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ABSTRACT (MAX 250) 

In the last decades, mankind has become totally aware about the importance of food quality: 

nowadays authentication and traceability are words of general use. 

Food authentication verifies how much a food is in accordance with its label description and law 

and it could be considered a further guarantee for the quality and safety of a foodstuff. 

The traceability of food could be considered an essential element in ensuring safety and high quality 

of food. The synergistic use of instrumental analytical techniques and chemometrics represents a 

promising way to obtain trustworthy results in the development of authenticity and traceability 

models. This chapter deals with the potentialities of chemometrics tools in resolving some real 

issues related to food traceability and authenticity. Particular attention will be paid to the use of 

some exploratory, classification and discrimination techniques. 

In the first part of this chapter, a briefly description of European regulations (Authenticity and 

Traceability: the European Union point of view), and traceability and authenticity markers 

(Authenticity and Traceability: a scientific point of view) is reported. The second part is split into 

two sections: namely Food Authenticity and Food Traceability applications, where the main 

features and advantages of some chemometrics approaches are presented. 



 3 

Introduction 

We are what we eat and ….. we probably prefer to eat what we know…. 

In the last decades, mankind has become totally aware about the importance of food quality for 

different reasons [1]. According to ISO 9000:2005, quality is defined as the degree to which a set of 

inherent characteristics fulfils the requirements [2]. Broadly speaking, quality could be referred as 

the gap between how good food is and how better it could be. To consumer, quality might be 

considered the most important ingredient in food.  

Food authentication verifies how much a food is in accordance with its label description and law [3] 

and it could be considered a further guarantee for the quality and safety of a foodstuff.  In European 

Union, EU, the production and the commercialization of food are rightly protected and regulated by 

several rules [4-9] always according to quality and healthy criteria, as it is better explained in the 

following sessions. 

Unfortunately, the various food scares and inappropriate risk management practises, that occurred 

around the world, such as Minamata disease, wine adulteration with methanol, dioxin in meat, 

bovine spongiform encephalopathy, BSE, avian influenza, etc., have highlighted the need to have as 

clear as possible declared information about the used raw materials, origin and processing of food. 

In recent years, EU has focused its efforts to support legal regulations [4-9] with scientific studies 

aimed at developing markers and analytical techniques to assess the geographical origin of 

foodstuff [10]. The main EU goals are directed to assure an honest marketing competitiveness and 

augment consumers’ confidence by promoting and recognising the food bio-diversities and 

typicality through their well-established geographical origin. Moreover, it has also been stressed 

that highlighting the origin of food also represents an enhancement of the reputation of the product 

itself. 

Nowadays, the synergistic use of instrumental analytical techniques and chemometrics represents 

the best way to obtain trustworthy results in the development of authenticity and traceability models 

[11-26].  

Someone could ask: why chemometrics? Today, there are different reasons, which lead the 

researchers to use chemometrics. First of all, authenticity and traceability issues are multivariate; in 

fact, they cover many different aspects including the chemical and physical characterization, the 

adulteration, the discrimination, the control of production process and mislabelling.  
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In order to face these aspects, different analytical strategies, mainly based on instrumental 

techniques such as HPLC/MS, GLC/MS, UV-Vis, NMR, NIR, ICP/MS etc., are employed [11-27]. 

They yield to produce prodigious volumes of analytical data. Unfortunately, not always lot of data 

allows obtaining useful information. Thus, the versatility, flexibility and immediacy of 

chemometrics techniques may help in reducing the complexity of data. Generally, chemometrics 

tools help to extract useful information, which in turn, improves the interpretation and the 

presentation of the results. 

In the first part of this chapter, a briefly description of European regulations (Authenticity and 

Traceability: the European Union point of view), and traceability and authenticity markers 

(Authenticity and Traceability: a scientific point of view) is reported. The second part is split into 

two sections: namely Food Traceability and Food Authenticity applications, where the main 

features and advantages of some chemometrics approaches are presented. 

This chapter deals with the potentialities of chemometrics tools in resolving some real problems 

related to food traceability and authenticity. Since each chemometrics technique is widely explained 

in the previous chapters of the present book, only the application aspects are discussed in the 

present treatise. Particular attention will be paid only to the use of some exploratory, classification 

and discrimination techniques. Moreover, all instrumental details are outside the aim of this chapter 

and will not be presented here.  



 5 

Authenticity and Traceability: the European Union point of view 

Quality has been used, over the past years, mainly to describe subjective attributes such as beauty, 

goodness, expensiveness, freshness etc. Probably, the first quality guru was Joseph M. Juran that 

published his first quality-related article in 1935 [28]. In the manuscript, the author defined the 

“quality” as the "meeting or exceeding customer expectations." Some years later, quality was 

defined, according to ISO 9000:2000 [2]. The European Union has introduced many regulations to 

guarantee and protect the quality of the foodstuffs [EC 2081/1992, EC 2082/1992, EC 510/2006, 

EC 1898/2006, EC 628/2008, EC 178/2002]. The EU aim is not to limit innovation or to 

homogenize food products available on the European market but mainly to: (i) set fundamental 

norms of safety both on communitarian and international contexts; (ii) develop and implement 

quality excellence and, at the same time (iii) guarantee an high degree of food safety maintaining 

the peculiarities, tradition, of each food production.  

One of the first European Union Protected Schemes came into force in 1992 (EC No 2081/92, 

1992) and laid down a labelling system for the protection of food names on a geographical basis. In 

particular, the Protected Designation of Origin (PDO) and the Protected Geographical Indication 

(PGI) were introduced as quality markers in order to mainly protect traditional food. According to 

PDO denomination a product must be obtained, processed and prepared in a defined geographical 

area. It means that the quality or characteristics of the product are essentially linked to that area and 

to the skilfulness of producers (savoir faire). As per PGI, a food must be produced, processed or 

prepared in a geographical area. Thus, the characteristics, quality or reputation of food are 

attributable to that area. Afterwards, the Regulation EC 2082/1993 introduced two new brands 

(Traditional Speciality Guaranteed, TSG and Certificate of Specific Character, CSC) for specific 

character of agricultural products with the aim to protect the traditional recipes.  

The efforts of the European Union in the safety and quality context can also be seen in the 

publication of many reports such as From the farm to the fork [29] and in the adoption of the White 

paper on the food safety [30] or the Green paper [31]. In this case, the Commission sets out the 

general principles on which European food safety policy should be based with the aim to achieve 

the highest possible level of health protection for the consumers.  

However, a further assurance of quality and safety of food is also linked to its geographical origin. 

Aware of this fact, with EC 178/2002, the EU introduced the concept of traceability in the food 

chain and instituted the European Food Safety Authority, EFSA.  
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According to EC 178/2002, traceability is the ability to trace and follow the history of food by 

means of recorded objective identification procedures, starting from every level of the agro-food 

chain. The traceability of food along the food production is an essential element in ensuring safety 

and high quality of food.  

Finally, the European Union continues to be always open with respect to these issues by also 

funding research projects on the topics of the geographical traceability and development of 

innovative analytical approaches for food authenticity within several European framework 

programs. 

 

Authenticity and Traceability: a scientific point of view 

The better way to assess the “quality” of food is eating it. Unfortunately, this is not always possible 

and the final response is subjective.  

In the last decades, the interest of different researchers towards the use of analytical methodologies 

supporting the authenticity and traceability of food is more and more increasing. In particular, 

chemometrics tools combined with different analytical techniques are widely used to verify the 

authenticity of food. In the past two decades, large number of contributions including numerous 

review articles and books dealing with quality and authenticity control have been published [11-26].  

Several analytical strategies relying on instrumental techniques have been employed to deal with 

authenticity purposes. Briefly, these methods can be categorized into two types depending on their 

operating principle [16,27], namely: (i) physical-chemical techniques, such as spectroscopy, 

spectrometry, chromatography, pyrolysis, electronic nose, etc. and (ii) molecular biological 

approaches, such as DNA based methods. A recent study [27] shows that among the analytical 

methods, employed for obtaining an elemental fingerprint of the investigated food matrix, 

inductively coupled plasma (ICP)-based techniques are widely used (63% of cases) followed by 

atomic spectrometry (30%) and instrumental neutron-activation analysis (5%). Furthermore, it has 

been shown that the determination of stable-isotope ratio furnished good results as discriminator 

descriptor for different foodstuffs. In this case, isotope-ratio mass spectrometry has been used in 

61% of cases followed by nuclear magnetic resonance (36%) and X-ray fluorescence spectrometry 

(3%) [27].  

Chromatographic and spectroscopic techniques are within the most important tools used in food 

authentication. In particular, gas chromatography (GLC) and liquid chromatography (LC) are 
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widely used for the determination of both polar and non-polar compounds (volatile compounds in 

the case of GLC and organic acids, amino acids, polyphenols, etc. for LC). Almost all the infrared 

spectroscopic techniques, Near Infrared Spectroscopy, NIR, and Mid-Infrared Spectroscopy, MIR, 

are cheap, rapid and non-destructive. All of them are frequently used in combination with 

chemometrics.  

DNA-based methods are also very important because the identification of species is often vital for 

scientific reasons as well as for mankind purposes, such as food allergy, cultural reasons or simply 

for personal preference [16].  

As far as the choice of a chemometrics technique to be used is concerned, it strongly depends on the 

aim of the investigation. In the authentication context, the most general applications [16-21] are: (i) 

characterisation of foodstuffs, (ii) discrimination or classification into one or several categories, (iii) 

monitoring and controlling of production processes  and (iv) identification of product adulteration, 

dilution and contamination. Wine is, by far, the food matrix for which chemometrics has been 

frequently called upon followed by cheese, olive oil, honey, meat, and so on [27].  

On the other hand, the problem of food authenticity is strictly tied with the production chain 

traceability or, in the more complex case, with the geographical traceability of the product and/or its 

raw material. Unfortunately, tracing and/or tracking procedures, although they monitor the mass 

flow of incoming and outgoing materials, are often limited since they are not referred to objective 

data but mostly based on ‘declarations’ only supported by paper documents. Hence, it is of utmost 

importance and relevance to develop analytical tools able to ‘certify’ the provenience of food in 

order to accomplish food control and quality valorisation.  

As regards the development of a geographical traceability models, it is worth to note that their 

robustness is also strictly related to the reality in which the food lies. In fact, typical products, with 

protection indication labels and characteristic of extensive geographical areas, require models 

developed on 'large scale', which take into account analytical parameters (indicators) and a 

systematic knowledge of the investigated foodstuffs as well as of their territory of origin (mapping). 

Food, for which the disciplinary regulations involve "more restricted" areas and/or productions 

linked to the brand of the producers, requires the development of more detailed traceability models 

characterised by a less uncertainty level of the investigated indicators. In both the cases, the use of 

chemometrics techniques results imperative.  

Generally speaking, the used analytical parameters, namely traceability indicators, can be 

distinguished into primary or direct and secondary or in-direct [11]. Primary indicators, i.e. 
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elemental composition, radiogenic isotope ratio and stable isotope ratio can be directly linked to the 

same determinations in soil samples or referred to particular geographical area. On the other hand, 

secondary indicators i.e. variables related to food composition/making procedure, can be regarded 

as foodstuff fingerprint. These variables may allow discrimination from food products of different 

geographic origin but cannot be directly linked to the production zone.  

Actually in traceability studies, there are mainly three different analytical approaches that are 

adopted in order to link the food commodities to the territory of provenance. In the first one, 

measurements of traceability indicators are carried out on a representative number of food samples 

and a possible relationship with their geographical origin is found by using multivariate models. 

These models are based on the existence of a calibration set, “training samples”, where the 

geographical origin and the authenticity is somehow guaranteed, while geographical, geological, 

and climatic reference information are taken from paper documentations [20, 32-35]. In the second 

approach, the primary indicators are directly measured both on the investigated food as well as in 

some reference samples of their soils of origin [36-38]. In this case, no-systematic 

selection/sampling of investigated soils is used. In the third approach, a representative soil sampling 

is considered as well taking into account climate, geographical and geological features referred to 

extended macro-areas (i.e. 100÷200 km2) [10]. The choice of one approach over another mainly 

depends on the aims of the research and on the posed question too. In any case, it is of utmost 

importance to build models that take into account the cause / effect relationship between the 

monitored variables. 

Therefore, in the majority of the cases, robust models can be produced by the aid of chemometrics 

tools that operate, in a dynamic bidirectional process, with the instrumental analytical techniques. 

Far away from typing the word end to this argument, in the present chapter some applicative 

examples are presented and discussed. 
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Food Traceability applications  

 

Chemometrics approaches for soil sampling planning in traceability studies 

 

Introduction 

A suitable planning of sampling is the first and always crucial issue in scientific investigations. In 

particular, when dealing with development of geographical traceability models for PDO (Protected 

Designation of Origin) food, representativeness of sampling is certainly an imperative in order to 

obtain robust models and establish a food-territory link. 

Before starting any sampling, several parameters should be set, i.e. the number of samples, the 

sampling sites, the frequency of sampling, the procedures and so on, always according to the aim of 

the study. For instance, when the goal is to relate food to soil, it is of utmost importance to obtain an 

a priori knowledge about the different geological features of the territory, since some direct 

traceability indicators, such as radiogenic isotope signature and trace element composition, are also 

influenced by the soil characteristics. Furthermore, the productivity related to the investigated area 

should be considered as well, in order to correctly weight the sampling. In other words, combined 

use of productivity and geological information should give a clear and complete description of 

investigated area, important for obtaining trustworthy results. Unfortunately, the involved variables 

are very often numerous and characterized by different nature. Thus, it emerges the need to use 

analytical tools able to simultaneously take into account all of them for achieving a correct 

sampling. 

As far as soils sampling is concerned, conventional strategies suggest a scheme, regular and circular 

grids, systematic and non-systematic patterns, unaligned random sampling [39] etc., for collecting 

samples usually within limited areas. Other approaches, mainly based on multivariate techniques, 

are able to consider different characteristics of investigated area, such as production area, density 

and so on  [40,41]. 

In this work, multivariate characterization of soils, i.e. principal component analysis (PCA) for the 

evaluation of the soils characterization data (geological features, winegrowing coverage, grape 

varieties and yearly productions), and experimental design (onion design) applied on the resulting 

PCA latent variables, were synergistic used. In particular, a sub-set of representative soil samples 

was selected for setting up traceability models of two PDO oenological products coming from 

Modena district, namely Lambrusco wines and Aceto Balsamico Tradizionale di Modena (ABTM). 
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Their stringent production regulations [42, 43] allow the grape cultivation and the productive steps 

only within the district, whose area is estimated in 2700 km2, of which 90 km2 are grape-cultivated. 

In this case, the investigated area is quite extended and cannot be considered geologically 

homogeneous. Furthermore, a punctual sampling and examination is not feasible, considering the 

total number of samples to be analyzed. 

Finally, a reduced sub-set of sites was considered to investigate variability of chemical features of 

soils sampled among different farms, within the same farm and as function of sampling depth. The 

aim is to establish the proper number of samples to be collected for each farm and the depths to 

investigate. This goal was achieved by the combined use of X-ray powder diffraction technique, 

which produces a fingerprint related to the composition and morphological structure of the soil, and 

chemometrics [26]. 

 

Selection of representative soil samples 

The representative sampling sites were chosen among all farms (around 4600) enrolled in Wine-

Vine Register of the Modena district. Information about the total extension of the farms, their 

relative area in each municipality and all the cultivated grape varieties was considered. In particular, 

the productivity-related variables were firstly used to obtain an a priori screening of the farms. The 

farms with none of the grape varieties listed in the production regulations of ABTM or Lambrusco 

wines are discarded. The four widest producers for each municipality and the others differing at 

least for one grape variety were always taken into account.  

The application of these criteria led to the identification of 705 farms, 466 located in the alluvial 

plane zone (A) and 239 in the Apennines margin (B). 

Afterwards, the spatial coordinates X and Y (referred to a UTM ED 1950 system) and geo-

morphological, pedological and lithological data were considered and codified in order to be used 

for the sampling sites selection, as extensively described in previous studies [44] and summarised in 

Table 1. 

 

PLEASE, INSERT HERE TABLE 1 

 

The data was arranged in two different bi-dimensional matrices of 466x45 and 239x44 (soils x 

variables) dimensions, for samples belonging to area A and B respectively, since the information 

obtained for the two areas was different.  
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Given the multivariate nature of the investigated system, Principal Component Analysis (PCA) was 

applied to each autoscaled matrix and suitable models were chosen taking into account the 

explained variance (R2), the eigenvalues as well as the information held in the loadings. 

Eleven and seven principal components (PCs) were used for building models for A (49.82% of total 

data variance) and B ( 45.51% of total data variance) matrices, respectively. 

The obtained score values were used for the selection of samples by means of experimental design 

techniques, in order to achieve the maximum coverage and uniformity. In particular, a linear D-

optimal Onion design [45] was chosen since the experimental domain is quite extended and not-

regular. Moreover, the design, splitting the initial space into a number of concentric subsets ('shells' 

or 'layers'), allows to optimise the space division (using G-efficiency criterion) and the sampling 

selection (by means of linear D-optimal model). The G-efficiency criterion [46] compares the 

performance of D-optimal designs with different number of design runs, where each design has 

been computed according to D-optimality (maximization of the determinant of the information 

matrix referring to the candidate set). 

Seventy and thirty producer fields (from which soils will be sampled) were set as initial request for 

A and B matrices, respectively; a linear model was fit and the G-efficiency criterion was used to 

select the best samples set.  

A 5- and 3- layers onion designs were performed for A and B matrices, respectively and a careful 

layer filling was planned in order to achieve the best coverage of the space.  

Since the samples located further from the centre of the PC space could be considered more peculiar 

with respect to the others, it was decided to choose as much samples as possible for the outer layers, 

taking into account the G-efficiency as well. Figure 1 reports the proposed number of samples for 

each layer, the corresponding G-efficiency and the final number of samples selected used for filling 

layer samples, for A and B matrices, respectively. 

 

PLEASE, INSERT HERE FIGURE 1 

 

The selected sampling sites are highlighted within the score plots of the first three PCs for A and B 

areas in Figure 2 and Figure 3, respectively. 

 

PLEASE, INSERT HERE FIGURE 2 

 

PLEASE, INSERT HERE FIGURE 3 
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Finally, all the selected fields were reported on pedological map of Modena district, using their X 

and Y coordinates and they resulted to be uniformly distributed for both the in-plane and hill 

regions (figure not reported). 

 

Evaluation of soils variability  

To evaluate the soils variability and establish the suitable sampling conditions, the attention was 

focused on four farms representative of the Modena district; three of these (A, B and D) are located 

in the in-plain region, while the other one (C) in the hill area. Three sampling sites for A and D and 

five for B and C were chosen and soil samples were collected at five different depths, starting from 

10 cm up to 60 cm (a = 10-20 cm, b = 20-30 cm, c = 30-40 cm, d = 40-50 cm, e = 50-60 cm), giving 

a total number of 80 samples (16 sampling points x 5 depths). 

All the samples were analysed by means of X-ray diffraction (XRD) of powder and the collected 

diffractograms consist of 5200 data point covering the region from 5° to 92° 2θ. 

Due to the complexity of the signals, some preprocessing treatments were needed before data 

analysis. 

At first, an in house routine, based on the wavelet transform [47,48] and developed in Matlab, was 

used to reduce noise and correct baseline trend. In fact, instrumental noise can be considered as a 

high frequency contribution while the background as a low frequency one. Thus, each signal was 

decomposed by using the discrete wavelet transform (DWT) at decomposition level ten with a 

daubechies 5 wavelet filter. The approximation coefficients of the 10th level were set to zero, since 

they account for baseline trend; whilst a thresholding of detail coefficients for all the levels was 

applied using a global threshold value obtained by a wavelet coefficients selection rule (Birgé-

Massart penalization method [49]) on the basis of the standard deviation of first decomposition 

level detail coefficients [50]. Then, the XRD spectra were reconstructed applying inverse wavelet 

transform (IDWT). 

Moreover, alignment of the signals resulted necessary to avoid discrimination between samples not 

imputable to real differences. In fact, shifts of the peaks were also noticed in replicated signals of 

the same samples and could be due to the not perfectly reproducible handmade loading of sample 

into the measuring cell and to the instrumental drift. 

The alignment procedure was performed using the icoshift algorithm [51]; after a preliminary 

alignment of the whole spectrum (coshift procedure), an interval alignment (intervals chosen in 

order to obtain the best alignment) was carried out using one dataset signal as alignment target. The 
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target was selected among the spectra that the program suggested to be as more similar as possible 

to the medium signal. 

Finally, a blockscaling procedure [52], called “block-adjusted non-scaled data”, was used to allow 

peaks with minor intensity to contribute to the model without altering the relative scale of variables 

belonging to the same block. 

The data were finally arranged in a 80x5200 matrix and analysed by means of PCA, in order to 

understand the relationships among samples and investigate the presence of trends or clusters. A 2 

PCs model, with 78.26% of explained variance, was chosen. 

 

PLEASE, INSERT HERE FIGURE 4 

 

Looking at the scores plot (Figure 4), it is possible to see in-plain samples (producers A, B and D) 

well separated from hill samples (producer C) on the second principal component and grouped in 

three clusters on the base of the field of origin. These clusters are quite compact as regards B and D 

samples, while A samples present a slightly greater scatter. 

On the other hand, hill samples differentiate along the first principal component; in particular, 

samples coming from holes 1 and 3, all sampling depths, are located at negative values of PC1, 

whilst all the samples from holes 4 and 5 are at positive values of PC1. Soil samples coming from 

sampling point 2 are divided in an upper part (a and b depths) at positive values of PC1 and a lower 

one (c, d and e depths) at negative values. This variability is highlighted along PC1, which explains 

most of the variance; thus, hill samples result to be characterised by a great complexity and 

heterogeneity, in agreement with texture analysis of soils. 

 

PLEASE, INSERT HERE FIGURE 5 

 

Observing the loadings plot (Figure 5) and considering a preliminary identification of diffraction 

peaks, it is possible to identify the phases that mainly influence the discrimination among different 

samples. The intra site variability of hill samples, shown on PC1, is mainly due to a different 

presence of quartz and calcite; while the distinction among hill and in-plain samples, highlighted on 

PC2, is probably caused by a different clay composition of the soils. 
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Summary 
 

In this study, a suitable approach based on chemometrics techniques was proposed for the selection 

of soils sampling sites in a context of geographical traceability of food. In particular, D-Optimal 

Onion design was chosen since it is widely used for mapping and planning purposes and it allows to 

achieve the maximum coverage and uniformity of selected samples in the whole domain. An 

efficient mapping of inspected geographical area was obtained ensuring coverage of farms 

characterised by main production of investigated food and insisting on soils with different 

geological features. 

Once identified the sampling sites, X-ray diffraction analysis coupled with chemometrics 

techniques were used and allowed to investigate the soil complexity and assess the proper number 

and type of samples to be collected for the extensive sampling of the investigated area. In particular, 

this study allowed observing the distinction between hill and in-plain samples.  

For soil sampling plan, it is of utmost importance to take into account the complexity of hill 

samples, which present lot of variability as regard not only the different sampling points but 

sometimes also in the sampling depths. In fact, the hill region is characterised by mixture of soils 

with different origin and composition. On the other hand, in-plain soils result to be more 

homogeneous, in particular as regards the sampling depth.  

On the strength of these results, only upper and  lower fractions seem to be sufficient to describe in-

plain soils, thus reducing the total number of samples to be further analysed. 
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Geographical traceability of raw materials for PDO and PGI oenological products.  

 

Introduction 

Aceto Balsamico Tradizionale di Modena (ABTM) and Aceto Balsamico di Modena (ABM) are 

two of the most well-known and appreciated Italian foods.  

In 2000, ABTM received the PDO certification for its typical production and the well defined 

geographic area of production [43].  Briefly, it is obtained by acetic and alcoholic fermentation of 

cooked musts of selected grapes coming from restricted areas of Emilia Romagna indicated in the 

ABTM regulation. It ages at least 12 years in a series of casks of different woods and capacity. In 

order to compensate both annual spilling, i.e. for marketing, and natural evaporation occurring 

during the summer, a certain amount of vinegar is transferred from one cask to the next starting 

from the cask containing the oldest product by the so called topping up procedure. Besides ageing, 

the marketing of the product requires the approval from a Panel of Master Tasters, educated by a 

competent authority. 

Aceto Balsamico di Modena (ABM) received the PGI certification in 2009 [53]. Its raw materials 

are mainly concentrated or cooked musts, wine vinegar and caramel and its production is regulated 

by the respective regulation.  

In this study, the possibility to develop analytical models able to discriminate vinegar raw materials, 

namely concentrated or cooked musts, coming from Emilia Romagna was investigated.  

In fact, the geographical provenance of musts is important in the case of ABTM, and could be an 

added value for the production of ABM. 

For these purposes, 67 concentrated musts coming from grape juices of several geographical areas 

were investigated. Table 2 reports some information about their geographical origin and grape 

varieties.  

 
PLEASE, INSERT HERE TABLE 2 

 

  
Each sample was analyzed by means of Near Infrared (NIR) spectroscopy and Attenuated Total 

Reflectance Mid Infrared (ATR-MIR) spectroscopy. In particular, NIR and MIR spectra were 

collected in the spectral regions from 10000 cm-1 to 4150 cm-1 (with a resolution of 4 cm-1) and 

from 4000 cm-1 to 600 cm-1 (with a resolution of 4 cm-1), respectively. These techniques are very 

common in food and raw materials characterization, since they are fast, non-destructive, low cost 

and do not require a preliminary sample preparation [54, 55]. Moreover, multivariate data analysis 
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is extensively and fruitfully applied on NIR and MIR signals with the aim to extract and visualise 

relevant information [56, 57]. 

When dealing with spectral data, a deeper understanding of the signals is necessary, since relevant 

information is often mixed with many uninformative sources of variation that may affect part or the 

whole signal domain. In this context, NIR and MIR spectra were pre-processed, in order to remove 

the variability sources due to both the physical nature of sample and environmental-experimental 

conditions of the measurement. In particular, a second derivative transform (Savitzky-Golay [58]) 

was applied to NIR signals in order to reduce parallel shifts and slope changes of the baseline. The 

raw and pre-processed NIR spectra are reported in Figure 6a and 6b, respectively. 

 

PLEASE, INSERT FIGURE 6a AND FIGURE 6b 

 

A 2° order polynomial Savitzky-Golay smoothing followed by Standard Normal Variate (SNV) 

[59] was applied to MIR spectra to reduce baseline shift and instrumental noise (Figure 7). 

 

PLEASE, INSERT FIGURE 7 

 

Classification models based on Near Infrared (NIR) spectroscopy 

A one class SIMCA model was evaluated in order to distinguish Emilia Romagna concentrated 

musts from the other ones. Emilia Romagna samples were split in training (31 samples) and test (15 

samples) sets. Furthermore, test set includes samples coming from Apulia, Argentina and Spain (21 

samples) in order to evaluate the specificity of SIMCA model. 

Table 3 reports the number of chosen latent variables (LVs), explained variance of SIMCA model 

together with sensitivity (percentage of the objects belonging to the modelled class rightly accepted 

by the model) and specificity (percentage of the objects belonging to the other classes rightly 

rejected by the model) values for both training and test sets.  

 

PLEASE, INSERT TABLE 3 

 

As far as training set is concerned, the reported values highlight an optimal sensitivity of the model, 

since all samples coming from Emilia Romagna are correctly classified. On the other side, 

sensitivity of test set is not sufficient since only the 53 % of Emilia Romagna samples are well 

classified.  

In order to improve the classification ability of the model, variables selection step was performed. 
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The selection of variables could separate relevant information from unwanted variability and at the 

same time allows data compression, i.e. more parsimonious models, simplification or improvement 

of model interpretation and so on. Although many approaches can be used for features selection, in 

this work, a wavelet-based supervised feature selection/classification algorithm, WPTER [12], was 

applied. The best performing model was obtained using a daubechies 10 wavelet, a maximum 

decomposition level equal to 10, between-class/within-class variance ratio criterion for the 

thresholding operation and the percentage of selected coefficients equal to 2%. Six wavelet 

coefficients were selected, belonging to the fourth, fifth, sixth, eighth and ninth levels of 

decomposition.  

Few spectral regions were selected (figure not shown), around 12000-8800 cm-1 range, probably 

selected for background/baseline correction, 8700-7890 cm-1 and 7600-6260 cm-1, where CH and 

OH overtones are present, respectively. 

The performance of SIMCA model built on WPTER selected region, are reported in Table 4. With 

respect to SIMCA results, before feature selection, it is possible to note that both sensitivity and 

specificity calculated on test set are significantly improved.    

 
PLEASE, INSERT TABLE 4 

 
NIR spectra were also analysed by means of PLS-DA analysis. In this case, extra Emilia Romagna 

samples (class 2) were also split in training (15 samples) and test (6 samples) set due to the 

characteristics of PLS-DA algorithm. 

Table 5 lists the sensitivity and specificity values for both training and test sets of Emilia-Romagna 

class. PLS-DA model shows good classification ability on training set, while the sensitivity toward 

the test set still remains unsatisfactory. Nevertheless, PLS-DA model seems to perform better than 

SIMCA, in particular, as regard specificity. 

PLEASE, INSERT TABLE 5 

 

Classification models based on Mid Infrared (MIR) spectroscopy 

One class SIMCA model of Emilia Romagna was built using the same training and test sets of the 

previous NIR data analysis. 

Specificity and sensitivity of model are reported in Table 6. 

PLEASE, INSERT TABLE 6 
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Sensitivity and specificity of MIR based SIMCA model are slightly better than those obtained from 

NIR signals and the results still improve by application of PLS-DA analysis (Table 7) 

PLEASE, INSERT TABLE 7 

 

Summary 

The synergistic use of chemometrics, Mid and Near infrared spectroscopy has been proved to be a 

valid tool for geographical traceability discrimination of concentrated musts. In particular, the two 

used classification methods, i.e. SIMCA, PLS-DA, provide slightly different results and Table 8 

shows a summary, in terms of sensitivity and specificity before and after features selection with 

WPTER algorithm, for Emilia Romagna class models. 

 
PLEASE, INSERT TABLE 8 

 
The different results between SIMCA and PLS-DA, are probably related to presence of high 

variability spectra regions common to all samples, independently from their different geographic 

origins. In this case, since SIMCA builds disjoint class models, this information leads to low 

specificity, while PLS-DA, being a discriminant technique, gives to this common regions low 

weights in the PLS regression model.   
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Food Authenticity applications  

 

Study of grape juice heating process in a context of quality control of food 

 

Introduction 

Cooked grape must is the starting raw material for the production of ABTM, according to its 

production European Regulation [43]. It is obtained by heating grape juice in uncovered pans with 

direct fire. During this process, different chemical reactions can occur, mainly involving grape 

sugars such as glucose and fructose. Sugars show a complex chemical reactivity dependent from 

temperature of reaction, pH as well as the presence of oxidant and reducing agents. In particular, the 

heating of monosaccharides, in weak acidic media, leads to a multistep process with elimination of 

water and formation of furanic derivatives. In this work, multivariate data analysis techniques are 

used to extract useful information on critical steps of heating process in order to obtain cooked 

musts characterized by a low content of furfurals. Although the presence of furfurals in cooked 

must confers peculiar organoleptic characteristics, it might represent a negative aspect for a safety 

point of view. In fact, European Food Safety Authority (EFSA) established an acceptable daily 

intake, ADI, equals to 0.5 mg/kg of body weight for furfural [60,61]. 

In this study, nine cooking processes of grape juices coming from three different wine cellars were 

monitored. Must samples were regularly taken during the whole heating process, from the raw 

materials to the final product, thereafter named reduced cooked must.  

 

PLEASE, INSERT TABLE 9 

 

Table 9 summarizes some information on musts sampled for each cooking process (labelled from 

C1 to C9) of different wine cellar producers (kept anonymous, simply labelled as A, B and C). 

More details about the conduction of the heating process are reported in literature [62]. The total 

number of collected samples was 122. 

For all samples, eleven parameters were monitored, namely, temperature (T), refractive index (nD), 

density (d), total acidity (AcT), water content (H2O), 5-(hydroxymethyl) furfural (5-HMF), furfural 
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(Furf), glucose (Glu), fructose (Fru), tartaric (Tar) and malic (Mal) acid concentrations referred to 

‘dry’ matter. 

Furfural and 5-(hydroxymethyl) furfural (5-HMF) were measured and considered as quality 

indicators. In particular, fructose and glucose undergo degradation phenomena involving furfurals 

formation, tartaric and malic acids are the main organic acids in grape; finally, the loss of water has 

to be monitored since it represents a critical step for furfurals formation. Refractive index, density 

and totally acidity, were measured in order to characterize the bulk of the system as well.  

Sugar and acids content were determined with Gas Chromatographic technique (GC-FID, Varian 

3400GC provided with a flame ionization detector). The analytical procedure was described in 

detail in literature [62,63]. Quantification was performed by means of the internal standard method 

and the calculation of response factor, by repeated injection of multiple standard solutions. 

Associated uncertainty and recovery of the method were calculated [62] too. 

The determination of furfurals species was carried out by means of liquid chromatography (HPLC-

DAD, Beckman system Gold apparatus, equipped with a single piston pump, injection valve, 20 mL 

sample loop and diode array detector). The analytical procedure was widely described in detail in 

previous work [62]. 

Principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to 

investigate the role of different technological parameters/cooking strategies adopted by different 

producers on the quality of final cooked musts.  

 

Principal Component Analysis (PCA) results 

As regards samples, looking at the list in Table 9 (122 samples), it emerges that some samples, 

such as grape juices and must samples used for refilling, are common within some different cooking 

processes of the same producer. Hence, in the data set used for PCA, these common samples are 

repeated, due to the type of scaling adopted, obtaining a total of 132 samples. In particular, the 

different available variables for each process were separately arranged in a bi-dimensional matrix 

(samples x variables). Each subset of data was separately mean centered. After that, the mean 

centered data matrices were assembled into a unique one (132 rows x 11 columns) and successively 

autoscaled. In this way, it was possible to highlight the evolving trend inside each heating process, 

maintaining ‘unchanged’ the differences among the various cooking processes. A three-principal 
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components model was chosen taking into account the explained variance (R2=87.18%) and the 

eigenvalues vs. number of components (SCREE plot not reported). 

Figure 8 reports the scores plot of the first principal component and highlights the variability inside 

each cooking process as function of the heating time.  

 

PLEASE, INSERT FIGURE 8 

 

In particular, C2, C3 and C4 processes, with an heating over 40 hours, show PC1 scores varying of 

about 15 units, while the other ones (under 20 hours of heating) covering almost 4 units interval. 

Furthermore, PC1 orders samples according to number of hours of heating, assigning negative 

values to grape juices as well as intermediate cooked musts, and positive values to rather cooked 

musts and final products. The trends observed for C6÷C9 processes are less regular, probably due to 

refilling operation with partially cooked musts. Moreover, must samples used for the refilling 

procedures in the processes performed by producer C (i.e. R1, in cooking processes C6 and C7; R1 

and R2 in cooking processes C8 and C9) have PC1 score values higher than the samples taken just 

before refilling. This could be explained considering the different capacity and technology of pans 

used in must cooking process with respect to the small pans where must samples used for refilling 

were heated. Finally, PC1 highlights a strange trend of C1 process, which, although the total heating 

time was around 43 hours, seems more similar to C6÷C9 processes. It was shown that this process 

had some problems with heating apparatus of the pan.  

By analyzing PC1 loadings, Figure 9, it is possible to obtain information about the variables 

responsible of the trend shown in Figure 8.  

 

PLEASE, INSERT FIGURE 9 

 

In particular, it emerges that all variables, except the water content (H2O%), present positive values. 

By the synergistic analysis of both the figures, it is possible to note that the more cooked samples of 

C2÷C4 processes are mainly discriminated from the other cooked musts for their lower water 

content and higher nD, d, Total Acidity values and chemical components contents  (vice versa for 

juices and intermediate samples).  
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The second and third principal component scores plot (figure not shown) mainly highlights the 

peculiar behaviour of some samples inside each heating process.  

 

Parallel Factor Analysis (PARAFAC) results 

Taking into account the trilinear structure of the data (Figure 10), characterized by three distinct 

sources of systematic variability, i.e. cooking time, monitored variables and different cooking 

processes, PARAFAC analysis was carried out as data display tool in order to highlight cooking 

processes similarity/ dissimilarity and the evolution of the different parameters during the cooking 

process. 

In order to monitor processes, only the cooking times (hours) reported in Figure 10 were 

considered. For C6÷C9, the final products were considered as cooked 20 hours. Hence, the data 

were arranged in a three-dimensional array, with samples cooked at different hours in the first 

mode, the monitored variables in the second mode and the cooking processes in the third one, 

obtaining a three-dimensional array of 9×11×9 dimensions. Samples used for the refilling are not 

considered in this analysis.  

 

PLEASE, INSERT FIGURE 10 

 

Before PARAFAC analysis, the data array was centered across the first mode (cooking processes), 

in order to remove the offsets, and scaled to unit variance within the second mode.  

A two factors PARAFAC model showed a reasonable compromise of acceptable residual sum of 

squares, number of iterations, core consistency and reproducibility of the replicate PARAFAC runs. 

The scores plot of the first two factors (F1 vs. F2) for the first mode, (Figure 11a), shows the 

evolution over the time of cooking process. In particular, the first factor distinguishes the first phase 

of cooking process (samples heated for 0 to 8 hours with negative score values) from the other ones 

(positive score values).  

 

PLEASE, INSERT FIGURE 11a, 11b and 11c 
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Furthermore, reduced cooked musts, i.e. samples cooked at 20 hours, are clearly different from the 

others. The second factor, F2, mainly highlights the difference between the crude juice and other 

samples.  

Loadings plot of the first two factors for the second mode (Figure 11b), i.e. variables mode, 

highlights the different trends of chemical-physical parameters: water content decreases with the 

evolution of the cooking process (it lies in the same region of crude juice in Figure 11a), while all 

the other compositional parameters, including furfurals, increase (they are in same area 

corresponding to final product in Figure 11a). Temperature is not influent in F1, and has the 

highest F2 value. 

Finally, the loadings plot of the first two factors for the third mode (Figure 11c), i.e., cooking 

processes mode, mainly discriminates the processes according to their producers. The second factor, 

F2, mainly distinguishes C3 from the other ones.  

For a synergistic combination of all the three loading plots, it emerges that the conduction of C3 and 

C2 processes with higher temperature (around 90°C) allows achieving cooked must with high 

concentration of chemical compounds, including furfurals compounds. Thus, it emerges that drastic 

conditions (high temperature values and extended time of cooking) strongly raise furfurals 

formation. In fact, sugar dehydration reaction occurs in a more pronounced and, in worse cases, 

uncontrolled way, if the loss of water takes place in presence of high sugars content and acid 

conditions.  

 

Summary 

In this study, it emerges how the use of explorative analysis, as PCA and PARAFAC, can really 

improve the visualization of the data and the interpretation of results, even in presence of variables 

of different nature.  

This work is very important in an authenticity context, since it represents a first attempt to give to 

producers useful knowledge about the used heating process. This could allow obtaining products in 

full compliance with not only the traditional procedure but also with quality and safety assurance. 
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Study of sensory and compositional profiles during the ageing process of Aceto Balsamico 
Tradizionale di Modena (ABTM) 

 

Introduction 

In this application, it is investigated the possibility to develop a regression model in order to 

correlate the volatile fraction of different aged ABTM samples with sensory attributes [64]. In 

particular, the goal of the work is twofold: a) following the variation of both compositional and 

sensory variables with ageing and b) finding possible ageing markers.  

To get an overall view of the product and the ageing process, different aged samples were analysed 

and many sources of variability such as different cask series, organic composition (i.e. volatile 

fraction), sensorial attributes and the judgment of several panellists were taken into account.  

In particular, Partial Least Square Regression (PLS) and multi-way method, such as N-PLS, were 

applied to study the relationships between the volatile fractions, sampled and characterized by using 

HS-SPME/GC techniques, and the sensory attributes obtained by expert panellists [65,66].  

The possibility to correctly predict the sensorial attributes on the basis of the GC signals is relevant 

for authentication tasks. ‘Aroma’ is one of the properties of this product mainly transformed during 

the ageing phase, due to microbial and chemical reactions. Thus, experimental data could be used to 

support the panel test evaluation, since the volatile organic compounds, which concur to the 

olfactory characteristics of ABTM, have a fundamental importance in the sensorial evaluation of the 

product.  

Thirty-six ABTM samples were investigated, sampling six different series of casks coming from six 

different producers (each series comprising six casks of different capacity), Table 10.  

 

PLEASE, INSERT TABLE 10 

 

An expert panel consisting of eight panellists was used for the sensorial evaluation of all the 

samples, determining sixteen variables, namely four visual, five smell/aroma, six texture and one 

called final sensation.  

The visual attributes are density (despite the name, it is linked to consistency/viscosity), colour 

intensity and clearness (established by looking at the transparency of the product through a candle 
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light). 

Smell/aroma comprising four attributes namely, frankness defined as the absence of interferences in 

the perception of the flavour; refinement, which evaluates the presence of balsamic flavours, 

intensity/persistency related to noise perception of intensity and persistency of the balsamic flavours 

and acidity. 

The five texture attributes are fullness which indicates how rich the sensation is perceived in the 

mouth, similar to ‘corpo’ for wine; intensity of the taste; texture which is the quality of the 

perceived taste; harmony which evaluates the equilibrium between the acid and sweet tastes and 

taste acidity. 

Final sensation represents a sort of overall perception of the sample received by the panellist.  

Finally, for each class of attributes, the three partial averages were taken into account, as well. 

The score attributed to each product is based on a total of 400 points distributed as follow: 15% to 

the visual attributes; 30% to the aroma attributes; 45% to the texture attributes and 40 points are 

reserved for final sensation. The visual scores range from 1 to 20 points, aroma from 1 to 30, 

texture from 1 to 36 and final sensation from 1 to 40. A detailed description of the evaluation 

method and panellists training has been reported in literature [65]. 

Afterwards, the ABTM volatile fraction was sampled by using a SPME fibre [67] and analyzed by 

Gas Chromatography with flame ionization detector (GC-FID), as reported in a previous work [64]. 

The chromatograms were acquired at constant sampling rate of 2.5 Hz, for a total time of 63 

minutes (9451 points). A fibre blank was registered at the beginning of every session of 

experiments. The overall repeatability was evaluated by analyzing a control sample (vinegar 

sample) during each day of session.  

 

Unfold-PLS results 

As far as X-block is concerned, the data were organised in a bi-dimensional matrix by taking the 

ABTM samples coming from the six producers on rows and the GC-signals on columns, obtaining 

an X-matrix of 36x9451 dimensions. The data were mean centered.  

The sensorial data were organized in a bi-dimensional matrix (Y-block) too, with the 36 samples on 

rows and the average scores of the 8 judges for each of the 16 sensory attributes on columns, 
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obtaining a 36x16 matrix dimension. The data were mean centered, since all the sensorial attributes 

have a similar range of variability.  

The number of significant PLS latent variables (LVs) was chosen by considering two approaches: 

first, the commonly used leave one out cross validation (LOO) procedure [68] and the second called 

leave one producer out (LOP). In this latter approach, a producer at time was left out from the 

model and considered as test set. The procedure was done six times, obtaining six different root 

mean square errors in prediction (RMSEP-LOP).  

PLS model, considering all the producers, was built with 5 LVs on the basis of the minimum 

RMSECV-LOO (9.23) as well as of the Y explained variance in fit (89.21%) and in cross validation 

(64.33%). Considering the overall RMSEP-LOP values, obtained separately for each producer as 

function of the sensory attributes (Figure 12), it is possible to obtain information about the 

prediction capability of the model. In particular, visual parameters (Figure 12a) show low error 

values but a lower variability (i.e. standard deviation) as well.  

 

PLEASE, INSERT FIGURE 12a, 12b, 12c 

 

On the contrary, aroma (Figure 12b) and texture parameters (Figure 12c) are better modelled since 

in general their associated RMSEP-LOP values are below the corresponding standard deviation. In 

particular, aroma values present a lower error range than texture ones. This is quite consistent with 

the nature of X data, since the ABTM volatile fraction is analysed. 

From a synergistic analysis of all figures, the results highlight a good prediction for the 2nd and 5th 

producers; furthermore, their absence seems to decrease the robustness of the model increasing the 

RMSEP-LOO values. 

Going on the plot of PLS regression coefficients, it is possible to obtain information about the 

chromatographic regions, which mainly contribute to the regression model performance. For the 

sake of clarity, only the plot of the PLS regression coefficients relative to the average of the aroma 

attributes was reported (Figure 13).  

 

PLEASE, INSERT FIGURE 13 HERE 
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From this plot, it emerges that the model mainly keeps information from ethanol (Rt: 5.1 min), ethyl 

acetate (Rt: 9.8 min), acetic acid (Rt: 11.1) and furfurals (Rt: 21.2 min) compounds. From all the 

other parameters, almost the same chromatographic regions are important as well.  

 

N-PLS results 

As far as N-PLS case is concerned, the chromatographic data were firstly compressed by using 

principal component analysis (PCA). In particular, data were organised in a matrix of 36 (6 

producers×6 casks) x 9451 dimensions and then compressed by singular value decomposition to 30 

components, with 30 equal to the rank of matricized data. This reduction merely represents a 

computational shortcut to speed up calculations. The 30 derived score vectors were used instead of 

the original GC signals and data were rearranged into a 3-way matrix with producers in the first 

mode, PC-scores in the second mode and cask samples in the third one, yielding a 6×30×6 X array.  

The choice of defining the producers as mode 1 is motivated by the applicability of the model. In 

fact, in the future, it is feasible to think to monitor/predict new producers.  

As regards Y-array, the average of the eight judges’ assessment for each sensorial attribute was 

considered. Thus, the data were arranged in a 3-way array with producers in the first mode, 

sensorial attributes in the second one and casks in the third one, obtaining a 6×16×6 Y array.  

Both X and Y arrays were centered across the first mode, in analogy with the two way case.  

Also in this case, root mean squares errors in leave one out cross (RMSECV-LOO) and in leave one 

producer out (RMSEP-LOP) validations were investigated.  

The presence of some individual samples and/or variables, mainly influential for a given model, 

was evaluated through the calculation of Leverage [69]. Finally, the residual structure of Y-array 

was analyzed by inspecting the sum of squares of residuals (SSres) plot for each Y-mode.  

The model was built with one latent variable (Y explained variance in cross validation, LOO, 

84.38%). Analogously to the unfold-PLS case, the robustness and the predictive capability of the 

model was tested by Leaving One Producer Out (RMSEP-LOP) procedure. In all the six cases, the 

models built with one latent variable gave the best results in terms of lowest root mean squares 

cross-validation error. Considering the RMSEP-LOP values for each sensory parameter for the 

different models (data not reported), they have the same trend of the respective unfolding analysis 

with numerical values smaller than the previous one.  
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In order to get an overview of the variables, which mainly influence the prediction ability of the 

regression model, the loading matrix, corresponding to the second mode, was considered, back-

transforming it into the original domain by multiplying it with the variable loading matrix of PCA 

decompression. In this way, it was possible to represent the loadings plot for GC-variable mode as 

function of the retention time. The same volatile compounds of the PLS case resulted to be relevant 

for predicting the sensorial parameters.  

Leverage values for mode 1 and 3, ha and hc, and respective residual sum of squares (SSres), 

Figure 14, allow to gain combined information about the vinegar samples and/or producers which 

are well modeled (small SSres) and at the same time yield a unique contribution (high ha or hc).  

 

PLEASE, INSERT FIGURE 14a, 14b and 14c HERE 

 

In particular, from Figure 14a and 14c, 3rd, 4th and 5th producers have the largest ha and small 

residuals, hence contribute positively to the model, whilst the 3rd producer is influential but not 

well fitted. As far as the sample mode is concerned, Figure 14b and 14d, the youngest samples 

(number 6) is the most influential but it is not well fitted (high residuals values). On the other side, 

older samples (numbers 1 and 2) are not so influential in modelling the sensorial data but they are 

well fitted. 

 

Summary 

Both unfolded and three-dimensional regression models gave satisfactory predictions of almost all 

the sensorial parameters, which characterised the quality of ABTM samples. In particular, the 

aromatic parameters are better modelled, probably due to nature of the employed analytical data, i.e. 

volatile organic compounds.  

Furthermore, both models highlighted a main contribution on the prediction ability given by 

chemical compounds characteristic of the fermentation and the bio-oxidation processes which take 

place in the younger casks (samples 5 and 6), such as ethanol, ethyl acetate, and acetic acid, on the 

other hand by compounds which are produced during the must cooking procedure (furfural). 

The relative efficiency of both unfold-PLS and N-PLS has been compared in order to understand 

how the nature of data, i.e. the different source of variability could influence the performance of a 
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model.  The use of N-PLS model led to a more parsimonious (1 LV) model and showed, in general, 

lower RMSECV values and a higher value of explained variance in prediction.  

Notwithstanding, it has to be remarked that both methods allows a straightforward interpretation of 

the whole data set and about interrelations between sensorial and chemical parameters. 
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Characterisation and classification of Ligurian extra virgin olive oil  

 

Introduction 

Extra Virgin Olive Oil (EVOO) belongs to the superior olive oil category and it is solely obtained 

from fruit of olive tree, Olea Europera, by mechanical means.  

Although the production of olive oil is concentrated in the Mediterranean countries area, the 

cultivation of olive trees is spreading in other many countries. The increasing consumption of 

EVOO is related to its peculiar properties, like seasoning of food as well as to its healthy benefits. 

Nevertheless, as result of agricultural traditions, local extraction and blending practices, EVOO may 

be quite different in taste and quality depending on its geographical origin with consequent 

differences in price within the same category. In the context of developing an analytical 

methodology able to assess the quality and authenticity of EVOO samples [20,70,71,72], this study 

was focused on the characterisation of the whole aroma fraction and on the development of 

analytical tools able to distinguish EVOO samples coming from ‘Riviera Ligure-Riviera dei fiori’ 

(Northern of Italy) [73] from other Mediterranean ones. Liguria EVOO, in which cultivar 

‘Taggiasca’ prevails, was designed with PDO certification and represents one of the most highly 

esteemed and valuable European EVOO, since it is characterised by delicate, sweet, slightly 

pungent and green aroma. In particular, aroma is one of the most important parameters in the 

estimation of the quality of an EVOO sample, hence a great number of researches has been done to 

evaluate inter and intra relationships between the sensory notes and the concentration of the organic 

compounds. 

In this framework, the analysis of the volatile fraction was performed using Head Space Solid Phase 

Micro Extraction (HS-SPME) [67] coupled with GC-MS system for the extraction and 

chromatographic separation and the identification of volatile organic compounds. The obtained GC-

MS signals (Total Ion Current) were processed by SIMCA analysis. 

EVOO samples with certified geographical origin, object of this study, were obtained from 

Consortium. They belong to different olive cultivars and come from different geographical areas, 

namely Liguria (Northern of Italy), Apulia (Southern of Italy), Greece, Tunisia and Spain. Since the 

main commercial interest is to distinguish Liguria EVOOs from the rest of olive oils, the data set 

was split in two classes, Liguria and Not Liguria oils. SIMCA analysis was applied in order to build 

a classification model able to rightly classify the samples belonging to a category and correctly to 

reject the other ones. Furthermore, as second step, the data set was divided in three classes too, 

namely Liguria, Apulia and Foreign samples.  
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Extra virgin olive oil samples 

Seventy-two EVOO samples, produced from olives of different cultivars and harvested in 2003, 

were analysed by means of HS-SPME/GC-MS technique. They came from five different 

Mediterranean countries. In particular, 22 samples were from Apulia (mainly Ogliarola and 

Coratina cultivars), 21 from Liguria (mainly Taggiasca cultivar), 12 from Greece (Koroneika and 

Athinoia cultivars), 10 from Spain (Arbequina cultivar) and 7 samples from Tunisia (Chemlali 

cultivar). 

The instrumental signals were arranged in bi-dimensional matrix with as many rows as samples (72) 

and as many columns as GC-points (1680) recorded during data acquisition (retention time, Rt: 72 

min). 

Before data analysis, the first 4.5 minutes and the last 7 ones of the signals were cut because there 

were no peaks at all, giving a GC vector of 1404 points for each sample. 

In Figure 15, the average of the EVOO chromatograms for each of the five different geographical 

proveniences was reported. 

  

PLEASE, INSERT FIGURE 15 HERE 
 

In general, extracted volatile fraction includes a large number of hydrocarbons, aldehydes, alcohols, 

ketones, esters and other minor compounds. It is possible to observe that the average Liguria signal 

reports the lowest intensities of the different chromatographic peaks, followed by the Spanish one, 

perfectly in agreement with their much more delicate, sweet and slightly astringent flavour with 

respect to the other ones. In particular, the chromatographic peaks, which seem to characterise the 

volatile fraction of Liguria olive oil, are trans-2-hexenal (Rt: 34-34.5 min), and hexanal (Rt: 28-29 

min), both C6 linear unsaturated aldehydes characteristics of high quality virgin olive oils.  

As far as classification analysis is concerned, firstly, the 72 samples were split into two categories, 

Liguria and not Liguria (NL) samples, aiming to find a predictive classification rule to discriminate 

Liguria samples. Then, the samples were divided into three categories: Liguria, Apulia and Foreign 

(Greece, Spain and Tunisia) for investigating which category could mainly ‘overlapping’ with 

Liguria one. 
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The different data sets were separately and randomly split into training (for building a calibration 

model) and test sets (for validating it) as schematised in Table 11.  

 

PLEASE, INSERT TABLE 11 HERE 

 

The data matrices were separately mean centered and a model was built for each class (Liguria and 

Not Liguria and Liguria, Apulia, Foreign). The number of principal components (PCs) was chosen 

according to the best compromise among the minimum root mean square error in cross validation 

(RMSECV), sensibility and specificity of each model.  

As first step, SIMCA was used to perform the classification among Liguria and Not Liguria classes. 

Twelve PCs were chosen for Not-Liguria class model, while three PCs for the Liguria one. The 

SIMCA results reported in Table 12 highlight an excellent sensibility, meaning a right 

classification of both training and test sets, as well as an excellent specificity for Liguria samples. 
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As concern Not Liguria class, almost all training set (except three samples) is well modelled. 

However, considering the test set samples, the sensibility of the model fairly decreases (68%). Eight 

Liguria samples fall inside the confidence limits of the model giving a very low specificity value 

(43%).  

Afterwards, in the second step, as previously explained, samples were divided in three categories, 

Liguria, Apulia and Foreign (Greece, Spain and Tunisia). Internal and external cross validation 

were done following the same procedure of the previous case (random group and test set samples).  

Three PCs were retained for both Liguria and Apulia classes, while seven PCs gave the best results 

for the Foreign model. As far as Liguria class model is concerned, the results were unchanged with 

respect to the previous case. Indeed, all the training and test samples were in the confidence limits 

of the model (sensibility of 100%) and all the external samples, belonging to Apulia and Foreign 

classes, were rightly rejected (specificity of 100%). Furthermore, an improvement was evident in 

the performance of Apulia and Foreign classes, as well. In particular, Apulia class model was totally 

able to model both training and test set, showing a sensibility of 100%. Six Foreign samples and no 
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Liguria ones fall inside the Apulia model confidence limits, giving a relatively high specificity 

(83%). 

Finally, as regards Foreign class, all the training set was inside the confidence limits and only two 

samples, belonging to test set, were outside (sensibility: 83%). At the same time, the model became 

more specific with respect to the previous step, since only four Liguria samples were not rejected by 

Foreign class model (specificity: 91%). 

 

Summary 

The aim to discriminate Liguria class from the other ones was successfully accomplished, showing 

as the use of HS-SPME/GC-MS technique coupled with chemometrics analysis can be an useful 

tool for the solution of such challenging classification problem in the control of food quality 

research.  
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Tables 

 

Table 1. Summary of all the variables used for the selection of the representative farms for the two 

investigated areas. 

 

Area A Area B 

Productivity variables 

2 farm areas (numerical) 
11 grape varieties (binary code) 

Productivity variables 

2 farm areas (numerical) 
11 grape varieties (binary code) 

Spatial coordinates 

2 geographical coordinates (numerical) 

Spatial coordinates 

2 geographical coordinates (numerical) 

Geo-morphological variables 

1 parameter defining 6 classes (binary code) 

Geo-morphological variables 

1 parameter defining 13 classes (binary code) 

Pedological variables 

6 parameters defining 15 classes (binary code) 
slope (numerical) 
texture (numerical) 
O2 availability (numerical) 
alkalinity (numerical) 
Ca content (numerical) 

Pedological variables 

1 parameter defining 16 classes (binary code) 

Lithological variables 

1 parameter defining 4 classes (binary code) 
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 Table 2. Scheme of available concentrated must samples, listed on the basis of their geographical 

origin and variety. 

 

 Concentrated musts 

Geographic origin white red extra-red rosé 

Emilia Romagna 17 15  14 
Apulia 3 5  1 

Argentina 3    
Spain  7 2  

Total 67 
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Table 3. SIMCA model sensitivity and specificity values for both training and test sets for Emilia-

Romagna class, based on NIR signals. 

 

  

 Class LVs Explained variance 
(%)  SENSITIVITY 

(%) 
SPECIFICITY 

(%) 

 Emilia Romagna 10 99.76 Training set 100 -- 

   Test set 53 62 
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Table 4.  SIMCA model sensitivity and specificity values for both training and test sets for Emilia-

Romagna class after WPTER  variable selection, based on NIR signals 

 

 

  

Class LVs Explained variance 
(%)  SENSITIVITY 

(%) 
SPECIFICITY 

(%) 

 Emilia Romagna   Training set 100 -- 

   Test set 71 72 
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Table 5. PLS-DA model sensitivity and specificity values for both training and test sets for Emilia-

Romagna class, based on NIR signals. 

 

 

  

Class LVs Explained variance 
(%)  SENSITIVITY 

(%) 
SPECIFICITY 

(%) 

 Emilia Romagna 10 99.52 Training set 93 93 

   Test set 60 71 
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Table 6. SIMCA model sensitivity and specificity values for both training and test sets for Emilia-

Romagna class, based on MIR signals. 

 

  

Class LVs Explained variance 
(%)  SENSITIVITY 

(%) 
SPECIFICITY 

(%) 

 Emilia Romagna 8 99.49 Training set 100 -- 

   Test set 70 72 
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Table 7. PLS-DA model sensitivity and specificity values for both training and test sets for Emilia-

Romagna class, based on MIR signals 

 

  

Class LVs Explained variance 
(%)  SENSITIVITY 

(%) 
SPECIFICITY 

(%) 

 Emilia Romagna 4 93.63 Training set 90 75 

   Test set 94 89 
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Table 8. Summary of all sensitivity and specificity results obtained by the application of 

classification models on MIR and NIR spectra of the Emilia Romagna class. Values within brackets 

are relative to test set. 

 
 

 

 

 

 

 

 

 

 

  

One class model 

 Emilia-Romagna 

 MIR data SIMCA PLSDA  

 SENSITIVITY % 100 (71) 90 (94)  

 SPECIFICITY % 70 75 (89)  

 NIR data SIMCA PLSDA WPTER-SIMCA 

 SENSITIVITY % 100 (53) 93 (60) 100 (71) 

 SPECIFICITY % 62 92 (71) 72 
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Table 9. Summary of available samples for each monitored cooking process. Samples are arranged 

in time order.  

 

 
 

 

 

 

  

Producer A B C 

Cooking 
process C1 C2 C3 C4 C5 C6 C7 C8 C9 

Ti
m

e 
in

te
rv

al
 o

f s
am

pl
in

g 
(h

ou
rs

 o
f h

ea
tin

g)
 

time 0 (same grape juice) time 0 time 0  
(same grape juice) 

time 0 
 (same grape juice) 

2 2 2 2 1 2 - 2 2 

4 4 4 4 2 4 4 4 4 

6 6 6 6 3 6 6 6 6 

8 8 8 8 4 1st refilling 
 (sampling from small 

pan, labelled R1) refilling 
 (sampling from two 

small pans, labelled R1 
and R2) 

during the night no staff was at work in order to 
collect samples 

5 

6 6,5 6,5 

20 20 20 20 7 8 8 

- refilling 8 8,75 8,75 

22 - 22 - 9 2nd refilling  
(sampling from small 

pan, labelled R2) 

6,75 6,75 

23 23 23 23 10 8 - 

24 - 24 - 11 9 9 10 10 

26 26 26 26 12 10 10 12 12 

28 - 28 - 13 12 12 14 14 

30 30 30 30 14 13,5 13,5 

during the night no staff 
was at work in order to                     

collect samples 

32 - 32 - 15 3rd refilling  
(sampling from small 

pan, labelled R3) 35 35 35 35 16 

38 - 38 - 18 14 14 

41 41 41 41 19 night shift 

43 43 43 43 20 22 22 22 22 

N°of 
samples 

17 12 17 12 20 16 15 12 11 
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Table 10. Capacities of wooden casks and starting years of each series 

 

 

 

 

 

 

 

 

  

Series of 
Casks 

Casks Capacity 
(litre) 

Starting 
year 

 #6 #5 #4 #3 #2 #1  

A 50 40 32 30 27 18 1975 
B 50 35 35 30 25 20 1985 

C 60 50 40 30 25 20 1990 
D 30 24 20 16 13 10 1976 

E 40 32 25 22 20 14 1978 
F 70 50 40 30 20 20 1993 
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Table 11. Training and test set subdivision for each class data set 

CLASS Training set Test set 

Liguria 12 9 
Apulia 12 10 
Greece 8 4 
Spain 5 5 
Tunisia 4 3 

TOTAL 41 31 
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Table 12. The best SIMCA models performance for both the classification steps 

 

 

  

CLASS N° of 
PCs 

Explained 
Variance RMSECV Sensibility 

(training) 
Sensibility 

(test) Specificity 

One class model 

Liguria 3 96.81% 3.93 106 100 100 100 

Not-Liguria 12 98.12% 5.32 106 83 68 43 

Three classes model 

Liguria 3 96.81% 3.93 106 100 100 100 

Apulia 3 88.27% 5.24 106 100 100 83 
Foreign 7 95.60% 3.96 106 100 83 91 
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Figure legends 

 

Figure01: Plots of G-efficiency values as function of the different number of samples used in each 

layer, for (a) A and (b) B matrices. The stars (*) indicate the number of samples chosen for each 

layer. 

Figure02: Scores plot, PC1 vs. PC2 vs. PC3, of A (in plane) matrix. Gray circles represent the 70 

sites, selected by means of D-optimal Onion Design.  

Figure03: Scores plot, PC1 vs. PC2 vs. PC3, of B (hill) matrix. Gray circles represent the 30 sites, 

selected by means of D-optimal Onion Design. 

Figure04: Scores plot, PC1 vs. PC2, for the collected diffractograms. Symbols indicate different 

producers  A, B, C and D. Labels identify the sampling points (numbers from 1 to 3 or from 1 to 5) 

and depths (letters from a to e). 

Figure05: PC1 (black) and PC2 (gray) loadings plot vs. 2θ. 

Figure06: Concentrated musts NIR spectra (a) before and (b) after preprocessing by second 

derivate tool. 

Figure07: (a) Raw and (b) preprocessed ATM-MIR spectra. 

Figure08: PC1 scores vs. samples. Samples are labelled according to their heating time. Refilling 

samples used for C6÷C9 processes are labelled as R1, R2 and R3 according to Table 9. 

Figure09: PC1 loadings vs. variables measured for the samples of the different heating processes. 

Figure10: Graphical representation of data array analyzed with PARAFAC analysis. 

Figure11: F1 vs. F2 loadings plot for (a) the first mode (cooked juice samples), labels correspond 

to the number of heating hours, (b) the second mode (variables) and (c) the third mode (heating 

processes), different processes are labelled from C1 to C9. 

Figure12: Root mean squares errors leave one producer out (RMSEP-LOP) values, obtained 

separately for each producer as function of (a) visual, (b) aroma and (c) texture attributes. 

Figure13: PLS regression coefficients relative to the average of the aroma attributes. 
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Figure14: Leverage values for (a) first and (b) third mode, ha and hc, respectively. Residual sum of 

squares (SSres) for (c) first and (d) third mode.  

Figure15: GC profiles corresponding to the volatile fraction of Liguria (Northern of Italy), Apulia 

(Southern of Italy), Greece, Spain and Tunisia classes, obtained by separately averaging all the 

signals belonging to the each class.  

 

 








































