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Abstract

Monocytes/macrophages are key players in all phases of physiological and pathological inflammation. To understanding the
regulation of macrophage functional differentiation during inflammation, we designed an in vitro model that recapitulates
the different phases of the reaction (recruitment, initiation, development, and resolution), based on human primary blood
monocytes exposed to sequential changes in microenvironmental conditions. All reaction phases were profiled by
transcriptomic microarray analysis. Distinct clusters of genes were identified that are differentially regulated through the
different phases of inflammation. The gene sets defined by GSEA analysis revealed that the inflammatory phase was
enriched in inflammatory pathways, while the resolution phase comprised pathways related to metabolism and gene
rearrangement. By comparing gene clusters differentially expressed in monocytes vs. M1 and vs. M2 macrophages extracted
from an in-house created meta-database, it was shown that cells in the model resemble M1 during the inflammatory phase
and M2 during resolution. The validation of inflammatory and transcriptional factors by qPCR and ELISA confirmed the
transcriptomic profiles in the different phases of inflammation. The accurate description of the development of the human
inflammatory reaction provided by this in vitro kinetic model can help in identifying regulatory mechanisms in physiological
conditions and during pathological derangements.
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Introduction

In the healthy organism the innate immune system provides the

first line of defence against external or internal danger signals, and

functions by triggering a protective inflammatory reaction

develops through different phases, from initiation to full inflam-

mation and destruction of the initiating agent, followed by

resolution, and re-establishment of tissue integrity with restoration

of the physiological tissue functions. Briefly, when in a tissue a

damage or an infection takes place, the innate immune system is

activated, setting in motion a local inflammatory response that

includes the recruitment of leukocytes from blood (first neutrophils

and them monocytes) and the production of a series of pro-

inflammatory mediators, such as TNF-a and IL-1b, by local

immune cells (in particular the resident macrophages). NK and T

cells can also enter the tissue in response to specific chemokines,

and may influence the development of the inflammatory reaction

by producing IFN-c, a potent monocyte/macrophage inflamma-

tory activator. An inflammatory reaction must be tightly controlled

to avoid excessive collateral damages to host tissues, and the

possible degeneration into pathological conditions (e.g., chronic

inflammatory or autoimmune diseases). Thus, a crucial commit-

ment made in late inflammation is to convert the response from

the cytocidal tissue-damaging mode to a tissue-repairing mode.

Clearance of the initiating stimulus (e.g., elimination of the

infectious microorganisms) determines the cessation of the

inflammatory stimulation and the concomitant activation of

down-regulatory mechanisms (in which cytokines such as IL-10

are involved), leading to resolution of inflammation. Then, in the

different microenvironment, innate immune cells produce a series

of growth factors (including VEGF and TGF-b) thereby taking

part in the final phase of tissue re-construction and re-establish-

ment of homeostasis [1].

Monocytes/macrophages are key players in inflammatory host

defense, both by the direct elimination of foreign agents and as

organisers of the different phases of the inflammatory process [2].

Circulating monocytes enter tissues and become inflammatory

macrophages upon tissue damage. Resident tissue macrophages

have a role in tissue surveillance and homeostasis [3]. Both

incoming inflammatory monocytes and resident macrophages can

undergo different activation processes as a consequence of

microenvironmental tissue-derived (damage) or cell-derived signals

(microbes, activated lymphocytes) [4–6]. Two broad macrophage
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functional phenotypes have been proposed, mirroring the Th1/

Th2 polarization. The classically activated macrophages (M1)

develop in response to inflammatory factors like the Th1 cytokine

IFN-c, LPS and TNF-a, and mediate resistance against intracel-

lular parasites and tumours [7,8]. Alternative M2 macrophages

are activated by Th2 cytokines, or FccR binding in the presence of

TLR agonists, or glucocorticoids and anti-inflammatory molecules

(M2a, M2b, M2c respectively), and take part in parasite clearance,

dampening of inflammation, tissue remodelling, and tumour

promotion [9,10].

Several in vitro and in vivo studies suggest that polarised M1 and

M2 macrophages can to some extent switch from a phenotype to

the other. A controversial issue is whether M1 and M2

macrophages consist of phenotypically distinct subpopulations

that can serve different functions [11,12], or the same cells can

shift from one to another functional phenotype based on

microenvironmental signals [13]. While in several pathological

conditions the latter seems to be the case (e.g. obesity-induced

insulin resistance [14], atherosclerotic lesions [15], cancer [16],

endotoxin tolerance [17]), it is still unknown if M1 and M2

macrophages can undergo dynamic transitions between different

functional states during a ‘‘physiological’’ inflammatory response.

Gene expression profiling approaches have been used to cast light

on monocyte-to-macrophage differentiation and polarization

processes, on the recognition of molecular signatures in M1 and

M2 macrophages, and on the understanding of the plasticity of

macrophage activation [18,19]. In the last sixty years, many

studies on macrophage activation in inflammation relied on in vivo

mouse models [20], and on in vitro models based on isolated

murine primary cells (mainly peritoneal or bone marrow derived

macrophages) and on immortalised monocytic cell lines (human or

murine) [21]. More recently, data on human primary cells have

also become available, obtained with human monocytes/macro-

phages ex vivo or in vitro (primary macrophages isolated from tissues,

in vitro differentiated myeloid precursors, in vitro matured macro-

phages, peripheral blood monocytes) [18]. These studies investi-

gated the activation of monocytes/macrophages, and provided

information about the modes of type I vs. type II inflammatory

activation vs. deactivation of macrophages in the human being.

However, no information is available on the kinetic development

of the macrophage inflammatory reaction and on the possibility

that the same cell population could be first polarised towards an

effector inflammatory program and subsequently re-polarized to

the deactivation program. In this context, this study aims at

providing such characterisation by setting up a reliable and

representative model, based on human primary monocytes, that

allows us to accurately describing the development and regulation

of human macrophage functions during the entire course of the

inflammatory reaction.

Materials and Methods

Monocyte isolation and culture
Human monocytes were obtained from discarded buffy coats of

healthy blood donors (see the paragraph ‘‘Ethics statement’’).

Donors were aged 19–56 years (average 35.5 years), included

females and males (10+2) and belonged to three different ethnic

groups, in the attempt to capture at least partially the human

heterogeneity. According to the Italian law, blood donors were

clinically healthy, were screened and found negative for HIV,

HBV and HCV, and were within the normal range for CBC

(complete blood count), glycemia, cholesterol, triglycerides,

transaminases, creatinine, and blood protein level. Monocytes

were obtained by isolating PBMC on Ficoll-Paque PLUS gradients

(GE Healthcare, Bio-Sciences AB, Uppsala, Sweden) and subse-

quent separation with Monocyte Isolation kit II (Miltenyi Biotec,

Bergisch-Gladbach, Germany). Monocytes isolated by this tech-

nique encompassed about 80% CD14++CD162 cells, 2–6%

CD14++CD16+ cells, and 7–10% CD14dimCD16+ cells, thus fully

reflecting the distribution of blood monocyte subpopulations [22].

Only preparations with .98% purity (determined by differential

staining on cytocentrifuge smears) and viability (trypan blue dye

exclusion) were used.

Monocytes were cultured at 56106 cells/well in 6-well culture

plates (CostarH, Corning Inc., Corning, NY) in 2 ml of RPMI

1640+Glutamax-I Medium (GIBCOH, Life Technologies, Paisley,

UK) supplemented with 50 mg/ml Gentamicin (GIBCOH) and 5%

heat-inactivated human AB serum (Sigma-Aldrich Inc., St. Louis,

MO) in moist air with 5% CO2. Monocytes were sequentially

exposed to mixtures of stimuli (see Results): hrCCL2 (10 ng/ml),

hrTNF-a (10 ng/ml), hrIFN-c (25 ng/ml), hrIL-10 (20 ng/ml),

hrTGF-b (10 ng/ml) (all from R&D Systems, Minneapolis, MN),

LPS (5 ng/ml; from E.coli serotype 055:B5; Sigma-Aldrich). Cells

were washed and fresh medium added at 2, 14 and 24 h. Viability

at 48 h always exceeded 80%.

Fresh monocytes were taken as time 0. Cells were harvested in

700 ml of Qiazol (Qiagen, Hilden, Germany) at 2, 2.5, 3, 3.5, 4,

14, 24, and 48 h. Supernatants were collected at 4, 14, 24, and

48 h.

RNA isolation and microarray hybridization
Total RNA was extracted from monocytes of 12 individual

donors (3 for the ‘‘early’’ series: 0, 2.0–3.5 h; and 9 for the ‘‘late’’

series: 0, 4–48 h), using Qiagen miRNeasy kit (Qiagen), quantified

spectrophotometrically (ND-1000, NanoDrop Technologies, Wil-

mington, DE), and checked for integrity by microcapillary

electrophoresis (Agilent 2100 Bioanalyzer; Agilent Technologies,

Palo Alto, CA). Samples were prepared starting from 0.1–1 mg

total RNA, using the GeneChipH 39 IVT Express kit or the

GeneChipH One Cycle cDNA Synthesis kit (Affymetrix, Santa

Clara, CA), with identical results. Biotinylated cRNAs (15 mg)

were fragmented and hybridized for 16 h at 45uC onto

GeneChipH HG-U133 Plus 2.0 Arrays (Affymetrix). After washing

and staining, arrays were scanned with the GeneChipH Scanner

3000 7G (Affymetrix) and fluorescent images were acquired and

analyzed using GCOS software (Affymetrix) to generate a total of

60 raw intensity files (CEL files).

Data analysis
Analysis was performed in R using Bioconductor libraries and R

statistical packages. Signals were converted to expression values by

robust multi-array average procedure [23] and HG-U133 Plus 2.0

custom Chip Definition Files (CDF) based on GeneAnnot [24]

(CDF Version 2.1.0, GeneCards Version 2.41, GeneAnnot

Version 1.9). Intensity levels for a total of 18862 custom probe

sets were background-adjusted and normalised using quantile

normalisation, and log2 expression values calculated using median

polish summarisation. Raw data are available at Gene Expression

Omnibus (GEO) GSE47122.

Genes with statistically significant differential expression during

time series were identified using the microarray Significant Profiles

method coded in the R package maSigPro [25]. MaSigPro first

applies a least-square technique to estimate the parameters of a

general regression model for each gene (make.design function) and

then uses the regression coefficients of the model to identify genes

with statistically significant changes in their expression profiles

(p.vector, T.fit and get.siggenes functions). Since the time-course

was composed of 9 points, we computed a regression fit for each
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gene using a polynomial with a degree of 3 (cubic regression

model) and selected those regression models with an associated

corrected p value#0.05. P values have been corrected for multiple

comparisons using the false discovery rate procedure (FDR), i.e.,

setting the parameter Q = 0.05 in the p.vector function. Once the

statistically significant gene models were determined, the regres-

sion coefficients were used to identify genes showing statistically

significant expression changes over time. To do this, a second

model was constructed using only significant genes and applying a

variable selection strategy based on stepwise regression. Specifi-

cally, we selected the backward stepwise regression and, at each

iteration, retained those variables with a p value#0.01 (i.e., set the

T.fit parameters at step method = backward and alpha = 0.01).

Finally, we generated the list of significant genes by setting an

additional selection criterion based on the R-squared value of the

second regression model (i.e., set the get.siggenes parameters

rsq = 0.6 and vars = all). Results have been visualised clustering

genes into k = 9 groups, using maSigPro k-mean clustering and

default value for k.

Analysis of publicly available gene expression data
Gene expression data of human primary monocytes and

macrophages were retrieved from GEO repository (http://www.

ncbi.nlm.nih.gov/geo), using as inclusion/exclusion criterion the

type of microarray technology (i.e., only data obtained with

Affymetrix HG-U133 microarrays were considered). Twenty-four

series comprising 474 samples were downloaded from GEO, and

303 samples (corresponding to monocytes and macrophages, and

excluding dendritic cells) were selected and organised in a

proprietary database using the software A-MADMAN [26] (Table

S1). Samples were manually re-annotated and tagged based on the

meta-information provided by GEO and by the original

publications. Finally, the meta-database comprised 62 samples

labelled as untreated monocytes, and 46 and 20 samples as M1

and M2 activated monocytes/macrophages, respectively (Table

S2). Gene expression profiles were generated starting from CEL

files using an approach inspired by the generation of custom CDF

[27]. In custom CDF, probes matching the same transcript, but

belonging to different probes sets, are aggregated into putative

custom-probe sets, each one including only those probes with a

unique and exclusive correspondence with a single transcript.

Similarly, probes matching the same transcript but located at

different coordinates on different type of arrays may be merged in

custom-probe sets and arranged in a virtual platform grid. As for

any other microarray geometry, this virtual grid may be used as a

reference to create the virtual-CDF file, containing the probes,

shared among the platforms of interest, and their coordinates on

the virtual platform, and the virtual-CEL files containing the

intensity data of the original CEL files properly re-mapped on the

virtual grid. Once defined the virtual platform through the

creation of its custom-CDF and transformed the CEL files into

virtual-CEL files, raw data, originally obtained from different

platforms, are homogeneous in terms of platform and can be pre-

processed and normalised adopting standard approaches, as RMA

or GCRMA. Here, expression values were generated from

intensity signals using the combined HG-U133A/HG-

U133Av2/HG-U133 Plus2.0 virtual-CDF file, the custom defini-

tion files for human GeneChips based on GeneAnnot, and the

transformed virtual-CEL files. Intensity values for a total of 12167

meta-probesets were background-adjusted, normalised using

quantile normalisation, and gene expression levels calculated

using median polish summarisation (RMA algorithm) [23]. The

expression matrix has been analysed with the Significance Analysis

of Microarray method (SAM) [28], coded in the samrRpackage

(http://cran.r-project.org/web/packages/samr/index.html), to

identify differentially expressed genes in the comparisons between

subsets of monocytes tagged as untreated, M1, and M2 (128

samples, see Table S2). Specifically, in the comparison between

untreated monocytes and samples labelled as M1 (or as M2), we

used the two-class procedure, estimated the percentage of false

positive predictions with 1000 permutations, and selected those

transcripts whose q-value (i.e., False Discovery Rate, FDR) was

equal to 0. This selection was further refined setting the lower limit

for fold change induction (or reduction) to 5 and 8, when

considering the comparison between untreated monocytes and

samples M1 or untreated monocytes and samples M2, respective-

ly.

Over-representation analysis
Over-representation analysis was performed using the Gene Set

Enrichment Analysis (GSEA) software [29] and gene sets from the

Molecular Signatures Database (http://www.broadinstitute.org/

Figure 1. Graphic representation of the kinetic development of inflammation in the human monocyte-based in vitro model. Freshly
isolated human blood monocytes were first exposed to the chemokine CCL2 for 2 h at 37uC, then to LPS (from 2 h), TNF-a (from 3 h), and IFN-c (from
7 h) at 39uC. At 14 h the inflammatory stimuli were washed off, the temperature brought back to 37uC, and fresh medium containing IL-10 added. At
24 h monocytes were exposed to TGF-b until the end of the experiment.
doi:10.1371/journal.pone.0087680.g001
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gsea/msigdb/index.jsp). GSEA was applied on log2 expression

data of the entire time course. The median expression profiles of

the 9 groups of genes identified by maSigPro was used as

continuous phenotype labels, and the Pearson’s correlation as the

metric to select gene sets with expression patterns resembling those

encoded in the phenotype labels. As gene sets we used KEGG,

Biocarta, and Reactome lists of the C2: curated gene sets

collection. Finally, gene sets were defined as significantly enriched

if the False Discovery Rate (FDR) was ,5% when using Pearson

as metric and 1,000 permutations of gene sets.

Gene expression validation by qRT-PCR
cDNAs were reverse-transcribed from total RNA (100 ng) using

High Capacity cDNA Archive Kit (Applied Biosystems, Foster

City, CA). TaqMan qPCR assays were performed with an ABI

PRISM 7900 sequence detection system (Applied Biosystems),

using TaqMan Universal PCR Master Mix (Applied Biosystems)

in 50 ml reaction volume. Primers and probes for IL6, TNFA,

IL7R, CD163, MMP9, MAFB, KLF4, PPARG, PPARD, CEBPA, and

GAPDH were supplied by Applied Biosystems as pre-made

solutions. Each cDNA sample was run in triplicate and qRT-

PCR reactions were carried out on six independent samples.

Statistical analysis was performed using the (22DDCt) method [30].

Results are expressed as mean 6 standard error (SEM) of relative

quantity (RQ) of mRNA level variations vs. calibrator (fresh

monocytes).

Protein detection by ELISA
Production of IL-6 and chemokines, CXCL8 (IL-8) and CCL5

(RANTES), was measured on cell supernatants by ELISA (R&D

Systems Minneapolis, MN), according to manufacturer’s instruc-

tions. Each sample was assayed in duplicate.

Statistical analysis
The qRT-PCR and ELISA results are expressed as mean values

6 SEM. Differences between groups were analyzed using

ANOVA and Fisher’s test. A P value,.05 was considered

statistically significant.

Ethics statement
No ethical approval or informed consent is required by the

Italian law for discarded blood products. In any case, the use of the

blood samples from normal donors for the study of monocyte

activation and polarization was included in a collaborative study

with Prof. Paola Migliorini on monocyte activation in normal and

autoimmune subjects, which was approved by the Ethical

Committee of the University of Pisa S. Chiara Hospital (prot.

AOUP 33998 of September 29, 2006), and which is still ongoing.

All samples of human blood included in this study were from

anonymous donors and all were donated by Prof. Migliorini.

Results

The in vitro monocyte-based model of inflammation
Blood monocytes from 12 individual healthy donors were

exposed to a sequence of culture conditions mimicking the

evolving microenvironment during an inflammatory reaction

(Figure 1). Monocytes were initially exposed to CCL2 at 37uC,

to represent recruitment to the site of inflammation, then to LPS

and, sequentially, to TNF-a and IFN-c at 39uC, to mimic the

encounter with infectious agents and the inflammatory microen-

vironment (tissue reaction and influx of Th1 cells). At 14 h, culture

conditions were changed (37uC and medium containing IL-10 first

and subsequently TGF-b) to reproduce activation of anti-

inflammatory mechanisms and macrophage deactivation during

resolution.

Distinct gene signatures are identified during the
inflammatory response

Transcriptomic analysis was performed on monocytes from

each individual donor at five different stages of activation in

comparison to control fresh monocytes (time 0): early inflamma-

tion (2–4 h), late inflammation (14 h) (both corresponding to M1

polarization); early and late resolution (24 and 48 h) (different

stages of M2c polarization).

Genes showing statistically significant expression changes over

time were identified by using the microarray Significant Profiles

Figure 2. Differential gene expression during the inflammation
phases. Heat-map showing the fold-expression levels of the genes that
were identified by maSigPro as coherently downregulated (green) or
upregulated (red) within the experimental set of 60 samples. Genes are
organised into five major functional groups characterising the different
phases of inflammation in this experimental setting: Inflammation (392),
Early Anti-Inflammation and Anti-Inflammation (1871), Inflammation
Driven Differentiation (457), Positive Differentiation (214) and Negative
Differentiation (1061).
doi:10.1371/journal.pone.0087680.g002
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method (maSigPro R package) with parameters specified in (Figure

S2). Results revealed profound changes in gene expression during

the different phases of the inflammatory reaction, and the

concomitant monocyte-to-macrophage differentiation. A total of

3995 genes (21.18% of the 18862 genes examined) resulted

differentially expressed during the course of inflammation at a

95% confidence level (false discovery rate (FDR)#0.05). Using k-

means clustering method and maSigPro default parameters,

significant genes were grouped in nine clusters showing distinct

expression profiles during the inflammatory reaction (Figure S1).

The nine clusters were merged into five major functional groups

characterising the different phases of inflammation (Figure 2). The

Inflammation functional group, encompassing clusters 1 and 2, is

associated with the modulation of 392 transcripts. Of these, 218

are transiently upregulated during the first four hours of the

inflammatory process, while 174 remain highly expressed during

Table 1. Most representative gene sets associated with the Inflammation, Early Anti-Inflammation and Anti-Inflammation
functional groups.

Functional groups FDR q-val

Inflammation

BIOCARTA_NFKB_PATHWAY 0.003

BIOCARTA_IL-1R 0.010

BIOCARTA_IL-10_PATHWAY 0.013

BIOCARTA_INFLAM_PATHWAY 0.021

BIOCARTA_CD40_PATHWAY 0.033

BIOCARTA_CYTOKINE_PATHWAY 0.044

KEGG_MAPK_SIGNLING 0.000

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_SIGNALING 0.000

KEGG_NOD_LIKE_RECEPTOR_SIGNALING 0.000

KEGG_ECM_RECEPTOR_INTERACTION 0.001

KEGG_CELL_ADHESION_MOLECULES_CAMS 0.005

KEGG_PATHWAY_IN_CANCER 0.008

KEGG_JAK_STAT_SIGNALING 0.011

KEGG_NOTCH_SIGNALING 0.015

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING 0.037

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 0.000

REACTOME_GPCR_LIGAND_BINDING 0.000

Early Anti- and Anti-Inflammation

KEGG_OXIDATIVE_PHOSPHORYLATION 0.000

KEGG_RNA_DEGRADATION 0.001

KEGG_FATTY_ACID_METABOLISM 0.014

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0.000

REACTOME_ELECTRON_TRANSPORT_CHAIN 0.000

REACTOME_INTEGRATION OF ENERGY METABOLISM 0.000

REACTOME_METABOLISM_OF_CARBOHYDRATES 0.000

REACTOME_PYRUVATE_METABOLISM_AND_TCA_CYCLE 0.000

REACTOME_METABOLISM_OF_PROTEIN 0.000

REACTOME_DIABETES_PATHWAYS 0.000

REACTOME_METABOLISM_OF_RNA 0.003

REACTOME_FORMATION_AND_MATURATION_OF_MRNA_TRANSCRIPTS 0.004

REACTOME_MRNA_SPLICING 0.009

REACTOME_METABOLISM_OF_MRNA 0.011

REACTOME_GENE_EXPRESSION 0.016

REACTOME_MICRORNA_BIOGENESIS 0.040

REACTOME_CELL_CYCLE_MITOTIC 0.000

REACTOME_G1_S_TRANSITION 0.000

REACTOME_G2_M_CHECKPOINTS 0.031

KEGG, Biocarta, and Reactome gene sets have been obtained from the C2: curated gene sets collection of the Molecular Signatures Database. Gene sets were defined as
significantly enriched if FDR,0.05 when using Pearson as metric and 1,000 permutations of gene sets. The complete list of the Gene sets identified by GSEA is available
with the authors.
doi:10.1371/journal.pone.0087680.t001
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the late inflammation phase, and all decrease during the resolution

phase. The Early Anti-Inflammation/Anti-Inflammation group, corre-

sponding to clusters 3–5, contains 1871 genes, and includes genes

that are downregulated in M1 polarised cells. Their median

expression levels rapidly decrease upon stimulation with LPS/

TNF-a, to eventually return to basal level in the resolution phase.

Expression of the 457 genes in the Inflammation Driven Differentiation

group (corresponding to cluster 6) rapidly increases upon

inflammatory stimulation and remains elevated through the

subsequent phases of the reaction. The Positive Differentiation group

(cluster 7) includes 214 genes downregulated in fresh monocytes

and during the early inflammation phases, but progressively

upregulated during time with a transcriptional peak during late

resolution. Conversely, the Negative Differentiation group (clusters 8

and 9) comprises a total of 1061 genes highly expressed in fresh

monocytes and in early inflammation, and reduced during the

subsequent phases. The list of all the 3995 differentially expressed

genes, grouped in the nine clusters, is reported in the Table S3.

Pathway analysis reveals relationship between activation
and differentiation

Gene groups were subjected to GSEA for statistical associations

between expression profiles of distinct groups and other gene

signatures characteristic of various pathways or cellular processes

described in KEGG, Biocarta and Reactome databases. We

identified a total of 155, 358, 55, 149, and 66 pathways strongly

associated with the expression profile of the five functional groups.

The most representative gene sets associated with Inflammation,

Early Anti-Inflammation and Anti-Inflammation are listed in Table 1.

Figure 3. Differentially expressed genes in M1 and M2 macrophages vs. monocytes. Heat-maps representing the fold-expression levels of
gene lists identified by SAM as statistically downregulated (green) or upregulated (red) in M1 and M2 samples compared to fresh unstimulated
monocytes. The lists excluded genes that are modulated in both M1 and M2 vs. monocytes. (A) Fold-expression levels in monocytes and M1
macrophages of the meta-database for the 98 genes associated to monocyte-to-M1 differentiation. (B) Fold-expression levels in monocytes and M2
macrophages of the meta-database for the 107 genes associated to monocyte-to-M2 differentiation. (C) Fold-expression levels of the 98 monocyte-
to-M1 genes assessed in the 60 samples of our in vitro model of inflammation. (D) Fold-expression levels of the 107 monocyte-to-M2 genes assessed
in the 60 samples of our in vitro model of inflammation.
doi:10.1371/journal.pone.0087680.g003
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The majority of gene sets associated to Inflammation are pathways

involved in classical inflammatory activation, and were not found

associated to other groups (except Inflammation Driven Differentiation).

The Early Anti-Inflammation and Anti-Inflammation clusters are

enriched in pathways associated to metabolism and regulation of

gene expression. The Inflammation Driven Differentiation group is

associated to signalling cascades common to both inflammatory

and anti-inflammatory phases, while pathways enriched in the

Positive Differentiation and Negative Differentiation groups are similar to

those found in the anti-inflammatory phase.

The M1 inflammatory signature develops into M2 during
resolution

To assess the transition from M1 to M2 polarization, we merged

24 publicly available human microarray studies into a meta-

dataset using A-MADMAN, and extracted gene expression data

for 62 fresh monocyte samples, 46 M1 (treated with LPS/TNF-a
or IFN-c) and 20 M2 samples (M2c; treated with glucocorticoids,

IL-10 or TGF-b). Gene expression signals of the meta-dataset

were generated using the Virtual-chip approach that integrates raw

expression data obtained from different Affymetrix arrays. The

meta-dataset was analyzed with the SAM algorithm, to identify a

list of genes differentially expressed in unstimulated monocytes,

M1 and M2 macrophages.

The statistical comparison returned that monocyte-to-M1

differentiation is associated with modulation of 98 genes, of which

85% are highly expressed in M1 and 15% in monocytes

(Figure 3A, Table S4), while monocyte-to-M2 differentiation

resulted in the modulation of 107 genes, 62% highly expressed in

M2 and 38% in monocytes (Figure 3B, Table S5). Transcripts that

are upregulated in M1 cells vs. monocytes included cytokines and

chemokines, while those upregulated in M2 cells included enzymes

and extracellular mediators. The two signatures of M1 and M2

polarization were used to cluster samples of our in vitro model of

inflammation. As shown in the Figure 3C, fresh monocytes showed

a gene expression profile fully overlapping with that of

unstimulated monocytes in the meta-database, then they presented

a M1-like expression profile during the inflammatory phases, to

return to a monocyte-like profile in the resolution phase. When

considering the gene set that discriminates monocytes from M2

cells, fresh monocytes showed the same profile as the untreated

monocytes of the meta-database, and this profile gradually

changed during the progression of inflammation, to become

similar to that of M2 macrophages at the end of resolution phase

(Figure 3D).

When comparing the list of genes differentially expressed during

the inflammation process (Figure 2) with the list of genes

differentially expressed in monocytes vs. M1 (Figure 3A), a large

number of genes expressed in M1 cells (34%) belong to the

Inflammation group. Conversely, 21% of genes expressed in M2

cells belong to the Positive Differentiation group and are expressed

only during the resolution phase. In the monocytes vs. M1

comparison, a large part of genes expressed in fresh monocytes

belongs to the Anti-Inflammation group (26%), while in the

monocytes vs. M2 comparison 51% of genes expressed in

monocytes are in the Negative Differentiation group. Among genes

common to both M1 and M2 polarization, several belong to the

Inflammation Driven Differentiation group (14% and 20%, respective-

ly). Table 2 shows some representative genes identified in these

comparisons.

qRT-PCR and ELISA validation
A subset of ten genes was assessed by qRT-PCR, employing the

same RNA samples used to perform microarray experiments, five

transcription factors chosen as markers of monocyte differentia-

tion, and five inflammation-related factors as markers of monocyte

activation, selected within each functional group of Figure 2. The

qPCR results confirmed the expression patterns observed by

microarray analysis (Figure 4). Genes belonging to the Inflammation

group (PPARG, IL6, TNFA) were upregulated during the early

phase, while IL7R was over-expressed during the late phase of

inflammation. CD163 (Early Anti-Inflammation) was highly upregu-

lated at the beginning of resolution, possibly induced by IL-10,

while the transcription factor CEBPA (Anti-Inflammation) was

overexpressed during late resolution, possibly induced by TGF-

b. Expression of PPARD (Inflammation Driven Differentiation) increased

during late inflammation and remained elevated, while MAFB and

MMP9 genes (Positive Differentiation) were upregulated during

resolution. Finally, expression of KLF4 (Negative Differentiation) was

high in fresh monocytes and decreased thereafter.

Production and secretion of the inflammatory cytokine IL-6 and

of the M1 polarization-associated chemokines CXCL8 (IL-8) and

CCL5 (RANTES) were evaluated in terms of rate of production

and resulted abundantly produced during the inflammatory phase,

to be turned off during resolution (Figure 5). Production of CCL5

was already significant after stimulation with CCL2 only, in

Table 2. Correlation between M1/M2 polarization and functional groups.

Gene Symbol Functional Groups

Genes upregulated in M1 polarization

IL12B, PTX3, CCL4, IL1RN, TNF, IL6, CCL20, IL1A, ICAM1, NFKB1, TRAF1, SERPINB9, IL1F9, MAFF Inflammation

CXCL1, DRAM, TNIP3, CCL2, SLAMF7, CCR7, TNFAIP6 Inflammation Driven Differentiation

Genes downregulated in M1 polarization

P2RY5, FGL2, CD1D Anti-Inflammation

Genes upregulated in M2 polarization

TREM2, A2M, NUPR1, C1QA, MS4A4A, APOE, APOC1, ADORA3 Positive Differentiation

ADAMDEC1, CD59, TFPI, CCL3 Inflammation Driven Differentiation

Genes downregulated in M2 polarization

FCER1A, LGALS2, PF4, CD69, CD93, NR4A2, VCAN, CD62L, ICAM3, NLRP3, ERG1 Negative Differentiation

Association of gees that are up- or downregulated in M1 and M2 cells polarisation (Figure 3A and B) with the functional groups defined from the analysis of the in vitro
model of inflammation (Figure 2).
doi:10.1371/journal.pone.0087680.t002
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Figure 4. Gene expression validation by qPCR. Fold-expression levels determined by qPCR for the 10 genes selected in the Inflammation
(PPARG, IL6, TNFA, IL7R), Early Anti-Inflammation (CD163), Anti-Inflammation (CEBPA), Inflammation Driven Differentiation (PPARD), Positive
Differentiation (MMP9 and MAFB), and Negative Differentiation (KLF4) groups. The mean expression values 6 SEM from six different donors are
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agreement with previous findings that CCL2 can induce

chemokine production in monocytes [31].

Discussion

In this study, we set up an in vitro model of inflammation based

on human primary monocytes with the aim of describing the

kinetics of the inflammatory reaction, from initiation and

development until eventual resolution. The use of normal human

cells allowed us to study the mechanisms of inflammation in a

system that readily translates to human responsiveness in vivo, as

opposed to mouse models [32,33] or transformed cell systems

[34,35]. Transcriptomic profiling was performed on monocytes

from 12 healthy donors, selected over a large age range (19–56

years), including both females and males, and encompassing

individuals of three different ethnic groups. This heterogeneity is

expected to capture, at least partially, the human variability.

Despite such heterogeneity, the gene expression profiles of the

donors appeared to be very reproducible, both in fresh monocytes

and in response to all the stimulation conditions at the different

time points, suggesting that the monocyte response is highly

reliable and robust. It should be said that additional experiments

(where expression of a limited number of gene was performed by

real-time PCR) have brought the number of donors to over 60,

and we never observed significant discrepancies in the monocyte

type and kinetics of response (Italiani et al., unpublished). Also, the

use of viral stimuli instead of LPS, besides triggering a virus-

specific signature, did essentially bring about a response that

largely overlapped that described in this study (Boraschi et al.,

unpublished).

The in vitro model of inflammation presented here aims at

representing, in a simplified fashion, the course of an inflammatory

reaction in a tissue, limited to the role of newly recruited

inflammatory blood monocytes. In fact, the simplified model does

not include resident tissue macrophages, highly differentiated cells

with a clear M2 bias, that are the cells initiating inflammation and

responsible for the recruitment of blood monocytes, nor other cell

types. Also, the role of extracellular matrix components and of the

tissue architecture is not considered in this model. Although there

is some evidence that EMC do not affect macrophages polariza-

tion [36], it is likely that the structure of the tissue environment has

a role in determining the response outcome. More complex

models, to reproduce the inflammatory response of both

infiltrating monocytes and resident macrophages in specific tissues,

are underway in our lab. Taking in consideration the limitations of

the present model, its advantages are its simplicity and robustness

(with responses that are the same in different donors and in

different stimulation conditions), its accurate kinetic description of

monocyte inflammatory reaction and the passage from monocytes

to M1 and then to M2, and its higher validity in describing human

inflammation, as opposed to the use of transformed cell lines or

animal cells.

Many genes were differentially expressed throughout the

inflammatory reaction and the concomitant monocyte-to-macro-

phage differentiation. Homogeneity of gene expression profiles

among different donors underlines the robustness of the model.

Supervised hierarchical clustering allowed defining five major

functional groups of modulated genes. The Inflammation cluster,

corresponding to monocyte-to-M1 differentiation, includes genes

encoding classical inflammatory effectors, such as inflammatory

cytokines (IL1B, IL6, TNFA, IL12B), chemokines (CXCL8, CCL5,

CCL20), soluble innate mediators (PTX3, EDN1, APOL2), and

enzymes (PTGS2, PLA1A). Early Anti-Inflammation and Anti-Inflam-

mation include genes downregulated in M1 polarised cells, i.e.,

genes encoding transcriptional factor such as CCAAT/enhancer

binding protein alpha (CEBPA), innate receptors (TLR5, TLR7,

TLR8), purinergic receptors (P2RX7), FcR (FCER1A, FCRLB), and

metallothionein genes (MT1G, MT4, MT1E, MT1M, MT1F,

MT1X), involved in modulation of inflammation, control of the

oxidative stress, cell proliferation [37], and strongly upregulated in

endotoxin tolerance [38]. The decreased expression of inflamma-

tory receptor genes may be related to loss of responsiveness

following activation (similar to tolerance), which is restored at the

end of inflammatory process when inflammatory monocytes have

become tissue-regulating macrophages ready to respond to a new

danger signal.

Inflammation Driven Differentiation encompasses genes whose

expression rapidly increased at the onset of inflammation and

remained upregulated throughout. These genes may be needed

both for the inflammatory response and for monocyte differenti-

ation into tissue-repairing macrophages. Indeed, this cluster

includes inflammatory genes and M1 polarization markers

(IL7R, CCR7, CCL19, CXCL11), and several genes highly expressed

in M2c polarization (IL10, CCL24, CCL22). Positive and Negative

Differentiation include genes important for monocyte-to-macro-

phage differentiation, such as transcription factors (MAFB, KLF4,

PPARG), c-type lectins (CLEC3B, CLEC7A, CLEC10A, CLEC11A),

adhesion (SELL, ICAM3, AMICA1) and signalling molecules (MAP

kinases), and extracellular mediators (C1Q, APOE). These genes

may define the differentiation of monocytes to macrophages

independently of the concurring inflammatory reaction. Indeed,

monocytes used in these experiments are a heterogeneous

population as present in the blood and could therefore include

both ‘‘inflammatory’’ monocytes differentiating into effector cells

in the tissue, and ‘‘homeostatic’’ monocytes replenishing the pool

of tissue macrophages in physiological conditions [6,39].

The majority of pathways identified in the Inflammation cluster

are involved in innate immune activation and type I inflammation

(NFkB, MAPK and JAK-STAT signalling, NLR and TLR

signalling, cytokine/chemokine receptor interaction, IL-1R path-

way), while the Early Anti-Inflammation and Anti-Inflammation clusters

are enriched in pathways associated to lipid, protein, and

carbohydrate metabolism, regulation of gene expression (RNA

splicing and miRNA biogenesis), and cell cycle. The same

pathways were found in the Positive Differentiation cluster. The

modulation of genes involved in cellular metabolic activities is a

prominent feature of M2 macrophage polarization/differentiation

[40–42], and during the resolution and repair phases, when major

rearrangements of cellular functions are required for shifting from

inflammation to anti-inflammation and tissue repair. The enrich-

ment in pathways associated with cell cycle agrees with previous

observations [43], and underlines the importance of proliferation

in M2-polarised macrophages [44], although its in vivo relevance is

still debated. By comparing the genes differentially expressed

between monocytes vs. M1 and vs. M2, it is evident that monocytes

in our model show an M1 signature in the inflammatory phase and

an M2 profile during resolution. Most genes expressed in M1

belong to the Inflammation cluster, while those in M2 belong to

Positive Differentiation, and several genes related to both M1 and M2

polarization belong to Inflammation Driven Differentiation. That this

reported. Statistical significance was calculated with ANOVA followed by Fisher’s test for significant differences between two consecutive
experimental time points. * P,.05; ** P,.001; *** P,.0001.
doi:10.1371/journal.pone.0087680.g004
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latter cluster is related to both activation programs suggests that

inflammation is a process strictly connected to macrophage

differentiation. Thus, that the genes involved in inflammatory

activation belong to the same biological pathways involved in

cellular processes of monocyte-to-macrophage differentiation

establishes a transcriptional connection between monocyte acti-

vation and differentiation, inflammation and metabolism. There-

fore, resolution of inflammation is strictly connected to macro-

phage differentiation in the tissue.

These observations suggest that monocytes entering an inflam-

matory environment first polarise into M1, and then switch to M2

upon microenvironmental changes. The fact that the same

monocyte population goes through all the phases of the

inflammatory process by adapting its phenotype and function to

the evolution of microenvironmental conditions was already

suggested by studies in mouse models [11–13], but never

previously shown for human cells.

The shift from M1 to M2 was confirmed by assessing

quantitative gene expression and protein production for a series

of cytokines, markers and transcriptional factors involved in both

monocyte differentation and macrophage polarization. Our data

confirmed that expression of MAFB, a myeloid differentiation

marker, correlates with expression of its target genes CD163 and

MMP9 [45], which increase during the resolution phase.

Expression of PPARG and PPARD increased during the inflam-

mation phases (PPARD maintaining high expression also during

resolution), confirming their role in inflammation [46], and in

control of monocyte-to-macrophage differentiation [47], respec-

tively. KLF4 and CEBPA, critical regulators of monocyte differen-

tiation, showed an opposite expression profile, the former being

significantly downregulated throughout, while the latter was

strongly upregulated during late resolution. The observed PPARG

and KLF4 expression profiles do not agree with the reported

observation that these factors are linked to M2 polarization [48].

However, previous studies addressed M2a polarization (type II

inflammation), at variance with our model exclusively focused on

M2c polarization (deactivation), which is functionally very

different. Thus, while transcriptional factors may variously

contribute to macrophage polarization, downregulation of PPARG

and KLF4 in parallel to upregulation of MAFB seem to be critical

for monocyte to M2c differentiation.

Overall, this study shows that an in vitro system based on

primary human cells can allow us to describe the kinetic

development of cell reactivity and its modulation during the

entire course of the inflammatory response in a robust and reliable

fashion. The use of such human primary cell-based models are

bound to provide information readily transferrable to human

reactivity in vivo, and to identify regulatory pathways associated

with physiological response or with persistent and pathological

inflammation.

Supporting Information

Figure S1 Data visualization by cluster analysis. Nine

separated clusters are shown. Solid red lines have been drawn

joining the average value of gene expression at each time point for

each donor (dots). In the text the clusters are reported as follows: 1

and 2 as Inflammation (218 and 174 genes, respectively), 3 as Early

Anti-Inflammation (850 genes), 4 and 5 as Anti-Inflammation (445 and

576 genes respectively), 6 as Inflammation Driven Differentiation (457

Figure 5. Rate of cytokine and chemokine production in the
course of in vitro inflammation. Production of inflammatory
chemokines CXCL8 (IL-8) and CCL5 (RANTES), and of the cytokine IL-6
during the in vitro inflammatory reaction. Production of soluble proteins
released in the supernatant is reported in terms of rate of production,
i.e., the amount of protein produced per one million cells per hour. The
mean values 6 SEM of three different donors are reported. Statistical

significance was calculated with ANOVA followed by Fisher’s test for
significant differences between two consecutive experimental time-
points. * P,.05; ** P,.001; *** P,.0001.
doi:10.1371/journal.pone.0087680.g005
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genes), 7 as Positive Differentiation (214 genes), 8 and 9 as Negative

Differentiation (680 and 381 genes, respectively).

(TIFF)

Table S1 Complete list of the datasets used in this study
and their sources. Genome-wide expression levels and meta-

information of 303 samples were organized in a proprietary

database using A-MADMAN.

(DOCX)

Table S2 Complete list of 128 samples labeled as
untreated monocytes and as M1 and M2 activated
monocytes and their sources.
(DOCX)

Table S3 Complete list of genes differentially expressed
during the course of the in vitro inflammatory reaction.
NA: not attributed

(XLS)

Table S4 Complete list of the genes differentially
expressed between untreated monocytes and M1 mac-
rophages, extracted from database.
(DOCX)

Table S5 Complete list of the genes differentially
expressed between untreated monocytes and M2 mac-
rophages, extracted from database.

(DOCX)
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