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The skew pattern of implied volatility in the DAX index options market 

 

S. Muzzioli* 
 

Abstract 

The aim of this paper is twofold: to investigate how the information content of implied 

volatility varies according to moneyness and option type and to compare the latter option based 

forecasts with historical volatility in order to see if they subsume all the information contained in 

the latter. We run a horse race of different implied volatility estimates: at the money and out of 

the money call and put implied volatilities and average implied that is a weighted average of at 

the money call and put implied volatilities with weights proportional to trading volume. Two 

hypotheses are tested: unbiasedness and efficiency of the different volatility forecasts. The 

investigation is pursued in the Dax index options market, by using synchronous prices matched 

in a one minute interval. The results highlight that the information content of implied volatility 

has a humped shape, with out of the money options being less informative than at the money 

ones. Overall, the best forecast is at the money put implied volatility: it is unbiased (after a 

constant adjustment) and efficient, in that it subsumes all the information contained in historical 

volatility.  

 

Keywords: Implied Volatility, Volatility Smile, Volatility forecasting, Option type. 

JEL classification: G13, G14.  

 

 

1. Introduction. 

Black-Scholes implied volatility is a forward looking measure of the expected volatility 

between now and the expiration of the option. Even if theoretically the Black-Scholes model 

postulates a constant volatility, empirically, implied volatility varies according to the option’s 

strike price, describing a smile or skew, depending on the shape of the relation. As it is often 

necessary to have implied volatilities that correspond to strike prices that are not traded in the 

market, implied volatilities are usually interpolated (e.g. by cubic splines) in order to obtain a 

smile or skew function. The latter is fundamental both for the construction of option implied 
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trees (see e.g. Derman and Kani (1994)) that are used to price and hedge exotic options and for 

the computation of many market volatility indexes (see e.g. CBOE VIX, for the Chicago Board 

Options Exchange, or the VDAX-New for the German Equity market).  

The recent turmoil in the financial markets caused by the sub-prime crisis has clearly 

highlighted the important role of market volatility indexes in the detection and anticipation of 

market stress. These indexes are highly correlated with future market volatility and with risk 

factors embedded in credit spreads of sovereign debt, as such they are deemed to capture the so 

called market “fear”. 

Numerous papers have investigated the forecasting power of Black-Scholes volatility 

versus a time series volatility forecast (we refer the interested reader to Poon (2005), that 

examines 93 studies on the issue of volatility forecasting and conclude that predictions based on 

implied volatility are on average superior to time series volatility models). However, as far as we 

know, little is the evidence about the different information content of implied volatilities 

extracted from options with different strike price and type (call or put), that are used in the 

computation of the smile function. As for the strike price dimension, Ederington and Guan 

(2005), in the S&P500 options market, highlights that the information content of implied 

volatilities varies roughly in a mirror image of the implied volatility smile. As for the option type 

dimension, Fleming (1998) and Christensen and Hansen (2002), in the S&P100 options market, 

find that at the money call implied volatility has slightly more predictive power than put implied 

volatility. The two latter studies use American type options on a dividend paying index: the early 

exercise feature and the dividend yield estimation influence in a different manner call and put 

option prices, and may have altered the comparison if not properly addressed. 

 Even if theoretically call and put implied volatilities extracted from an option with the 

very same strike price and time to maturity should be the same due to no arbitrage 

considerations, empirically there are many reasons that may cause call and put implied 

volatilities to differ. These reasons are amplified if call and put options are compared in a 

different strike price dimension. First of all converting option prices into implied volatilities 

leads to measurement errors (stemming from finite quote precision, bid-ask spreads, non-

synchronous observations and other measurement errors): small errors in any of the input may 

produce large errors in the implied volatility (see e.g. Hentshle (2003)). This is also documented 

by Fleming (1999) that highlights that deviations of call and put option prices from no arbitrage 

values do not necessarily signal market inefficiency but are rather due to transaction costs and 

other market imperfections. Along the same line of reasoning, the no arbitrage replication of a 

put or a call through put-call parity implies to go short (long) on the underlying asset. Differently 
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from the long side, the short side usually requires an initial margin, and is exposed to margin 

calls if the underlying asset price begins to rise. Second, the demand for put options is inherently 

different from the one of the calls. Put options are used for portfolio insurance purposes, in 

particular by institutional investors. Rubinstein (1994) finds that out of the money put implied 

volatilities are usually higher than both in the money put and out of the money call implied ones 

due to the crash phobia developed after October 1987. This hedging pressure has been 

documented both along different moneyness classes and also in the same moneyness category 

and may lead the implied volatilities of options whose price is impacted by hedging pressure to 

be less informative about future market volatility. Last, call and put option volumes are very 

different: usually put options are traded for a wider strike price interval than call options and 

they are also more traded than call options if compared in the same moneyness class (see e.g. 

Buraschi and Jackwerth (2001). Bollen and Whaley (2004) document that the demand for at the 

money put options is much higher than the one for the very same at the money call options. As 

implied volatility is a forward looking estimate of future realised volatility, we expect actively 

traded options to be more informative of future realised volatility than less traded options. This 

has been documented in various papers that have analysed index options markets. As pointed out 

in Donaldson and Kamstra (2005), trading volume can be considered as an indicator of the 

amount of investors’ information: they find that when trading volume is high, also the 

forecasting power of implied volatility is high.  Sarwar (2005) finds a positive relation between 

trading volume and implied volatility, determined by the activity of informed traders that usually 

prefer options market rather than stock markets, in order to benefit of lower transaction costs and 

higher leverage. 

The aim of this paper is twofold: to investigate how the information content of implied 

volatility varies according to moneyness and option type and to compare the latter option based 

forecasts with historical volatility in order to see if they subsume all the information contained in 

the latter. The different information content of implied volatility is examined for the most liquid 

at the money and out of the money options: put (call) options for strikes below (above) the 

current underlying asset, i.e. the ones that are usually used as inputs for the computation of the 

smile function. This is very important for the understanding of the role of the different 

ingredients of the smile function and can be seen as a preliminary exercise in order to choose 

different weights for each volatility input in a volatility index. In particular, for at the money 

volatilities, that are widely used by market participants and are usually inserted in the smile 

function by using some average of both call and put implied ones, we investigate if one option 

class better forecasts future realised volatility and if a combination of the two adds substantial 
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benefit. Two hypotheses are tested: unbiasedness and efficiency of the different volatility 

forecasts w.r.t. historical volatility. Historical volatility is measured by both lagged realised 

volatility and a GARCH(1,1) forecast. The investigation is pursued in the Dax index options 

market. The market is chosen for two main reasons: the options are European, therefore the 

estimation of the early exercise premium is not needed and can not influence the results; the Dax 

index is a capital weighted performance index composed of 30 major German stocks and is 

adjusted for dividends, stocks splits and changes in capital: dividends are assumed to be 

reinvested into the shares and they do not affect the index value. Differently form previous 

studies, that use settlement prices, we are using the more informative synchronous prices, 

matched in a one minute interval. This is very important to stress, since our implied volatilities 

are real “prices”, as determined by synchronous no-arbitrage relations.  

The plan of the paper is the following. Section 2 illustrates the data set, the sampling 

procedure and the definition of the variables. Section 3 describes the methodology used in order 

to address the unbiasedness and efficiency of the different volatility forecasts. Sections 4 and 5 

report the results of the univariate and augmented regressions respectively and assess the relative 

performance of the different volatility forecasts (at the money and out of the money call and put 

implied volatilities, lagged realised volatility and GARCH(1,1)). Section 6 investigates the 

forecasting performance of a combination of at the money call and put implied volatilities. The 

last section concludes. 

 

2. The Data set and the definition of the variables. 

The data set1 consists of intra-daily data on DAX-index options, recorded from 19 July 

1999 to 31 December 2005. Each record reports the strike price, expiration month, transaction 

price, contract size, hour, minute, second and centisecond. As for the underlying asset we use 

intra-daily prices of the DAX-index recorded in the same time period. As a proxy for the risk-

free rate we use the one month Euribor rate.   

DAX-options started trading on the German Options and Futures Exchange (EUREX) in 

August 1991. They are European options on the DAX-index, which is a capital weighted 

performance index composed of 30 major German stocks and is adjusted for dividends, stocks 

splits and changes in capital. Since dividends are assumed to be reinvested into the shares, they 

do not affect the index value, therefore we do not have to estimate the dividend payments. 

                                                
1 The data source for Dax-index options and Dax index is the Institute of Finance, Banking, and Insurance of the 

University of Karlsruhe (TH), the risk-free rate is available in Data-Stream. 
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Moreover the fact that the options are European avoids the estimation of the early exercise 

premium. This latter feature is very important since our data set is by construction less prone to 

estimation errors if compared to the majority of previous studies that use American style options.  

Several filters are applied to the option data set. First, we eliminate option prices that are 

smaller than 1 Euro, since the closeness to the tick size may affect the true option value. Second, 

in order not to use stale quotes, we eliminate options with trading volume less than one contract. 

Third, as it is standard practice in the literature to estimate the smile by using only the more 

liquid at the money and out of the money options, following Jiang and Tian (2005) we eliminate 

in the money options (call options with moneyness2 (X/S) < 0,97 and put options with 

moneyness (X/S) > 1,03).  Fourth, we eliminate option prices violating the standard no arbitrage 

bounds. Finally, in order to reduce computational burden, we only retain options that are traded 

between 3.00 and 4.00 p.m, (the choice is motivated by the active trading activity during this 

hour). 

As for the sampling procedure, in order to avoid the telescoping problem described in 

Christensen, Hansen and Prabhala (2001), we use monthly non-overlapping samples. In 

particular, we collect the prices recorded on the Wednesday that immediately follows the expiry 

of the option (third Saturday of the expiry month) since the week immediately following the 

expiration date is one of the most active. These options have a fixed maturity of almost one 

month (from 17 to 22 days to expiration). If the Wednesday is not a trading day we move to the 

trading day immediately following. 

Implied volatility is computed separately for out of the money and at the money call and 

put prices. We start from the cleaned data set of option prices that is composed of at the money 

and out of the money call and put prices recorded from 3.00 to 4.00 p.m. We compute call and 

put implied volatilities by using synchronous prices, matched in a one minute interval, by 

inverting the Black-Scholes formula. Implied volatilities are grouped into four sets depending on 

the option’s moneyness and type and averaged in order to obtain four implied volatility 

estimates: at the money call (ATMC) implied volatility (σATMC), at the money put (ATMP) 

implied volatility  (σATMP), out of the money call (OTMC) implied volatility (σOTMC), out of the 

money (OTMP) implied volatility (σOTMP) (OTMC if (X/S) > 1,03, ATMC e ATMP if 0,97 ≤ 

(X/S) ≤ 1,03, OTMP if (X/S) < 0,97).  

Differently form Ederington and Guan (2005), that use settlement prices, we are using the 

more informative synchronous prices, matched in a one minute interval. This is very important to 

stress, since our implied volatilities are real “prices”, as determined by no-arbitrage relations. As 

                                                
2 Moneyness is defined as X/S, where X is the strike price and S is the underlying asset. 
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a consequence it is very unlikely to have for each day observations for all the twelve cathegories 

of moneyness that Ederington and Guan (2005) use in their paper, since most of the trading 

concentrates on at the money and close to the money options. Therefore, in order to avoid the 

case in which one option class is empty (that is faced in Ederington and Guan (2005)) and to 

have a simple and clear-cut comparison between at the money and out of the money options, we 

choose to examine much broader classes w.r.t. Ederington and Guan (2005).  

Implied volatility is an ex-ante forecast of future realised volatility on the time period 

until the option expiration. Therefore we compute realised volatility (σR) in month t, as the 

sample standard deviation of the daily index returns over the option’s remaining life: 

∑
=

−
−

=
n

i
iR RR

n 1
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1

1σ  

where Ri is the return of the DAX-index on day i and R is the mean return of the Dax-INDEX in 

month t. We annualize the standard deviation by multiplying it by 252 . 

In order to examine the predictive power of implied volatility versus historical volatility, 

following Christensen and Prabhala (1998) and Jorion (1995) we choose to use two different 

time series volatility forecasts: lagged realized (LR), i.e. one month before, volatility (σLR) and a 

GARCH (1,1) (GAR) forecast (σGAR). Using daily data on the Dax index, the GARCH(1,1) 

variance equation is defined as: 2
1

2
10

2
1 ttt bRaa σσ ++=+ , where Rt is the de-meaned DAX-index 

return on day t (for  more details see Bollerslev (1986)). As in Jorion (1995), the GARCH model 

has been estimated via maximum likelihood over the entire data set. Following Fleming (1998) 

the GARCH forecast (σGAR) of the average volatility over the life of the option is defined as:  

∑
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=
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where 2~
tjt+σ  is the forecast at time t of the variance j days into the future, and T is the maturity of 

the option. We annualize the standard deviation by multiplying it by 252 . The GARCH 

forecast, being estimated over the entire sample period, benefits from information that is not 

available to other forecasts. 
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Descriptive statistics for volatility and log volatility series are reported in Table 1. We 

can see that on average realized volatility is lower than the implied volatility estimates (except 

for out of the money call implied), with on average put implied volatility being higher than call 

implied volatility.  

 

Table 1. Descriptive statistics for volatility and log-volatility series. 

Statistic σATMC σOTMC σATMP σOTMP σR σLR σGAR 
Mean 0,241 0,230 0,250 0,292 0,238 0,239 0,240 

std dev 0,111 0,100 0,109 0,134 0,127 0,125 0,110 
Skewness 1,748 1,658 1,560 1,873 1,245 1,255 1,520 
Kurtosis 6,137 5,590 5,560 6,440 3,976 4,003 4,740 
Jarque 
Bera 70,770 56,800 52,300 83,050 23,250 23,450 39,190 

p-value 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
 ln(σATMC) ln(σOTMC) ln(σATMP) ln(σOTMP) ln(σR) ln(σLR) ln(σGAR) 

Mean -1,506 -1,565 -1,465 -1,311 -1,558 -1,550 -1,507 
std dev 0,395 0,383 0,386 0,381 0,486 0,482 0,395 

Skewness 0,644 0,692 0,543 0,873 0,376 0,357 0,693 
Kurtosis 3,277 3,197 2,972 3,512 2,340 2,374 2,888 
Jarque 
Bera 5,576 6,263 3,790 10,622 3,220 2,899 6,218 

p-value 0,062 0,044 0,150 0,005 0,199 0,235 0,045 
 

 

This skew pattern, depicted in Figure 13, is typical for index options and is consistent with the 

crash-phobia explanation, since the demand for out of the money put options to hedge against 

downside risk pushes implied volatility to rise at low strikes. As for the standard deviation, 

realised volatility is slightly more volatile than the implied volatility estimates (except for out of 

the money put implied). The volatility series are highly skewed (long right tail) and leptokurtic. 

In line with the literature (see e.g. Jiang and Tian (2005)) we decided to use the natural logarithm 

of the volatility series instead of the volatility itself in the empirical analysis for the following 

reasons. First log-volatility series conform more closely to normality than pure volatility series, 

this is documented in various papers and it is the case in our sample (see Table 1). Second, 

natural logarithms are less likely to be affected by outliers in the regression analysis.   

 

 

 

                                                
3 In the graph ATMP implied volatility is to the left of ATMC implied volatility because at the money call (put) 
implied volatility is mainly obtained from options with 03,1/1 ≤< SX ( 1/97,0 <≤ SX ), since these are the 
most traded strike price intervals).   
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Figure 1. The skew pattern of implied volatility. 
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3. The methodology. 

The information content of implied volatility is examined both in univariate and in 

augmented regressions. In univariate regressions, realized volatility is regressed against one of 

the six volatility forecasts in order to examine the different predictive power of each forecast. 

The univariate regressions are the following: 

)ln()ln( iR σβασ +=           (1) 

where σR = realized volatility and σi= volatility forecast, i=ATMC, OTMC, ATMP, OTMP, LR, 

GAR. 

In augmented regressions, realized volatility is regressed against two or more volatility 

forecasts in order to distinguish which one has the highest explanatory power. We choose to 

compare first pairwise one volatility forecast with a time series volatility forecast in order to see 

if implied volatility subsumes all the information contained in historical volatility. The 

augmented regressions used are the following: 

)ln()ln()ln( jiR σγσβασ ++=         (2) 

where σR = realized volatility, σi= implied volatility, i= ATMC, OTMC, ATMP, OTMP and σj = 

LR, GAR. 

Moreover, we compare pairwise the four implied volatility forecasts in order to understand if the 

information carried by one option class is more valuable than the information carried by the 

other: 

)ln()ln()ln( jiR σγσβασ ++=         (3) 
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where σR = realized volatility, σi= ATMC, OTMC, ATMP, OTMP and σj= ATMC, OTMC, 

ATMP, OTMP, i≠j. 

We also compare the two times series volatility forecasts, in order to see which one has the 

highest forecasting power on future realised volatility: 

)ln()ln()ln( GARLRR σγσβασ ++=         (4) 

Following Christensen and Prabhala (1998) three are the hypotheses tested in univariate 

regressions (1). The first hypothesis concerns the amount of information about future realized 

volatility contained in the volatility forecast. If the volatility forecast contains some information, 

then the slope coefficient should be different from zero. Therefore we test if 0β =  and we see 

whether it can be rejected. The second hypothesis is about the unbiasedness of the volatility 

forecast. If the volatility forecast is an unbiased estimator of future realised volatility, then the 

intercept should be zero and the slope coefficient should be one (H0: 0=α  and 1=β ). In case 

this latter hypothesis is rejected, we see if at least the slope coefficient is equal to one (H0: 

1=β ) and, if confirmed, following Jiang and Tian (2005) we interpret the volatility forecast as 

unbiased after a constant adjustment. Finally if implied volatility is efficient then the error term 

should be white noise and uncorrelated with the information set.  

In augmented regressions (2) two are the hypotheses to be tested. The first is about the 

efficiency of the volatility forecast: we test whether the implied volatility (ATMC, OTMC, 

ATMP, OTMP) forecast subsumes all the information contained in historical volatility. In 

affirmative case the slope coefficient of historical volatility should be equal to zero, (H0: 0=γ ). 

Moreover, as a joint test of information content and efficiency we test in equations (2) if the 

slope coefficients of historical volatility and implied volatility (ATMC, OTMC, ATMP, OTMP) 

are equal to zero and one respectively (H0: 0=γ  and 1=β ). Following Jiang and Tian (2005), 

we ignore the intercept in the latter null hypothesis, and if our null hypothesis is verified, we 

interpret the volatility forecast as unbiased after a constant adjustment.  

Moreover we investigate the different information content of each option class w.r.t. the 

others. To this end we test, in augmented regressions (3), if 0=γ  and 1=β , or 1=γ  and 

0=β , in order to see if the implied volatility of one option class subsumes all the information 

contained in the other. Finally we test, in augmented regression (4), if 0=γ  and 1=β , or 1=γ  

and 0=β , in order to see if one time series volatility forecast subsumes all the information 

contained in the other. 

Differently from other papers (see e.g. Christensen and Prabhala 1998, Christensen and 

Hansen (2002)) that use American options on dividend paying indexes, our data set of European 
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style options on a non-dividend paying index avoids measurement errors that may arise in the 

estimation of the dividend yield and the early exercise premium. Moreover, we have carefully 

cleaned the data set and we are using synchronous prices. Nonetheless, as we are averaging 

different implied volatilities in a single class, some measurement errors may still affect our 

estimates. Therefore we adopt an instrumental variable procedure (IV), we regress implied 

volatility in each class on an instrument (in univariate regressions) and on an instrument and any 

other exogenous variable (in augmented regressions) and replace fitted values in the original 

univariate and augmented regressions. As the instrument for implied volatility in each class we 

use both LR volatility, GAR, and past implied volatility in the same class as they are possibly 

correlated to the true implied volatility, but unrelated to the measurement error associated with 

implied volatility one month later. As an indicator of the presence of errors in variables we use 

the Hausman (1978) specification test statistic4. 

 

4. The results of univariate regressions. 

The results of the OLS univariate regressions (equation (1)) are reported in Table 2 (p-

values in parentheses). In all the regressions the residuals are normal, homoscedastic and not 

autocorrelated (the Durbin Watson statistic is not significantly different from two and the 

Breusch-Godfrey LM test confirms non autocorrelation up to lag 125).   

First of all, in all the univariate regressions all the beta coefficients are significantly 

different from zero: this means that all the six volatility forecasts contain some information about 

future realised volatility. Among the two time series volatility forecasts, GAR performs much 

better than LR volatility: this is not surprising, since GAR has been estimated on the entire data 

set and therefore uses information that is not available for other forecasts. Overall put implied 

volatility obtains a better performance than call implied one.  

 

 

 

 

                                                

4 The Hausman specification test is defined as: 
( )2ˆ ˆ

ˆ ˆ( ) ( )
IV OLS

IV OLS

m
Var Var

β β

β β

−
=

−
 where: ˆ

IVβ  is the beta obtained 

through the TSLS procedure, ˆ
OLSβ is the beta obtained through the OLS procedure and Var(x) is the variance of the 

coefficient x. The Hausman specification test is distributed as a χ2(1). 
5 In the regression that include as explanatory variable lagged realised volatility, the Durbin’s alternative has been 
computed. The results have confirmed the non autocorrelation of the residuals. The results of the Durbin’s 
alternative and of the Breusch-Godfrey LM test are available upon request. 
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Table 2. OLS univariate regressions. 

Dependent variable: log realized volatility      

Independent variables         

Intercept ln(σATMC) ln(σOTMC) ln(σATMP) ln(σOTMP) ln(σLR) ln(σGAR) Adj. R2 DW X2 Hausman 
test 

-0,002 1,03***      0,70 1,97 3,16 8,50 
(0,99) (0,00)        (0,21)  
0,083  1,05***     0,68 1,95 0,40 10,59 
(0,53)  (0,00)       (0,81)  
0,0569   1,10***    0,76 1,94 13,95 2,11 
(0,60)   (0,00)      (0,00)  
-0,123    1,09***   0,73 1,74 75,84 5,78 
(0,24)    (0,00)     (0,00)  

-0,3018     0,81  0,64 2,19 7,50  
(0,01)     (0,00)    (0,02)  
-0,002      1,03*** 0,70 2,17 2,92  
(0,98)      (0,00)   (0,23)  

 

Note: The number in brackets are the p-values. The χ2 report the statistic of a χ2 test for the joint null hypothesis 

0=α  and 1=β  (p-values in parentheses) in the following univariate regressions )ln()ln( iR σβασ += , 

where σR = realized volatility and σi= volatility forecast i=ATMC, OTMC, ATMP, OTMP, LR, GAR. The 

superscripts ***, **, * indicate that the slope coefficient is insignificantly different from one at the 10%, 5%, and 

1% critical level respectively. The last column reports the Hausman (1978) specification test statistic (one degree of 

freedom) 5% critical level = 3,841.   

 

The adjusted R2 is the highest for ATMP implied volatility, followed by OTMP implied, 

and by ATMC and GAR, that obtain a similar performance. LR volatility and OTMC implied 

volatility have the lowest adjusted R2. If we plot the R2 against the option moneyness (keeping in 

mind that ATMP (ATMC) implied volatility is mainly obtained from options with 

03,1/1 ≤< SX  ( 1/97,0 <≤ SX ), since these are the most traded strike prices, we find the 

pattern depicted in Figure 2. The results highlight that the information content of implied 

volatility has a humped shape, with out of the money options being less informative than at the 

money ones. This is consistent with the hedging pressure argument documented in Bollen and 

Whaley (2004): out of the money options are less informative than at the money ones. 

Differently from the results in Ederington and Guan (2005) the forecasting power of implied 

volatility does not vary in a mirror image of the implied volatility smile: rather it exactly follows 

the volatility skew pattern, the only exception being OTMP implied volatility that has a smaller 

forecasting power than it should have by looking at the skew. The difference can be attributed to 
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the fact that, w.r.t. Ederington and Guan (2005) our option classes are broader6 and our results 

are based on synchronous prices, matched in a one minute interval.  

The null hypothesis that the volatility forecast is an unbiased estimate of future realized 

volatility is not rejected for both call implied volatility forecasts (ATMC and OTMC) and for 

GAR, however, it is rejected for both put implied volatility forecasts (ATMP and OTMP). This 

is probably due to the fact that, in our sample, realized volatility is on average much lower than 

both ATMP and OTMP implied volatility forecasts. However, the null hypothesis that β is 

insignificantly different from one can not be rejected at the 10% critical level for both put 

implied volatility forecasts. Therefore also ATMP and OTMP implied volatilities can be 

considered as unbiased after a constant adjustment given by the intercept of the regression. LR 

volatility obtains the worst performance: it is not unbiased even after a constant adjustment. 

 

Figure 2. The adjusted R2 for different moneyness classes. 
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Finally, in order to test for robustness our results, and see if implied volatility has been 

measured with errors, we adopt an instrumental variable procedure and run a two stage least 

squares. The Hausman (1978) specification test reported in the last column of Table 2 indicates 

that the errors in variables problem is not significant only for ATMP. Therefore we report in 

Table 3 the TSLS regressions. As expected, the TSLS estimates of the beta coefficients are 

higher than the OLS ones. This causes the slope coefficients to be insignificantly different from 

one at a lower confidence level than in the OLS case. Nonetheless, the results are virtually the 

same of the OLS case, with ATMC and OTMC being unbiased and ATMP and OTMP being 

                                                
6 The choice has been made in order to avoid having samples of different length, caused by missing observations for 
some dates.   
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unbiased after a constant adjustment. Therefore, the forecasting power of each volatility forecast 

is not substantially changed w.r.t. the OLS case. 

 

Table 3. TSLS univariate regressions. 
Dependent variable: log realized volatility    

Independent variables      

Intercept ln(σATMC) ln(σOTMC) ln(σATMP) ln(σOTMP) Adj. R2 DW X2 

0,185 1,157**    0,69 2,11 6,08 
(0,18) (0,00)      (0,05) 
0,328  1,205*   0,66 2,14 4,62 
(0,04)  (0,00)     (0,10) 
0,118   1,145**  0,76 1,97 15,36 
(0,31)   (0,00)    (0,00) 
-0,01    1,18* 0,73 1,81 77,25 
(0,93)    (0,00)   (0,00) 

Note: The number in brackets are the p-values. The χ2 report the statistic of a χ2 test for the joint null hypothesis 

0=α  and 1=β  (p-values in parentheses) in the following univariate regressions )ln()ln( iR σβασ += , 

where σR = realized volatility and σi= volatility forecast, i=ATMC, OTMC, ATMP, OTMP. The superscripts ***, 

**, * indicate that the slope coefficient is insignificantly different from one at the 10%, 5%, and 1% critical level 

respectively.  

 

 

5. The results of augmented regressions. 

The results of the OLS augmented regressions (equation (2), (3) and (4)) are reported in 

Table 4 (p-values in parentheses). In all the regressions the residuals are normal, homoscedastic 

and not autocorrelated (the Durbin Watson statistic is not significantly different from two and the 

Breusch-Godfrey LM test confirms non autocorrelation up to lag 127).   

In augmented regressions (2), we compare each implied volatility forecast with historical 

volatility in order to see if any of the implied volatility forecasts is efficient, i.e. it subsumes all 

the information contained in historical volatility. For historical volatility we use both LR 

volatility and GAR. As the results are very similar, in the following we use the term historical 

volatility, without mentioning which is the forecasting method. The results differ somehow 

across option type: overall put implied volatilities are more efficient than call implied ones. At 

the 5% level, only ATMP implied volatility is efficient. In fact, the slope coefficient of historical 

volatility is not significantly different from zero at the 10% level for both LR volatility and 

GAR, indicating that ATMP implied volatility subsumes all the information contained in 

                                                
7 In the regressions that include as explanatory variable lagged realised volatility, the Durbin’s alternative has been 
computed but it was not possible to obtain a result. The results of the Durbin’s alternative and of the Breusch-
Godfrey LM test are available upon request. 
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historical volatility. Moreover, from the comparison of univariate and augmented regressions, 

the inclusion of historical volatility does not improve the goodness of fit according to the 

adjusted R2.  

 

Table 4. Augmented regressions. 
Dependent variable: log realized volatility 

Independent variables 

Intercept ln(σATMC) ln(σOTMC) ln(σATMP) ln(σOTMP) ln(σLR) ln(σGAR) Adj. R2 DW X2 a X2 b Hausman 
test 

-0,009 0,70    0,32+  0,73 2,26 7,39  2,907 
(0,94) (0,00)    (0,01)    (0,02)   
0,0447  0,65   0,37  0,72 2,28 11,21  3,019 
(0,72)  (0,00)   (0,00)    (0,00)   
0,0477   0,95  0,14+++  0,76 2,08 3,38  0,931 
(0,66)   (0,00)  (0,26)    (0,18)   
-0,93    0,82 0,25+  0,74 2,04 6,34  1,455 
(0,36)    (0,00) (0,03)    (0,04)   
0,088 0,56     0,53 0,74 2,23 11,42  0,016 
(0,44) (0,00)     (0,00)   (0,00)   
0,134  0,5    0,6 0,73 2,22 11,51  0,122 
(0,28)  (0,00)    (0,00)   (0,00)   
0,09   0,86   0,26+++ 0,77 2,11 4,40  0,003 

(0,40)   (0,00)   (0,14)   (0,11)   
0,0014    0,69  0,43+ 0,75 2,074 9,01  0,015 
(0,99)    (0,00)  (0,01)   (0,01)   
-0,003     0,004 1,027 0,69 2,17 22,68 0,167  
(0,98)     (0,99) (0,00)   (0,00) (0,92)  

0 1,02+ 0,01+++     0,69 1,97 0,19 6,07 3,512 
(0,99) (0,02) (0,98)       (0,91) (0,04)  
0,031 -0,91+  2,02    0,78 1,90 26,12 7,77 0,949 
(0,76) (0,02)  (0,00)      (0,00) (0,02)  
-0,014 0,42+   0,7   0,75 1,83 14,77 7,29 2,288 
(0,90) (0,02)   (0,00)     (0,00) (0,03)  
-0,001  -0,36+++ 1,45    0,76 1,89 28,94 3,89 1,671 
(0,99)  (0,19) (0,00)      (0,00) (0,14)  
0,035  0,3965+  0,74   0,75 1,84 22,80 8,13 2,101 
(0,77)  (0,01)  (0,00)     (0,00) (0,02)  
0,36   0,85 0,264+++   0,77 1,89 3,12 12,47 1,766 

(0,74)   (0,00) (0,32)     (0,21) (0,00)  

Note: The number in brackets are the p-values. The χ2a , χ2b report the statistic of a χ2 test for the joint null 

hypothesis 0=γ  and 1=β  or 1=γ  and 0=β  (p-values in parentheses) in the following regressions: 

)ln()ln()ln( jiR σγσβασ ++= , where σR = realized volatility, σi= volatility forecast i= ATMC, OTMC, 

ATMP, OTMP, LR, GAR and σj= volatility forecast j, j= ATMC, OTMC, ATMP, OTMP, LR, GAR, i≠j. The 

superscripts +++, ++, + indicate that the slope coefficient is insignificantly different from zero at the 10%, 5%, and 1% 

critical level respectively. The last column reports the Hausman (1978) specification test statistic (one degree of 

freedom) 5% critical level = 3,841.   
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The slope coefficient of ATMP implied volatility is not significantly different from one at 

the 10% level and the joint test of information content and efficiency 0=γ  and 1=β  does not 

reject the null hypothesis, indicating that ATMP implied volatility is efficient and unbiased after 

a constant adjustment. OTMP implied volatility is marginally inefficient, since the coefficient of 

historical volatility is not significantly different from zero only at the 1% level, and the joint test 

of information content and efficiency 0=γ  and 1=β  does not reject the null hypothesis only at 

the 1% level. For ATMC and OTMC implied volatilities the results are quite similar, with 

ATMC performing slightly better. In both cases, from the comparison of univariate and 

augmented regressions, the inclusion of historical volatility improves the goodness of fit 

according to the adjusted R2. In fact, the slope coefficient of historical volatility is significantly 

different from zero and the joint test of information content and efficiency 0=γ  and 1=β  

rejects the null hypothesis (the only exception being ATMC implied volatility w.r.t. LR volatility 

at the 1% level). 

In order to see if any one of the implied volatilities subsumes all the information 

contained in the others, we test in augmented regressions (3) if 0=γ and 1=β  or 1=γ  and 

0=β . By looking at the significance of the coefficients and at the results of the χ2 test, we can 

see that ATMP implied volatility subsumes all the information contained in both OTMP and 

OTMC implied volatilities. ATMC implied volatility subsumes all the information contained 

only in OTMC implied volatility. The comparison of ATMP and ATMC implied volatilities is 

not straightforward since the coefficient of ATMC is statistically not different from zero only at 

the 1% level and the χ2 test marginally rejects the null hypothesis for ATMP at the 5% level. In 

order to better understand the performance of the two at the money implied volatility forecasts, 

we compute the Diebold and Mariano test statistic (for more details see Diebold and Mariano 

(1995)). The loss function chosen is the absolute error loss. The Diebold and Mariano test 

statistic under the null of equal predictive accuracy is distributed as a N(0,1), in our case the test 

statistic is -2,35, therefore we can reject the null of equal predictive accuracy at the 5% level. 

Based on these results we can say that ATMP implied volatility has a slightly better predictive 

power than ATMC implied one. Therefore, in our sample, at the money put options are priced 

more efficiently than at the money call ones, probably due to the larger trading volume, 

determined by a higher demand. 

Finally, in order to distinguish among the time series forecasts which is the best one, we 

test in augmented regression (4) if 0=γ and 1=β  or 1=γ  and 0=β . The results highlight 

that GAR subsumes all the information contained in LR volatility. As a last step, in order to test 

for robustness our results, and see if implied volatility has been measured with errors, we adopt 
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an instrumental variable procedure and run a two stage least squares. The Hausman (1978) 

specification test reported in the last column of Table 4 indicates that the errors in variables 

problem is not significant neither in augmented regressions (2) nor in augmented regression (3)8. 

Therefore we can trust the OLS regressions results. 

 

6. A combination of call and put at the money volatilities. 

At the money volatilities are widely used by market participants. Call and put at the 

money volatilities are usually inserted in the smile function by using some average of both 

option classes. Given that prices are observed with measurement errors (stemming from finite 

quote precision, bid-ask spreads, non-synchronous observations and other measurement errors) 

small errors in any of the input may produce large errors in the implied volatility. Quoting 

Hentshle (2003): “Unfortunately many authors preclude the cancellation of errors across puts 

and calls by using only the more liquid out of the money options. Unless underlying asset prices 

and dividend rates are observed with high precision, this practice can result in a substantial loss 

of efficiency”. Moreover, as noted in Moriggia, Muzzioli and Torricelli (2007) the use of both 

call and put options in the volatility estimation, highly improves the pricing performance of 

option pricing models based on implied binomial trees. 

Therefore, in this section we investigate how to combine at the money call and put 

implied volatilities in a single estimate, in order to convey the information from both call and put 

prices and cancel possible errors across option type. In the logarithmic specification, natural 

candidates for the weights that we may assign to call and put implied volatilities would be the 

estimated coefficients of augmented regression (3). However, as the beta coefficient of call 

implied volatility is not significantly different from zero, it is not possible to find an optimal 

combination of the two with constant weights through time. 

In line with the approach by Christensen and Hansen (2002), that proposes to favour the 

most actively traded options, we construct a weighted average of ATMC and ATMP implied 

volatilities (σM), where the weights are the relative trading volume of each option class on the 

total trading volume: 

pc

pATMPcATMC
M VV

VV
+
+

=
σσ

σ  

where Vi is the trading volume of option in class i, i=c,p. The weighting rule favours the most 

actively traded options, that in our sample are the put ones. 

                                                
8 In augmented regressions (3) the instrumental variables procedure is used for the most significant variable in each 
regression. 
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Descriptive statistics of average implied volatility and log average implied volatility are 

reported in Table 5. Average implied volatility is slightly higher than realised volatility. 

Similarly to the results in Table 1, we can see that the natural logarithm of average implied 

volatility conforms more to normality than the plain average implied volatility series. Therefore 

it will be used as explanatory variable in univariate and augmented regressions. 

In order to analyse the performance of average implied volatility, we run both univariate 

and augmented regressions (1), (2) and (3)9 with σi=σM. Furthermore, in order to test for 

robustness our results, we look for possible errors in variables. The results are reported in Table 

6. In all the regressions the residuals are normal, homoscedastic and not autocorrelated (the 

Durbin Watson statistic is not significantly different from two and the Breusch-Godfrey LM test 

confirms non autocorrelation up to lag 1210). 

 

Table 5. Descriptive statistics for average implied volatility. 

Statistic σM ln(σM) 
mean 0,246 -1,484 

std dev 0,11 0,39 
skewness 1,67 0,59 
kurtosis 5,97 3,14 

Jarque Bera 64,15 4,52 
p-value 0,00 0,10 

 
 

In univariate regression (1), the beta coefficient of average implied is significantly 

different from zero, but the null hypothesis that average implied is an unbiased estimate of future 

realized volatility is rejected at the 5% level. The null hypothesis that β is insignificantly 

different from one can not be rejected at the 10% critical level: therefore we can consider 

average implied volatility as unbiased after a constant adjustment given by the intercept of the 

regression.  

In augmented regressions (2) we compare average implied volatility with historical 

volatility in order to understand if average implied volatility subsumes all the information 

contained in historical volatility. The results provide evidence for both the unbiasedness and 

efficiency of average implied volatility forecast w.r.t LR volatility, w.r.t GAR the evidence is 

less clear-cut since the joint test of information content and efficiency 0=γ  and 1=β  

                                                
9 In augmented regression 3 we compare average implied only with ATMP implied, since we are looking for an 
improvement over the best forecast. 
10 In the regression that include as explanatory variable the lagged realised volatility, the Durbin’s alternative has 
been computed, but it was not possible to obtain a result. The results of the Durbin’s alternative and of the Breusch-
Godfrey LM test are available upon request. 
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marginally rejects the null hypothesis. If we compare the performance of average implied 

volatility with ATMP we see that the adjusted R2 is lower for average implied. Moreover from 

the results in augmented regression (3) we see that average implied does not subsume all the 

information of ATMP. Therefore we conclude that the attempt of combining at the money call 

and put implied volatilities in a single estimate does not improve the forecasting power over the 

simple use of ATMP. 

 

Table 6. OLS and TSLS regressions of realised volatility on average implied volatility. 
PANEL A: OLS REGRESSIONS        
Dependent variable: log realized volatility       
Independent variables         

Intercept ln(σM) ln(σATMP) ln(σLR) ln(σGAR) Adj. R2 DW X2 X2 a X2 b Hausman test 

0,04 1,078***    0,74 1,97 7,87   5,280 
(0,71) (0,00)      (0,02)    
0,029 0,84  0,22++  0,74 2,18  4,47  2,319 
(0,79) (0,00)  (0,07)     (0,11)   
0,096 0,713   0,396+ 0,75 2,19  6,72  0,433 
(0,39) (0,00)   (0,02)    (0,04)   
0,025 -1,75+ 2,852   0,78 1,89  15,27 7,52 0,019 
(0,81) (0,02) (0,00)      (0,00) (0,02)  

PANEL B: TSLS REGRESSION        
Dependent variable: log realized volatility       
Independent variables         

Intercept ln(σM)    Adj. R2 DW X2    
0,16 1,157    0,7322 2,051 10,37    

(0,20) (0,00)      (0,01)    

 

Note: The number in brackets are the p-values. The χ2 report the statistic of a χ2 test for the joint null hypothesis 

0=α  and 1=β  (p-values in parentheses) in the following univariate regression )ln()ln( MR σβασ += , 

where σR = realized volatility and σM= average implied volatility. The χ2a , χ2b report the statistic of a χ2 test for the 

joint null hypothesis 0=γ  and 1=β  or 1=γ  and 0=β  (p-values in parentheses) in the following 

regressions: )ln()ln()ln( jMR σγσβασ ++= , where σR = realized volatility, σM= average implied volatility 

σj= volatility forecast j, j= ATMP, LR, GAR. The superscripts ***, **, * indicate that the slope coefficient is 

insignificantly different from one at the 10%, 5%, and 1% critical level respectively. The superscripts +++, ++, + 

indicate that the slope coefficient is insignificantly different from zero at the 10%, 5%, and 1% critical level 

respectively. The last column reports the Hausman (1978) specification test statistic (one degree of freedom): 5% 

critical level = 3,841.   

 

Finally, we test for robustness our results by adopting an instrumental variable procedure. 

The Hausman (1978) specification test reported in the last column of Table 6 indicates that the 

errors in variables problem is significant only in univariate regression (1). We report in Panel B 
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the TSLS regression output, but the results do not change the conclusions based on the OLS 

regression. 

 

7. Conclusions. 

In this paper we have investigated how the information content of implied volatility 

varies according to moneyness and option type and we have compared the latter option based 

forecasts with historical volatility. The information content of implied volatility has been 

examined for the most liquid at the money and out of the money call and put options i.e. the ones 

that are usually used as inputs for the computation of the smile function. Differently from 

previous studies, that use settlement prices, we have used synchronous prices, matched in a one 

minute interval.  

The results highlight that the information content of implied volatility has a humped 

shape, with out of the money options being less informative than at the money ones. This is 

consistent with the hedging pressure argument documented in Bollen and Whaley (2004), that 

causes out of the money options to be less informative than at the money ones. All the implied 

volatility forecasts contain more information about future realised volatility than LR volatility. 

The GAR forecast obtains roughly the same performance of ATMC implied volatility and is 

superior to both OTMC implied volatility and LR volatility.  

Two hypotheses have been tested: unbiasedness and efficiency of the different volatility 

forecasts. Overall, call implied volatilities forecasts are unbiased, while put implied volatilities 

are unbiased only after a constant adjustment given by the intercept of the regression. Efficiency 

has been evaluated by assessing whether the implied volatility forecast subsumes all the 

information contained in historical volatility. Only ATMP implied volatility is efficient, in that it 

subsumes all the information contained in historical volatility. Of the remaining three volatility 

forecasts, OTMP is marginally inefficient, while ATMC and OTMC are strongly inefficient. 

By comparing pairwise the four implied volatility forecasts, it is clear that ATMC 

subsumes all the information contained in OTMC, ATMP subsumes all the information 

contained in both OTMP and OTMC. The comparison of ATMC and ATMP is less clear-cut, but 

we can conclude that ATMP obtains a slightly better performance than ATMC. Therefore, in our 

sample, at the money put options are priced more efficiently than at the money call options: 

ATMP options, being more heavily traded than ATMC options, are more informative of future 

realised volatility. This is an interesting result, different from previous research (see e.g. 

Christensen and Hansen (2002)), and is a warning against the a-priori choice of using call 

implied volatility. The attempt of combining ATMC and ATMP in a single forecast in order to 
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cancel possible errors across option type does not lead to an improvement over the simple use of 

ATMP implied volatility.  

The present investigation is very important for the understanding of the role of the 

different ingredients of the smile function and can be seen as a preliminary exercise in order to 

choose different weights for each volatility input in a volatility index. The VDAX-New, the new 

volatility index of the German equity market, is based on an approximation of the so-called 

“model free” implied volatility, proposed by Britten-Jones and Neuberger (2000), and is derived 

by using the most liquid at the money and out of the money call and put options. The VDAX-

New has replaced the old VDAX, that was computed by using only at the money options (pairs 

of calls and puts with the four strikes below and above the at the money point). The present 

investigation suggests some directions in order to improve the information content of the 

VDAX-New: overall put options are more informative than call options, ATMP are preferred to 

ATMC, OTMP predict future realised volatility better than both ATMC and OTMC. How these 

rules can be embedded in the index and the empirical comparison between the suggested 

modifications and the existent VDAX-New is left for future research. 
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