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Abstract: In this paper a flexible hollow core waveguide for the terahertz
spectral range is demonstrated. Its cladding is composed of a circular ar-
rangement of dielectric tubes surrounded by a heat-shrink jacket that allows
the fiber to be flexible. Characterization of straight samples shows that the
hollow core allows the absorption caused by the polymethylmethacrylate
tubes of the cladding to be reduced by 31 times at 0.375 THz and 272 times
at 0.828 THz with respect to the bulk material, achieving losses of 0.3 and
0.16 dB/cm respectively. Bending loss is also experimentally measured and
compared to numerical results. For large bending radii bending loss scales
as R−2

b , whereas for small bending radii additional resonances between core
and cladding appear. The transmission window bandwidth is also shown to
shrink as the bending radius is reduced. An analytical model is proposed to
predict and quantify both of these bending effects.
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1. Introduction

Low loss, broadband and flexible waveguides are a key issue in the development of terahertz
systems. Hollow core fibers have gained a lot of interest in recent years for this kind of appli-
cations [1–10] as the guiding of the electromagnetic radiation inside a hollow core is extremely
helpful in reducing the propagation loss, since no highly transparent dielectrics exist at the tera-
hertz frequencies. Moreover, having a core composed of air they allow the introduction of gases
and particles for material characterization [11, 12].

Different cladding structures have been proposed for hollow core fibers in the THz spec-
tral range, such as standalone dielectric tubes [2, 5–7] and microstructured fibers [1, 3, 9, 10].
Even though the former are very simple to manufacture, they suffer higher loss compared to
a microstructured fiber with the same core size [13]. Larger core dimensions are required for
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low loss but these cause many high order modes to propagate inside the hollow core [7, 10]. In
order to overcome this problem, metallic coatings were proposed [2]. However complex depo-
sitions techniques are required in order to obtain very thin metallic layers so as to not affect the
flexibility of the final structure. Microstructured hollow core fibers offer an interesting solution
to these problems. The higher confinement of the electromagnetic radiation inside the hollow
core with respect to the standalone tubes allows a smaller core size to be taken into account
and it makes the guided core mode less sensitive to the surrounding environment [1, 9, 10, 14].
Differential propagation loss between the fundamental mode and the high order ones can be
increased by a proper choice of cladding features, thus allowing microstructured fibers to be
effectively single mode [4].

Among microstructured THz waveguides, kagome and tube lattice fibers (TLFs) have re-
ceived the largest interest so far. The cladding of such fibres can be seen as composed of an
array of hollow tubes with different shapes [1, 10, 13–25]. A kagome fiber for the THz range
has recently been reported made from polymethylmethacrylate (PMMA) tubes [1], showing
that microstructured hollow core fibers can be obtained from cheap polymers with a simple
stack and draw process. Recently it was shown that circular tubes (Circular TLF, CTLF) allow
better loss spectra to be obtained in terms of both minimum magnitude and transmission band-
width when compared to kagome fibers [13, 15, 18].

In this paper a CTLF for the THz spectral range is proposed. Cladding tubes were drawn
from commercially available PMMA tubes and the structure was assembled manually in such
a way as to keep the waveguide flexible. These CTLF were characterized in both straight and
bent configurations. In the straight configuration both dispersion and propagation loss of the
fundamental core mode for the first two transmission windows were obtained. Thanks to the
hollow core, the propagation loss of the fundamental core mode was strongly reduced with re-
spect to the bulk PMMA material loss in both transmission windows. A 31 times reduction at
0.375 THz (first transmission window) and 272 times reduction at 0.828 THz (second trans-
mission window) were obtained. The CTLF were characterized for bending loss down to bend
radii (Rb) of 10 cm, and a frequency dependent bending-loss was observed for the bent fiber. A
thorough numerical analysis was performed in order to investigate the properties of bent CTLF
and an analytical model will be proposed in order to predict and quantify the effects of bending.

2. Manufacturing technique

Figure 1(a) shows the transverse cross section of the manufactured CTLF. The cladding is com-
posed of a collection of eight hollow dielectric tubes placed in a circle. They have refractive
index nH , internal radius rint and thickness t. The core of radius Rco is located in the central part
of this structure and is formed by air (nL = 1). The CTLF presented in this paper was manufac-
tured from PMMA tubes with 16 mm and 12 mm external and internal diameter respectively.
This tube was drawn to an external diameter of 9.6 mm using a polymer fiber drawing tower.
Part of it was used for the external jacket, while the remainder was drawn again in order to
obtain the cladding tubes with an average thickness of t = 252 μm and an external diameter of
about 1.99 mm (rint = 743 μm). The final core radius was Rco = 1.62 mm. The cladding tubes
were cut into pieces 10 cm and 20 cm long.

In order to realize a flexible THz fiber, the external jacket tube was cut into small pieces 5
mm in length. These are necessary to keep the cladding tubes in place, but at the same time
they have to be separated from each other in order to make the fiber flexible. Therefore the
cladding tubes were manually stacked inside these jacket rings, and the rings were spaced 10
cm apart forming a self supporting structure. No glue or fusing was necessary to keep the
components in place. An external heat-shrink jacket was added over the entire structure to
enhance its mechanical stability during the bending. Figure 1(b) gives a side picture of the fiber
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Fig. 1. (a) Microscope image of the transverse cross section of the manufactured fiber along
with its physical dimensions and dielectric properties. (b) Side picture of the fiber. (c) THz-
TDS setup that have been used to characterize the straight fiber. (e) Frequency dependence
of ℜ(nH) and ℑ(nH) measured experimentally for a PMMA disk.

in order to show the final cladding shape. In order to give a reliable comparison between the
experimental results and the simulations a 2 mm thick PMMA disk was characterized via THz
time domain spectroscopy. Figure 1(d) shows the measured real, ℜ(nPMMA

H ), and imaginary,
ℑ(nPMMA

H ), of the PMMA refractive index in the range [0.25;1] THz. As expected ℜ(nH) was
almost constant in the frequency range of interest, while ℑ(nH) changes with frequency [26].

3. Absorption and confinement loss in CTLFs

The characterization of the fibre in a straight configuration was done using the THz time domain
spectroscopy (THz-TDS) setup shown in Fig. 1(c). THz-TDS is widely used for the analysis of
THz waveguides as it gives both phase and magnitude information for the detected radiation.
Measurements on fibers of different length can be easily performed by moving only the first lens
after the fiber’s output, such that the output remains in its focal plane. Dispersion curves were
computed by comparing the phase of a pulse propagating through free space to that propagating
through the fiber. In a similar way, propagation loss was computed by comparing the spectral
magnitude of two fibers of different length, thus avoiding problems associated with estimating
the coupling efficiency for the fibers. Great attention was paid to the positioning of the lenses
and the waveguides and multiple scans were performed in order to maximize the received power
over the entire spectrum and minimize any misalignment. Moreover, integration times as long
as 3 s were used for the scans in order to minimize noise in the received signal.

For comparison, all the experimentally measured properties of the fibres and PMMA reported
in the previous section were used to generate a model of the manufactured CTLF in a finite
element software package (Comsol Multiphysics). For simplicity the jacket was approximated
with a hollow pipe surrounding the cladding tubes, with thickness 3t and refractive index equal
to that of PMMA.

Figure 2(a) compares the simulation and experimental results for the effective mode index
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Fig. 2. (a) Top and middle panels show the numerical dispersion curves for two dielectric
modes with different periodicity along the transverse direction, the core mode and hole
modes. For the hole modes the color intensity is proportional to the power inside the hole
regions normalized with respect to the total power of the mode. Experimental data is also
shown. Bottom panel shows numerical propagation loss for the core mode with different
values of ℑ(nH) and also experimentally measured loss. (c) Example images for the three
different classes of modes supported by the waveguide.

(ne f f ) and loss in the frequency range [0.25;1] THz and an overall excellent agreement is found
for both. Two transmission windows were observed, the fundamental (lowest frequency) one
extending from 0.29 THz to 0.47 THz, and the second one extending from 0.61 THz to 0.95
THz. High loss peaks separate the different transmission windows. These peaks are due to
the coupling between the core mode (labelled A in Fig. 2(b)) and the lower order dielectric
modes which are confined to the high index (solid) part of the cladding tubes (labelled C in Fig.
2(b)). This coupling occurs when the two are resonant, as seen in Fig. 2(a), which occurs for
frequencies satisfying [14–17,19–22]:

fRm =
mc

2t
√

n̄2
H −n2

L

, m ∈ N, (1)

where c is the speed of light in vacuum and n̄H = 1.6 is the mean value of nH . High order
dielectric modes, such as D in Fig. 2(b), do not result in such loss peaks [16, 20].

The propagation loss of the guided mode is strongly reduced with respect to the bulk materia
absorption loss due to the hollow core [16]. Comparing the experimentally measured loss of the
CTLF and the material absorption of the PMMA, a reduction of 31 times (α = 0.3 dB/cm) at
0.375 THz and 272 times (0.16 dB/cm) at f = 0.828 THz were obtained, with these frequencies
corresponding to the approximate centres of the two transmission windows as seen in Fig. 2(a).
This confirms that the guided mode is confined in the hollow core of the fiber and also that
hollow-core waveguides such as CTLFs are potentially low loss waveguides for the terahertz
range. Materials with lower absorption such as Zeonex [27] or Topas [28] would reduce the
propagation loss of the guided core mode even further.

Figure 2(a) shows the effect of the cladding tubes’ absorption on the propagation loss of
the core mode. PMMA tubes are compared with ideal lossless tubes and highly transparent
ones. The latter represent a generic low loss THz material, such as Zeonex or Topas, with
an imaginary part of the refractive index about a hundred times lower than PMMA [27, 28].
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In the first transmission window, the difference of more than an order of magnitude between
PMMA and lossless tubes shows that PMMA absorption dominates the loss. On the contrary
in the case of low loss tubes, the absorption is negligible. In the second transmission window,
by using low loss tubes instead of PMMA, a reduction of about two orders of magnitude is
obtainable. However, the additional loss obtained from the low-loss tubes compared to the
lossless tubes is no longer negligible. Overall, this analysis shows that although the absolute
value of loss is higher in the first transmission window, the effects of absorption in the cladding
tubes are more severe in the second transmission window. Even though these highly transparent
polymers would allow a further reduction of the propagation loss, the purpose of this paper is
not to optimize transmission. The goal is to investigate the potential of CTLFs in reducing the
absorption caused by the dielectric material of the cladding and their bending loss properties.

As shown in Fig. 2(b), CTLFs also support hole modes (labelled B). The core mode and the
hole modes are both confined in hollow regions and have dispersion values that lie below the
air line. Far from resonances with dielectric modes their dispersion curves can be approximated
by:

ne f f = nL − 1
2

(
uνμc

2π f R
√

nL

)2

(2)

which is an extension of the Marcatili’s formula as shown in the appendix, where uνμ is the
μ-th zero of the Bessel function Jν(u). R is the radius of the hollow core waveguide under
analysis, that is R = Rco and R = rint for the core and hole modes respectively. Since Rco >
rint , Marcatili’s dispersion curves of the core and hole modes never intersect. As shown in
Fig. 2(a), there are some frequencies where dispersion curves of hole modes separate form
their Marcatili’s approximation, due to anticrossings between hole and dielectric modes. In
these regions hybridized modes appear, however the power rapidly shifts from the hole to the
dielectric modes. Therefore hole modes are never phase matched with the fundamental core
one, thus they do not contribute to the confinement mechanism of the latter. However, it has
been shown in the literature that they can been exploited to increase the differential loss between
the fundamental core mode and higher order modes [4]. Moreover they can cause additional
resonances and extra losses in the case of fibre bending [21, 23, 24].

4. Bending loss

The 20 cm long CTLF sample was used for the bend-loss characterization, and a schematic and
a photograph of the experiment are shown in Figs. 3(a,b). The setup is basically identical to
that used for the characterization of the straight fiber, however the THz path was changed to
accommodate for the bent fibre. The CTLF’s input remained adjacent to the transmitter antenna,
but the output was shifted in order to achieve the desired bending radius Rb. Two mirrors were
used to redirect the output beam to the receiver. Figure 3(b) shows the experimental setup in the
case of a bending radius Rb = 10 cm, roughly corresponding to a 90◦ bend. Two clamps were
used to hold the ends of the fibre, thus limiting the actual bendable length of the fiber to 16 cm.

Figure 3(c) shows that in both transmission windows the low frequency edges are substan-
tially insensitive to bending, whereas the high frequency edges shift toward lower frequencies
as Rb decreases. As already observed in other inhibited coupling fibers, the first transmission
window is less sensitive to the bending than the high order ones [23,25]. In the first transmission
window, Rb = 10 cm is required to observe a clear shift of the high frequency edge, whereas in
the second window the shift is apparent with Rb = 30 cm. Apart from the high frequency edge
shift at Rb = 10 cm, the normalized transmission in the first window is otherwise unaffected
by the bending. The second window, on the contrary, is more sensitive. When Rb = 30 cm the
normalized transmission separates from the straight case only for f > 0.85 THz. A reduction of
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Fig. 3. (a) THz-TDS setup that have been used to characterize the 20 cm fiber sample for the
bending. (b) A picture of the setup. (c) Experimental and numerical normalized transmis-
sion of the 20 cm TLF sample for different bending radii. (d) Comparison of propagation
loss in case of bending for CTLFs with transparent and PMMA tubes.

the bending radius down to 10 cm causes a decrease in transmission over essentially the entire
transmission window.

4.1. Analysis of the bending loss

The numerical analysis of the bending loss performed in this paper is based on the conformal
mapping technique [29], where a bent fiber with refractive index n(x,y) is analyzed in terms of
a straight fiber with a refractive index:

ñ(x,y) = n(x,y)eξ/Rb . (3)

In this expression, ξ = {x,y} is the bending direction while Rb is the bending radius. A
schematic of this effect is shown in Fig. 4(a) for bending in the xz plane, but the same can
be readily applied also for a bending in the yz plane.

First of all the transmission spectra for Rb = {10,30,∞} cm were computed and compared
with experimental results in Fig. 3(c), observing a good agreement and confirming the validity
of the numerical analysis. In order to better understand the loss mechanisms in bent CTLFs
and to separate the effects of the leakage and of the material absorption, the propagation loss
spectra with Rb = {10,30,∞} of CTLFs with PMMA and lossless tubes were computed and are
shown in Fig. 3(d). As expected, the lossless case is more sensitive to bending because the loss
of the straight fiber is much lower than in the absorbing case. However, it is important to point
out that the shift of the high frequency edges exist in both cases, thus it is due to confinement
mechanisms and not to material absorption. In addition extra peaks inside the transmission
windows are observed as highlighted and shown in the inset of Fig. 3(d). They are due to
extra resonances between the core mode and hole modes as already observed in other inhibited
coupling fibers [21, 23, 24]. Their spectral position strongly depends on the bending radius.
This is clearly shown in Fig. 4(c) where the calculated propagation loss spectrum in the second
transmission window is shown for decreasing values of Rb (from 30 cm to 18 cm). When Rb

falls below 30 cm, this new resonance shifts toward lower frequencies, thus compromising that
transmission window.

These results show that bending loss in CTLFs even with highly absorbing materials does
not only depend on the material absorption, but also on the waveguiding mechanism. These
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Fig. 4. (a) Effect of the conformal mapping on the refractive index of the fiber in the trans-
verse direction. (b) Propagation loss of the core mode in the first transmission window for
Rb = {4,6,8,10} cm (from light to dark blue). (c) Propagation loss of the core mode in the
second transmission window for Rb = {18,22,26,30} cm (from light to dark violet). The
resonance between core and hole mode is highlighted in the inset. (d) Evaluation of Eq. (4)
for the first resonance edge (red) and of Eq. (5) for the resonances between core and hole
modes (green) in the two transmission windows.

aspects are analyzed in depth in the next section.

5. Analytical models for bending loss in CTLFs

In the previous section it was shown that in bent CTLFs the reduction of the transmission win-
dow bandwidth and the loss due to extra resonances arose from the waveguiding mechanism
and not the material absorption. Although some results on the behavior of bent inhibited cou-
pling fibers already exist for the infrared spectral region [21, 23–25], due to their experimental
or strictly numerical nature they are unable to provide a deep insight into underlying physical
mechanism that affects the fibers in the case of bending. For this reasons, in the next sections a
thorough numerical and theoretical analysis based on the conformal mapping technique will be
presented.

5.1. High frequency edge shift

As shown in Fig. 4(a) the bending causes an increment of the refractive index of the outer tubes
(relative to the bend), and therefore a change of the dispersion characteristics of both dielectric
and hole modes. The shift of the high frequency transmission window edges is due to the shift
of the cut-off frequencies of the dielectric modes. By substituting Eq. (3) in Eq. (1) it is possible
to estimate the new position of the edges due to the bending:

f ′Rm =
mc

2t
√
(n̄Hex̂/Rb)2 −n2

L

(4)

where x̂ represents the coordinate of the outermost part of the tube on the right side of the
structure in Fig. 4(a), x̂ = Rco +2(rint + t). This substitution causes the denominator in Eq. (4)
to increase relative to Eq. (1), and hence f ′Rm decreases. The bending radius required to shift the
high frequency edge of the first transmission window to a particular frequency as calculated by
Eq. (4) is shown in Fig. 4(d) (red curve).
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Fig. 5. (a) Numerical (dots) and analytical (dashed lines) effective indices for the hole
modes and the core mode of the CTLF. (b) Bending loss for CTLFs with 8 (red dots) and
9 (green dots) transparent cladding tubes and for a 8 PMMA tubes CTLF (blue) at 0.86
THz. Dashed lines represent the asymptotic R−2

b trend. (c) Poynting vector intensities for
the core mode at the high loss peaks reported in (b).

Figures 4(b) and 4(d) allow a comparison of the numerical results with those predicted by Eq.
(4) for the high frequency edge of the first transmission window. Excellent agreement is found.
For large bending radii, the shift is negligible, as indicated by the increasing, steep gradient
above 0.45 THz (Fig. 4(b), red curve). By reducing Rb the edge shifts quicker, limiting the
transmission window bandwidths.

5.2. Extra loss due to hole modes resonances

The extra loss due to the resonances between the core mode and hole modes appear when the
modes are phase matched. In a straight fiber this cannot happen because of the different size
between the fiber core and the cladding holes. However, Fig. 4(a) shows that due to the confor-
mal mapping on the bent fiber, the refractive indices inside the cladding holes change according
to their relative position along the bending direction and the bending radius. In particular, the
effective indices of the modes of the outer tubes increase approaching the effective index of the
core mode until the phase matching condition is reached, causing the extra losses.

By assuming a uniform refractive index inside each hole for simplicity, and by substituting
the values ñL(xci,yci) in Eq. (2), it is possible to analytically describe the effective index of
the holes modes of the i-th tube centered at (xi,yi) for the bent fiber. In Fig. 5(a) the analyti-
cal curves of the effective indices of the core and hole modes at f = 0.86 THz are shown as
a function of the bending radius. They are compared with the numerical curves obtained by
applying the conformal mapping technique to a single hole with internal radius rint , refractive
index nL = 1, centered at (xci,yci) and immersed in an infinite dielectric medium with refractive
index ℜ(nH) = ℜ(nPMMA

H ) and ℑ(nH) = 0. A good agreement is found showing the validity of
the proposed analytical model. Small discrepancies appear only for the hole mode placed on the
y axis (hole 3 in Fig. 4(a)) because for tight bends, the hole mode field profile shifts toward the
outer part of the bending plane whereas the analytical model neglects this distortion. The same
observations can be made for the effective index of the core mode. The difference between an-
alytical and numerical results appears for larger bending radii for the core mode compared to
hole 3 mode because having Rco > rint the field profile bending distortion is more pronounced
for the core mode than the hole mode, as shown in Fig. 5 (c). The crossing points between the
core mode and hole mode curves in Fig. 5(a) represent the phase matching conditions, that is
the resonances between core and holes modes. By equating Eq. (2) for both the core and the
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mode of a hole positioned at x = xc it is possible to have an analytical estimation of the bending
radii at which these resonances appear:

Rb =
xc

ln

[
M(Rco)

2 +

√(
M(Rco)

2

)2 −M(rint)+1

] , M(R) = 1− 1
2

(
unmc
2π f R

)2

. (5)

The resonance with the outermost hole mode defines the tolerance of the CTLF to additional
high loss peaks. The green curve in Fig. 4(d) shows the evaluation of Eq. (5) with xc = xc1 over
the first two transmission windows, whereby the bending radius required to shift the resonance
between the core and the mode of hole 1 to a particular frequency is plotted as a function
of frequency. No resonances are found in the first two transmission windows for Rb > 30 cm
meaning that the considered CTLF is relatively robust against extra resonances for such bending
radii. However, when Rb falls below this, the resonance appears in the second transmission
window and shifts toward lower frequencies, eventually reaching the first transmission window
at Rb ≈ 5 cm.

Figure 5(b) shows also the bending loss (BL(Rb)=α(Rb)−α(∞)) at f = 0.86 THz versus the
bending radius. For large bending radii BL increases as 1/R2

b as it has already been reported in
the literature for other hollow core waveguides [30–32]. For small value of Rb, many additional
loss peaks appear due to the resonances with hole modes. The intensity profile of the core mode
at these peaks is shown in Fig. 5(c). The Rb values of the extra losses are well predicted by Eq.
(5). Figure 5(b) shows also the bending loss for the core mode of a CTLF with PMMA cladding
tubes. For large Rb values the bending loss still scales as R−2

b as was found for the lossless
case. The higher magnitude of bending loss with respect to the ideal case can be ascribed to the
additional loss caused by PMMA absorption in the bent fiber. Extra losses due to the resonances
between the core and hole modes are still present and their position is not changed with respect
to the ideal tubes. However, their relative magnitude with respect to the background bending
loss is reduced because the loss is already higher due to material absorption. For this reason
it was not possible to clearly identify such extra resonance on the experimental normalized
transmission graphs reported on Fig. 3(c).

In order to further confirm the proposed model, Fig. 5(b) shows also the bending loss for a
CTLF of an alternative design with nine tubes in the cladding. In this case, Rco and t remain
the same as before, and rint is reduced to 596 μm, with a schematic shown in the lower right
panel of Fig. 5(c). According to Eq. (2), this change causes a reduction of the effective index
for the hole modes in the straight fiber, whereas the core mode is unaffected. As a consequence
a smaller bending radius is necessary to reach the phase matching condition between core and
hole modes. Numerical results shown in Fig. 5(b) confirm that the first resonance shifts toward
lower values of bending radius, and allows the bending radius to be further reduced by 10 cm
before such resonances appear. This provides an avenue for increasing the amount of bending
possible before such resonances affect the transmission.

6. Conclusions

In this paper a flexible circular tube lattice fiber for THz applications has been demonstrated
and investigated numerically and experimentally. The cladding was made from widely available
polymethylmethacrylate tubes displaced circularly around a hollow core. The structure was
assembled manually without the need of further drawing steps or glue. A heat-shrink jacket
was added to enhance the mechanical stability of the structure while keeping it flexible.

Samples of different lengths were used to characterize the dispersion and propagation loss
for the manufactured fibers. An excellent agreement with the numerical results was found:
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propagation loss was reduced by 31 times at 0.375 THz and 272 times at 0.828 THz with
respect to the bulk material, these frequencies corresponding roughly to the centre of the two
observed transmission windows. At these frequencies the overall measured loss was 0.3 dB/cm
and 0.16 dB/cm. Through a numerical analysis it was shown that propagation loss can be greatly
reduced if a material with lower absorption (e.g. Zeonex, Topas) is used for the cladding tubes.

The 20 cm sample was used to characterize the bending. The lower frequency transmission
window showed to be the most robust against bending and a bending radius as low as Rb = 10
cm was necessary to produce a clear reduction in the transmission spectrum. A higher sen-
sitivity was found for the second transmission window: here a Rb = 30 cm produced visible
perturbations to the transmitted spectrum.

A thorough numerical analysis of the bending in CTLFs was also performed in order to
investigate all the effects that limit the performance in such bent waveguides. In general, due to
the bending, there is an expansion toward lower frequencies of the high loss peaks that delimit
the transmission windows. An analytical formula was proposed to estimate the amount of this
shifting as a function of the bending radius. However, bending radii as small as Rb < 20 cm are
required in order to have a visible reduction of the transmission bandwidth for the first and the
second transmission window.

Taking into account a single frequency for the bending analysis, it was found that for large
values of Rb, bending loss scales as R−2

b . On the contrary, for small bending radii additional
resonances between core and various hole modes were found. These cause extra loss peaks in
the propagation loss of the core mode. An analytical model was proposed in order to predict the
bending radius at which these resonance appear once the working frequency is defined. A good
agreement was found between the analytical formula and the numerical data, showing that this
model can be used to determine the bending tolerance of CTLF to these extra resonances. It
was shown that these resonances appear only for Rb < 30 cm (for the second transmission win-
dow), therefore making CTLF relatively immune to them. In order to further test the proposed
analytical model, a CTLF with nine tubes in the cladding was also considered. As expected the
first resonance between core and hole modes shifted toward smaller bending radii, allowing the
waveguide to become more insensitive to these extra resonances.

A. Marcatili’s formula for solid core tube fibers

Marcatili’s formula has been widely used in the literature to describe the dispersion properties
of the core mode of hollow core waveguides [20, 30]. The main limitation of this formula is
that it was developed assuming that the core is made of air (nL = nair = 1). In this appendix
Marcatili’s formula is extended to take into account also hollow core waveguides with a generic
refractive index core.

Consider a circular waveguide of radius R and refractive index nL embedded in an another
dielectric medium of infinite extent and refractive index nH . Here, for simplicity, both nH and
nL are real and nL < nH . Owing to the geometry of the problem, a cylindrical coordinate system
is assumed. Two propagation constants, Kτ (τ = {L,H}) and β , can be defined: the former
is directed along the transverse plane of the waveguide, while the latter along the axial one.
These two constants satisfy the relation K2

0 n2
τ = K2

τ +β 2, where K0 = 2π f/c is the propagation
constant in free space. With these assumptions, it can be shown that the dispersion relation for
the modes guided inside the internal cylinder satisfies [33]:
[

J′ν(KLR)
Jν(KLR)

− KL

KH

H(1)′
ν (KHR)

H(1)
ν (KHR)

][
J′ν(KLR)
Jν(KLR)

− KL

KH

n2
H

n2
L

H(1)′
ν (KHR)

H(1)
ν (KHR)

]
=

[
νβ

K2
LR2

(
K2

L

K2
H

−1

)]2

,

(6)
where Jν(x) and H(1)

ν (x) are the Bessel and Hankel functions of the first kind. Solving Eq.
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(6) means finding the propagation constants β of the guided modes. Two hypotheses can now
be introduced to simplify calculations: first, the core radius is much bigger than the working
wavelength (i.e. K0R >> 1) and, second, modes guided inside the internal cylinder have a
propagation constant which is very close to that of the bulk material (i.e. β ≈K0nL). Neglecting
all powers of KL/KH greater than one, and introducing the following approximation:

H(1)′
ν (KHR)

H(1)
ν (KHR)

≈ i, (7)

it is possible to reduce Eq. (6) to the following form:

Jν−1(KLR) = i
η√

( nH
nL
)2 −1

KL

K0nL
Jν(KLR), (8)

where:

η =

⎧
⎪⎨
⎪⎩

1
2

[
1+( nH

nL
)2
]

for HEνμ and EHνμ modes

1 for TE0μ modes
( nH

nL
)2 for TM0μ modes

(9)

Under the assumptions already made, the term on the right hand side of Eq. (8) is in general
small. Therefore, a perturbation technique can be applied to solve Eq. (8) keeping only the first
term of the perturbation obtaining [30]:

KL ≈ uνμ

R

⎡
⎣1− iν

1
K0nLR

η√
( nH

nL
)2 −1

⎤
⎦ , (10)

where uν ,μ is the μ-th zero of the function Jν−1(x). It is now straightforward to obtain propa-
gation constants for the guided modes:

β = Re

{√
K2

0 n2
L −K2

L

}
≈ 2π f

c
nL

[
1− 1

2

(
uνμc

2π f RnL

)2
]
, (11)

and then finally

ne f f =
β
K0

= nL − 1
2

(
uνμc

2π f R
√

nL

)2

. (12)
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