value for the Diebold and Mariano test of equal predictive 

accuracy for each couple of forecasts, for the whole sample. The loss function used is the MSE, CIV  = corridor 

implied volatility (p = 0.2, 0.3, 0.4 respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied 

volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper 

cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside 

corridor implied volatility, CIV0 = model-free implied volatility. 
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 Table 4. Descriptive statistics for the volatility series in the two sub-periods. 

Pre-Lehman’s collapse            

Statistic R CIV0.2 CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW CIV0 

mean 
0.15 0.13 0.11 0.08 0.12 0.12 0.13 0.11 0.16  

std dev 
0.07 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.05  

skewness 
1.66 0.78 0.79 0.82 0.89 0.62 0.99 0.92 0.80  

kurtosis 
7.08 2.91 3.14 3.47 3.13 2.97 4.02 3.60 2.85  

Jarque Bera 
980 86 89 103 112 54 175 132 92  

p-value 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Post-Lehman’s collapse 

Statistic R CIV0.2 CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW CIV0

mean 
0.30 0.31 0.27 0.21 0.30 0.31 0.28 0.24 0.36 

std dev 
0.15 0.08 0.08 0.07 0.08 0.09 0.09 0.07 0.10 

skewness 
1.35 1.45 1.42 1.34 1.38 1.60 1.58 1.41 1.33 

kurtosis 
4.14 6.08 6.18 5.77 5.94 6.51 5.93 5.51 4.73 

Jarque Bera 
198 412 417 342 375 522 429 328 231 

p-value 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The Table presents the descriptive statistics for the volatility series in the two sub-periods (pre-Lehman and post-

Lehman’s collapse): R = realized volatility, CIV  = corridor implied volatility (p = 0.2, 0.3, 0.4  respectively for 

CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied volatility with upper cut equal to 0.1 and lower cut equal 

to 0.3, CIV0.3-0.1 = corridor implied volatility with upper cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = 

upside corridor implied volatility, CIVDW  = downside corridor implied volatility, CIV0 = model-free implied 

volatility. 
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Table 5.  Predictive accuracy of the different volatility measures in the two sub-periods. 

Pre-Lehman’s collapse         

 CIV0.2 CIV0.3 CIV0.4 CIV0

MSE 0.0026 0.0040 0.0071 0.0023 

RMSE 0.0514 0.0632 0.0843 0.0475 

MAE 0.0311 0.0422 0.0659 0.0347 

MAPE 0.1891 0.2538 0.4203 0.2656 

QLIKE -0.9635 -0.9045 -0.6625 -0.9717 

 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW

MSE 0.0029 0.0032 0.0041 0.0029 

RMSE 0.0542 0.0565 0.0644 0.0543 

MAE 0.0342 0.0351 0.0432 0.0332 

MAPE 0.2049 0.2176 0.2483 0.2002 

QLIKE -0.9528 -0.9307 -0.9186 -0.9608 

Post-Lehman’s collapse        

 CIV0.2 CIV0.3 CIV0.4 CIV0

MSE 0.0142 0.0163 0.0242 0.0148 

RMSE 0.1191 0.1276 0.1557 0.1216 

MAE 0.0840 0.0846 0.1056 0.1039 

MAPE 0.3110 0.2791 0.3007 0.4288 

QLIKE -0.2494 -0.2354 -0.1496 -0.2431 

 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW  

MSE 0.0152 0.0128 0.0166 0.0114  

RMSE 0.1232 0.1131 0.1287 0.1066  

MAE 0.0839 0.0817 0.0809 0.0717  

MAPE 0.2990 0.3033 0.2263 0.2361  

QLIKE -0.2432 -0.2549 -0.2376 -0.2634  

The Table presents the indicators of the goodness of fit of the volatility series used in the study for the two sub-

periods (pre- and post-Lehman’s collapse): MSE = 2
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 , where 

i
  is the volatility 

forecast, 
R

   is the subsequent realized volatility, m is the number of observations, CIV  = corridor implied 

volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied volatility 

with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper cut equal 

to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside corridor 

implied volatility, CIV0 = model-free implied volatility. 



23 

Table 6. Diebold and Mariano tests: pair-wise comparisons (MSE) sub-period: pre-Lehman’s collapse. 

 CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW CIV0

CIV0.2 -6.04 -8.58 -4.59 -3.84 -6.24 -3.09 1.34 

 0.00 0.00 0.00 0.00 0.00 0.00 0.18 

CIV0.3  -9.98 4.85 5.73 -0.99 5.63 3.51 

  0.00 0.00 0.00 0.32 0.00 0.00 

CIV0.4   8.28 9.11 8.95 8.94 6.14 

   0.00 0.00 0.00 0.00 0.00 

CIV0.1-0.3    -1.49 -5.68 -0.09 2.15 

    0.14 0.00 0.93 0.03 

CIV0.3-0.1     -4.18 1.66 2.42 

     0.00 0.10 0.02 

CIVUP      6.59 3.67 

      0.00 0.00 

CIVDW       1.94 

       0.05 

 

The Table reports the t-statistic and associated p-value for the Diebold and Mariano test of equal predictive 

accuracy for each couple of forecasts, for the pre-Lehman period. The loss function used is the MSE, CIV  = 

corridor implied volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor 

implied volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility 

with upper cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = 

downside corridor implied volatility, CIV0 = model-free implied volatility. 
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Table 7. Diebold and Mariano tests: pair-wise comparisons (MSE) sub-period: post-Lehman’s collapse. 

  CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW CIV0

CIV0.2 -2.07 -3.85 -1.36 1.44 -1.46 2.55 -0.35 

 0.04 0.00 0.17 0.15 0.14 0.01 0.73 

CIV0.3  -4.68 1.47 2.05 -0.26 3.08 0.55 

  0.00 0.14 0.04 0.79 0.00 0.58 

CIV0.4   3.90 3.82 5.13 4.74 2.31 

   0.00 0.00 0.00 0.00 0.02 

CIV0.1-0.3    1.47 -0.96 2.36 0.16 

    0.14 0.34 0.02 0.87 

CIV0.3-0.1     -1.92 2.19 -1.58 

     0.06 0.03 0.11 

CIVUP      3.02 0.60 

 
     0.00 0.55 

CIVDW       -2.10 

 
      0.04 

 

The Table reports the t-statistic and associated p-value for the Diebold and Mariano test of equal predictive 

accuracy for each couple of forecasts, for the post-Lehman period. The loss function used is the MSE, CIV  = 

corridor implied volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor 

implied volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility 

with upper cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = 

downside corridor implied volatility, CIV0 = model-free implied volatility. 
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Table 8. Economic significance of the different volatility forecasts (all sample). 

 mean t-stat p-value 

CIV0.2 0.002 0.342 0.732 

CIV0.3 0.008 1.832 0.067 

CIV0.4 0.012 2.798 0.005 

CIV0.1-0.3 0.003 0.572 0.568 

CIV0.3-0.1 0.001 0.261 0.794 

CIVUP 0.008 1.717 0.086 

CIVDW 0.005 0.968 0.333 

CIV0 -0.011 -2.382 0.017 

The Table presents the average daily return for the volatility forecast, for the whole sample, CIV  = corridor 

implied volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied 

volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper 

cut equal to 0.3, and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside 

corridor implied volatility, CIV0 = model-free implied volatility. 

 

 

Table 9. Economic significance of the different volatility forecasts in the two sub-periods. 

Pre-Lehman Post-Lehman 

 mean t-stat p-value  mean t-stat p-value 

CIV0.2 0.004 0.720 0.472  -0.002 -0.246 0.806 

CIV0.3 0.006 1.293 0.196  0.011 1.340 0.181 

CIV0.4 0.003 0.693 0.488  0.029 3.535 0.000 

CIV0.1-0.3 0.006 1.211 0.226  -0.003 -0.386 0.700 

CIV0.3-0.1 0.002 0.474 0.636  -0.001 -0.088 0.930 

CIVUP 0.003 0.730 0.465  0.016 1.723 0.085 

CIVDW 0.006 1.303 0.193  0.001 0.141 0.888 

CIV0 0.002 0.464 0.643  -0.035 -3.980 0.000 

The Table presents the average daily return for the volatility forecast in the two sub-periods, CIV  = corridor 

implied volatility (p = 0.2, 0.3, 0.4  respectively for CIV0.2, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied 

volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper 

cut equal to 0.3 ,and lower cut equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside 

corridor implied volatility, CIV0 = model-free implied volatility. 

 


