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Abstract

Operational risk data, when available, are usually scarce, heavy-tailed and possibly

dependent. In this work, we introduce a model that captures such real-world character-

istics and explicitly deals with heterogeneous pairwise and tail dependence of losses. By

considering flexible families of copulas, we can easily move beyond modeling bivariate

dependence among losses and estimate the total risk capital for the seven- and eight-

dimensional distributions of event types and business lines. Using real-world data, we

then evaluate the impact of realistic dependence modeling on estimating the total regu-

latory capital, which turns out to be up to 38% smaller than what the standard Basel

approach would prescribe.
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1. Introduction

The magnitude of operational losses observed in recent years and their potential sys-

temic effects has pointed out the need of development of realistic and therefore often more

sophisticated quantitative risk management models (see Basel Committee on Banking Su-

pervision (2009b)). Among the main challenges in operational risk modeling, we have the

presence of very heterogeneous losses, usually classified in a matrix of 56 risk classes (seven
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event types (ETs) × eight business lines (BLs)1; see Basel Committee on Banking Super-

vision (2006)), scarcity of data and large numbers of zero losses for some classes, short

time series with extreme tails and the need to estimate quantiles at very high confidence

levels. In fact, banks are required to calculate the minimum capital requirement as the

99.9%-Value-at-Risk of the loss distribution such that

MCR = VaR99.9%

(
56∑
j=1

Sj

)
, (1.1)

where Sj is the aggregate loss of one of the 56 BL-ET combinations. It is clear that this

quantity is influenced by the dependencies among the different risk classes. The standard

approach of the Basel Committee on Banking Supervision (2006) recommends banks to

marginally calculate the risk capital of all 56 BL-ET combinations and then determine

the risk capital as the sum of these 56 figures, that is,

MCRBasel =
56∑
j=1

VaR99.9% (Sj) . (1.2)

This corresponds to the assumption of comonotonicity (perfect dependence) among all 56

BL-ET combinations, which is often perceived by banks as a worst-case scenario for the

MCR, assuming that MCRBasel ≥ MCR. However, due to the lack of subadditivity of the

VaR measure for non-elliptical distributions (see Artzner et al. (1999)), it may also happen

that MCR ≥ MCRBasel. The question if the standard Basel approach is appropriate has

therefore been raised many times by practitioners and researchers.

Regulators allow then, with due diligence, explicit dependence modeling under the Ad-

vanced Measurement Approach (AMA)2. The supervisory guidelines for the AMA banks

1Business lines: 1. Corporate Finance, 2. Trading and Sales, 3. Retail Banking, 4. Commercial Bank-

ing, 5. Payment and Settlement, 6. Agency and Custody, 7. Asset Management, 8. Retail Brokerage.

Event types: 1. Internal Fraud, 2. External Fraud, 3. Employment Practices & Workplace Safety, 4.

Clients, Products & Business Practices, 5. Damage to Physical Assets, 6. Business Disruption & System

Failures, 7. Execution, Delivery & Process Management.
2§669d in Basel Committee on Banking Supervision (2006): “Risk measures for different operational

risk estimates must be added for purposes of calculating the regulatory minimum capital requirement.

However, the bank may be permitted to use internally determined correlations in operational risk losses

across individual operational risk estimates, provided it can demonstrate to the satisfaction of the na-

tional supervisor that its systems for determining correlations are sound, implemented with integrity, and
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(Basel Committee on Banking Supervision, 2011) underline that dependence modeling for

operational risk is an evolving area, where many approaches are currently used by banks

with potential impact on the capital requirements. Results from the 2008 Loss Data Col-

lection Exercises (Basel Committee on Banking Supervision, 2009a) suggest that, among

the AMA banks only 17% use correlation coefficients, while most rely on copulas (43%),

with a preference for Gaussian copulas, and 31% AMA banks use other methods.

Research is high then on the regulators agenda to avoid spurious differences in exposure

estimates (see Basel Committee on Banking Supervision (2011, §224)) and to provide

sound guidelines for dependence modeling in operational risk, explicitly suggesting to

move beyond Gaussian copulas and correlations coefficients. Theoretical and empirical

evidence so far has mostly supported the idea that the assumption of perfect positive

dependence is unduly strong and using internally determined correlations, as Basel II

allows, could lead to lower the risk capital requirements while still providing adequate

coverage for future losses (see Artzner et al. (1999), Chapelle et al. (2008) and Frachot

et al. (2004)). However, recently Mittnik et al. (2011) have also shown that, despite

only for a small number of risk classes, modeling bivariate dependence could also lead

to increase the risk capital. Especially tail dependence, which cannot be captured by

Pearson’s correlation coefficient, should not be ignored. What is the total impact on risk

capital of explicit dependence modeling among all BLs and ETs is still, to our knowledge, a

question with no answer, as estimating realistic multivariate operational risk management

models with more than two cells can be computationally challenging and data are often

scarce for model validation.

In this work, we aim at analyzing how much the risk capital estimate may change

when modeling dependencies in multivariate settings. That is, we consider the total

impact of explicit dependence modeling within the eight- or seven-dimensional BL and

ET distributions by introducing a statistical model, which allows to explicitly consider

the presence of extreme tails, heterogeneous pairwise dependence and large numbers of

zero observations. In particular, we propose a flexible approach that, inspired by the work

take into account the uncertainty surrounding any such correlation estimates (particularly in periods of

stress). The bank must validate its correlation assumptions using appropriate quantitative and qualitative

techniques.”
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of Deb et al. (2009) on drug expenditures and Erhardt and Czado (2012) on dependent

health insurance claims, directly models the dependence between the aggregate losses in

BL-ET combinations using copulas. Since the non-occurrence of losses (zero events) also

conveys information about the dependence characteristics, we explicitly incorporated it

to allow a more accurate assessment of dependence. Finally, given that no excessive data

aggregation is required, parameter estimation can be based on the maximum amount of

available observations.

By using real-world data from the Italian Database of Operational Losses (DIPO) in

the period from January 2003 to June 2011, we can provide new and much needed insights

on the impact of different dependence modeling strategies on total capital requirements

and their validation on real-world data. In fact, our results suggest that explicitly model-

ing dependence can lead to a reduction, as often expected, of the total regulatory capital,

which might turn out to be up to 38% smaller than what the Basel comonotonicity ap-

proach would prescribe.

The paper is organized as follows. Section 2 describes the general modeling framework

by discussing the key components of our modeling strategy. Dependence modeling of

positive losses is treated in Section 3, after introducing the key properties we consider

as relevant to compare the four major copula classes that we investigate for multivariate

operational risk modeling. Marginal modeling and a detailed description of the considered

copula families are reported in Appendix A and Appendix B, respectively. Modeling

dependence among zero events as an additional model component is described in Section

4, and the computation of risk measures is subsequently discussed in Section 5. Section 6

finally provides the results of the empirical investigation on real-world data, while Section

7 concludes.

2. Zero-inflated dependence model

Common characteristics of operational risk data can be summarized as follows. First,

if losses are modeled on a weekly or monthly basis, it may frequently occur that there are

no losses observed for a particular BL or ET. An excessive number of zero losses is called

zero inflation. Second, distributions of operational losses per BL or ET may be heavy-

tailed, that is, there is a significant probability of extreme losses that has to be taken into
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account. Third, different BLs and ETs are not independent. Most importantly, the type

of dependence, especially the so-called tail dependence, may have a large impact on risk

capital estimates.

While the heavy tails in marginal distributions have already been extensively discussed

in the literature (see for example Chavez-Demoulin et al. (2006) and Gourier et al. (2009)),

appropriate zero-inflated dependence models for aggregate operational losses have, to our

knowledge, not yet been proposed.

Copulas have been established as the fundamental concept of statistical dependence

modeling. A d-dimensional copula is a multivariate distribution function on [0, 1]d with

uniform marginal distribution functions. Its central role in dependence modeling is due

to the theorem by Sklar (1959), which states that any multivariate distribution can be

decomposed into its margins and a copula. More precisely, let X = (X1, ..., Xd)
′ ∼ F1,...,d

with marginal distributions F1, ..., Fd, then

F1,...,d(x1, ..., xd) = C1,...,d(F1(x1), ..., Fd(xd)), x1, ..., xd ∈ R ∪ {−∞,∞}, (2.1)

where C1,...,d is a d-dimensional copula. If X is a continuous random vector, then the

copula C1,...,d is unique and the multivariate density f1,...,d of X can be decomposed as

f1,...,d(x1, ..., xd) = c1,...,d(F1(x1), ..., Fd(xd))f1(x1)...fd(xd), (2.2)

where c1,...,d is the copula density and f1, ..., fd are the marginal densities of f1,...,d. Com-

prehensive reference books on copulas are Joe (1997) and Nelsen (2006).

Now, suppose that we want to model the multivariate distribution of d BLs, ETs or

cells of the 7× 8 BL-ET matrix. For brevity, we henceforth always speak of d cells with

d ∈ {7, 8, 56}. Let Sj ≥ 0, j = 1, ..., d, denote the aggregate loss of the jth cell. Then,

we explicitly model the presence of zero inflation in the aggregate loss by defining the

following binary random variable Wj ∼ PWj
for each cell j ∈ {1, ..., d} as

Wj :=

1, zero loss in cell j

0, otherwise

.

That is, Wj is the zero inflation component of the otherwise positive continuous part of

Sj, which we denote by S+
j > 0. We obtain the following decomposition:

Sj = Wj × 0 + (1−Wj)S
+
j = (1−Wj)S

+
j ≥ 0. (2.3)
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If PWj
(0) = P (Wj = 0) = 1, then there is no zero inflation. We assume that the

zero inflation components W := (W1, ...,Wd)
′ and the size of the positive losses S+ :=

(S+
1 , ..., S

+
d )′ are independent. When only losses above a certain reporting threshold are

observed, this assumption may neglect potential dependencies between losses just above

and below the threshold. As operational risk capital is mainly driven by the tails of the

loss distribution and such small losses are therefore typically negligible, we think that this

assumption is not entirely unreasonable. Possible model extensions to account for such

dependencies are mentioned at the end of Section 4.

Inspired by the work of Deb et al. (2009) on drug expenditures and Erhardt and Czado

(2012), who build a three-dimensional model for dependent health insurance claims, we

introduce the multivariate zero-inflated density of W and S := (S1, ..., Sd)
′ as

fW ,S(w, s) = pW (w)fS|W (s|w) = pW (w)f{S+
j , j ∈D(w)}(sj, j ∈ D(w)), (2.4)

where w := (w1, ..., wd)
′, s := (s1, ..., sd)

′ and D(w) = {i ∈ {1, ..., d} : wi = 0}. That

is, D(w) contains all indices, for which the respective component of w is equal to 0. In

other words, these are the cells with non-zero events. The |D(w)|-dimensional density

of S+
j , j ∈ D(w), is denoted by f{S+

j , j ∈D(w)}. If there are zero events in all cells

(D(w) = ∅), then we set f∅ := 1. The multivariate binary probability mass function of

W is denoted by pW . More explicitly, we can write Expression (2.4) also as

fW ,S(w, s) = pW (w)
[
1{w=(1,...,1)′} + 1{w=(0,1,...,1)′}fS+

1
(s1) + 1{w=(1,0,1,...,1)′}fS+

2
(s2)

+ ...+ 1{w=(1,...,1,0)′}fS+
d

(sd) + 1{w=(0,0,1,...,1)′}fS+
1 ,S

+
2

(s1, s2)

+ 1{w=(0,1,0,1,...,1)′}fS+
1 ,S

+
3

(s1, s3) + ...+ 1{w=(1,...,1,0,0)′}fS+
d−1,S

+
d

(sd−1, sd)

+ 1{w=(0,0,0,1,...,1)′}fS+
1 ,S

+
2 ,S

+
3

(s1, s2, s3) + ...+ 1{w=(0,...,0)′}fS+
1 ,...,S

+
d

(s)
]
,

where 1 is the indicator function. Clearly, only exactly one of the indicator functions is

different from zero, as the following example illustrates. Assume d = 3 and that data as
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Obs. Cell 1 Cell 2 Cell 3 w D(w)

1 125 30 65 (0, 0, 0)′ {1, 2, 3}

2 45 0 110 (0, 1, 0)′ {1, 3}

3 90 0 0 (0, 1, 1)′ {1}

4 0 15 140 (1, 0, 0)′ {2, 3}

5 0 60 0 (1, 0, 1)′ {2}

Table 1: Data example: losses in three different cells.

shown in Table 1 are given. The densities evaluated at these observations are

fW ,S(w1, s1) = pW (0, 0, 0)fS+
1 ,S

+
2 ,S

+
3

(125, 30, 65),

fW ,S(w2, s2) = pW (0, 1, 0)fS+
1 ,S

+
3

(45, 110),

fW ,S(w3, s3) = pW (0, 1, 1)fS+
1

(90),

fW ,S(w4, s4) = pW (1, 0, 0)fS+
2 ,S

+
3

(15, 140),

fW ,S(w5, s5) = pW (1, 0, 1)fS+
2

(60).

In this way, we separate the dependence of the zero inflation component from the

dependence of the positive losses. By applying Sklar’s theorem (2.2) to f{S+
j , j ∈D(w)}, we

further obtain

f{S+
j , j ∈D(w)}(sj, j ∈ D(w)) = c{j ∈D(w)}(FS+

j
(sj), j ∈ D(w))

∏
j ∈D(w)

fS+
j

(sj),

where c{j ∈D(w)} is the copula density of C{j ∈D(w)}, the |D(w)|-dimensional margin of the

d-dimensional copula C1,...,d for all cells, which is assumed to be absolutely continuous

such that the density exists. More explicitly, it holds that

C{j ∈D(w)}(uj, j ∈ D(w)) = C1,...,d(v), uj ∈ [0, 1] ∀j ∈ D(w),

where v := (v1, ..., vd)
′ with

vj =

uj, j ∈ D(w)

1, otherwise

∀j = 1, ..., d.
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For instance, the copula C1,3, as needed for the second observation in Table 1 with d = 3,

is given by

C1,3(u1, u3) = C1,2,3(u1, 1, u3), u1, u3 ∈ [0, 1].

It follows that we can state Expression (2.4) in terms of the copula C1,...,d and its margins

C{j ∈D(w)} as

fW ,S(w, s) = pW (w)c{j ∈D(w)}(FS+
j

(sj), j ∈ D(w))
∏

j ∈D(w)

fS+
j

(sj). (2.5)

This means that, as in the classical copula approach, we can separate the dependence

modeling in terms of the copula C1,...,d from the modeling of the marginal distributions

FS+
j
, j = 1, ..., d, in (2.5). In addition, the multivariate binary distribution pW has to be

modeled to account for the zero inflation component. Appropriate choices for these three

model components are discussed in the following. We begin with the copula of positive

losses (Section 3) and then turn to the zero loss distribution pW (Section 4). Marginal

distributions are briefly treated in Appendix A, while a detailed description of pros and

cons of different copulas families is reported in Appendix B.

3. Copula modeling of positive losses

The between-cell copula is central to the model in order to appropriately capture

dependencies in operational risk data. In the simplest setting, the cells are simply assumed

to be either independent or perfectly dependent (comonotone). As this is not necessarily

the case, the question is what properties a reasonable copula for operational losses should

exhibit.

(i) Pairwise dependence: Clearly, dependence among different pairs of cells may be

heterogeneous. Therefore the between-cell copula should be flexible enough to allow

for different strengths of dependence for different pairs.

(ii) Tail dependence: The between-cell copula should allow for the modeling of tail

dependence. The presence of upper tail dependence means that very large losses

tend to occur jointly rather than independently.

From a statistical point of view, the upper tail dependence coefficient is defined as

a bivariate property: the probability of an extreme event of S+
j given an extreme
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event of S+
k , k 6= j, that is,

λUj,k = lim
t→1−

P (S+
j > F−1

S+
j

(t)|S+
k > F−1

S+
k

(t)) = lim
t→1−

1− 2t+ Cj,k(t, t)

1− t
,

which only depends on the copula of the pair (S+
j , S

+
k ). Obviously, λUj,k ∈ [0, 1] and,

if λUj,k = 0, (S+
j , S

+
k ) do not exhibit upper tail dependence.

(iii) Interpretability: Copulas may be specified in terms of many parameters with many

different meanings. For reasons of internal and external communication, for example

to the senior management or regulators, it is however desirable to work with a model

that has parameters whose meaning can actually be interpreted. As we will see

below, often parameters are directly linked to the tail dependence coefficients or to

measures of the general dependence, such as the Kendall’s τ rank correlation.

(iv) Computational tractability: To work with model (2.5) requires the availability of

all multivariate copula margins C{j ∈D(w)} of the copula C1,...,d. This is particu-

larly important for statistical inference, where the density expression is required for

likelihood-based techniques.

While most of the literature on dependence modeling of operational losses (see Dalla Valle

et al. (2008) and Giacometti et al. (2008)) and also practitioners (see Basel Committee

on Banking Supervision (2009a)) focus on elliptical copulas, we here more generally eval-

uate a range of different state-of-art multivariate copula models in light of the above four

characteristics and discuss how useful they are for modeling operational risk data. In

particular, we focus on Archimedean, elliptical and vine copulas as well as the individual

Student’s t copula. While Archimedean and elliptical copulas have already found appli-

cations in operational risk modeling, the individual Student’s t copula and vine copulas

are here proposed, implemented and empirically tested for the first time. Moreover, Ta-

ble 2 summarizes how the different copulas models behave (that is, either positively (+),

neutrally (◦), or negatively (–)) with respect to the desired characteristics of being ca-

pable of modeling pairwise and tail dependence while still being easily interpretable and

computationally tractable.

While Archimedean copulas fail to model heterogeneous pairwise dependence, this is

straightforward using elliptical copulas, which also are easily interpretable in terms of

their underlying correlation matrices. However, standard elliptical copulas, namely the
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Figure 1: Contour plots of bivariate Archimedean Gumbel, Archimedean Frank, Gaussian,

Student’s t with 8 degrees of freedom as well as individual Student’s t (6 and 10 degrees

of freedom) copulas. Kendall’s τ is 0.5 for all copulas. Margins are standard normal.

Archim. Gaussian Student’s t Indiv. t Vine

Pairwise dependence – + + + +

Tail dependence ◦ – ◦ + +

Interpretability + + + + ◦

Comput. tractability + + + ◦ –

Table 2: Overview of copula characteristics: positive (+), neutral (◦), and negative (–).

Gaussian and the Student’s t copula, are somewhat restrictive when it comes to the tails.

A flexible modeling of the tails is instead facilitated by the individual Student’s t copula

and vine copulas, at the expense of an increased computational complexity and, to some

extent, a less obvious interpretation of parameters, especially for vine copulas. Contour

plots of the different copula families are shown in Figure 1 to illustrate the different

behavior in the upper tail, as indicated by more pointed contour lines in the upper right

corner of the plots: the tail-asymmetric Gumbel copula with only upper tail dependence

is very pointed in the upper right corner with an overall teardrop shape, while Frank

and Gaussian copulas do not show such behavior. The standard Student’s t and also the

individual Student’s t copula are also both more pointed than the Gaussian copula in the

tails, pointing out a higher probability of observing joint extreme events than implied by

the Gaussian copula. We refer the reader to Appendix B for a detailed description of the

pros and cons of the different copula models, with respect to the four key characteristics

we have proposed above.
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4. Copula modeling of zero losses

The random vector W of zero inflation components is multivariate binary, for which

distributions are however rather non-standard and often require an excessive number

of parameters (see for example Johnson et al. (1997)). We propose to use a copula

approach here, which for clarity we first illustrate in a bivariate example. For this, let

W = (W1,W2)
′ and recall that P (Wj = wj) = P (Wj ≤ wj) − P (Wj ≤ wj − 1) =

PWj
(wj) − PWj

(wj − 1), j = 1, 2. Similarly, it holds for the bivariate probability mass

function pW that

pW (w) = P (W1 = w1,W2 = w2)

= P (W1 ≤ w1,W2 ≤ w2)− P (W1 ≤ w1 − 1,W2 ≤ w2)

− P (W1 ≤ w1,W2 ≤ w2 − 1) + P (W1 ≤ w1 − 1,W2 ≤ w2 − 1)

= CW (PW1(w1), PW2(w2))− CW (PW1(w1 − 1), PW2(w2))

− CW (PW1(w1), PW2(w2 − 1)) + CW (PW1(w1 − 1), PW2(w2 − 1)),

where we used Sklar’s theorem (2.1) with an appropriate bivariate copula CW . In general,

the multivariate probability mass function pW can be represented as

pW (w) =
2∑

k1=1

...
2∑

kd=1

(−1)k1+...+kdCW

(
u
(k1)
1 , ..., u

(kd)
d

)
, (4.1)

where u
(1)
j := PWj

(wj) and u
(2)
j := PWj

(wj − 1) for j = 1, ..., d (see Song (1997)). For

binary margins PWj
, it is either wj = 0 or wj = 1. If wj = 0, then u

(1)
j = PWj

(0) is

the probability of a non-zero loss and u
(2)
j = PWj

(−1) = 0. Conversely, if wj = 1, then

u
(1)
j = PWj

(1) = 1 and u
(2)
j = PWj

(0).

The copula CW can be any d-dimensional copula. As before, we recommend to use

a copula that allows for heterogeneous pairwise dependence, which makes Archimedean

copulas of no interest here. As vine copulas, on the other hand, do not have a closed-form

copula expression, they should also be ruled out (see Panagiotelis et al. (2012) for an

alternative, vine-based approach to modeling multivariate discrete data, which could be

used here). Finally, to evaluate Expression (4.1), 2d evaluations of the copula are needed,

resulting in being very time-consuming and such that also the individual Student’s t

copula, which is of more complicated form than standard elliptical copulas, typically is
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not a good choice. The Gaussian copula may, on the other hand, be used here, since

efficient algorithms for the evaluation of CW are available (Genz and Bretz, 2009). To

evaluate a Student’s t copula, the dimension should however be rather small. Estimation

is carried out by maximum likelihood techniques.

Expression (4.1) can also be extended to handle both discrete and continuous data

(see Song (1997)). In this way, dependence between the zero inflation components W

and the size of the positive losses S+ could be modeled, e.g., using an elliptical copula.

Alternatively, we could use a vine-based model for discrete and continuous data, which was

recently proposed by Stöber et al. (2012) and which extends the approach by Panagiotelis

et al. (2012).

5. Risk measures

A major purpose of a multivariate model for operational losses is of course an accurate

assessment of the regulatory risk capital to be held to cover future losses. The standard

risk measure for computing the operational risk capital under Basel II is the Value-at-Risk

(VaR) at the 99.9% level, as reported in (1.1). In general, for a level α ∈ [0, 1] the α-VaR

is defined as

VaRα(L) = F−1L (α), (5.1)

where L =
∑d

j=1 Sj is the total operational loss over d cells and FL its distribution function

(see for example McNeil et al. (2005)). Since FL is usually not known in closed form, it

has to be obtained by simulation. To simulate N losses sij, i = 1, ..., N, for each cell

j ∈ {1, ..., d} using our multivariate model (2.5), we proceed as follows.

(i) Obtain N samples uij, i = 1, ..., N, j = 1, ..., d, from the copula C1,...,d for positive

losses. For Archimedean, elliptical and vine copulas see Mai and Scherer (2012), for

the individual Student’s t copula see Luo and Shevchenko (2010).

(ii) Set s+ij := F−1
S+
j

(uij) > 0 for i = 1, ..., N and j = 1, ..., d according to the inverse

probability integral transform.

(iii) Obtain N samples wij, i = 1, ..., N, j = 1, ..., d, from the copula CW for zero losses

and using the marginal distribution functions PWj
, j = 1, ..., d.

(iv) Set sij := (1− wij)s+ij ≥ 0 for i = 1, ..., N and j = 1, ..., d according to (2.3).
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In this way, we obtain N samples of the total operational loss li :=
∑d

j=1 sij, i = 1, ..., N,

and the α-quantile F−1L (α), that is, the α-VaR, can be approximated by the corresponding

empirical quantile of l1, ..., lN .

6. Empirical Analysis

After introducing our multivariate model for operational losses, we now evaluate its

practical implications by using real-world data from the Italian Database of Operational

Losses (DIPO). So far, the number of studies using real-world operational risk data is

still small due to the scarcity of available datasets and the reluctance of the financial

industry to share their private and often very sensitive information. Using data from a

pool of banks and financial institutions, we can provide very much needed insights on the

effects of using more sophisticated risk management modeling techniques on risk capital

estimation and accuracy.

6.1. Data

Our dataset comprises operational losses reported from 33 Italian banking groups

with about 180 entities to the Italian Database of Operational Losses (DIPO). The time

period we consider is from January 2003 to June 2011 for a total of 102 months or 451

weeks. The reporting threshold is 5000 Euro, below which no loss is reported. Further,

it is known for each loss which ET and BL are affected. Figure 2 displays a pie chart

for the proportion of aggregate losses (left) and of numbers of losses (right) for each

BL-ET combination with share larger than 1%. The figure shows that the losses per

cell are rather heterogeneous. That is, operational losses in certain BLs and ETs occur

more often and are of different magnitude. Especially Retail Banking (BL3) and Retail

Brokerage (BL8) are often subject to operational losses, while the most frequent event

types are External Fraud (ET2), Execution, Delivery & Process Management (ET7) and,

in particular, Clients, Products & Business Practices (ET4).

We choose here to model on a weekly basis to balance the trade-off between having

sufficiently many observations to avoid a large number of zero losses in each cell and also

to being able of an accurate marginal and dependence modeling. In our investigation,

we will set up two separate models for the multivariate dependence between the eight

BLs and between the seven ETs, to evaluate also the impact of such choice in the total

13



BL3−ET1

BL4−ET1

BL8−ET1
BL2−ET2

BL3−ET2
BL4−ET2BL3−ET3

BL2−ET4

BL3−ET4

BL4−ET4

BL7−ET4

BL8−ET4

BL2−ET7
BL3−ET7

BL4−ET7

BL8−ET7

Others

Proportion of aggregate losses

BL3−ET1

BL3−ET2

BL4−ET2
BL3−ET3

BL2−ET4

BL3−ET4

BL4−ET4

BL8−ET4

BL2−ET7
BL3−ET7

BL4−ET7

BL8−ET7

Others

Proportion of numbers of losses

Figure 2: Proportion (in %) of aggregate losses Sj (left) and numbers of losses Nj (right)

for each BL-ET combination with share larger than 1%.

risk capital estimate. The same data are used for estimating the two models, but they

are either grouped per BL or per ET. Both approaches are followed in practice (see

Basel Committee on Banking Supervision (2009a)), but so far no investigation showed

the implications behind them. A 56-dimensional model for all BL-ET combinations is left

for future research, as soon as more data will become available. Figure 3 shows pairwise

scatter plots of the aggregate losses of the seven ETs on the log scale. The general level

of dependence appears to be rather weak, as the observations are rather dispersed, but

there are also cases with seemingly stronger dependence such as between ETs 4 and 7.

The dependence between positive losses will be investigated in more detail in Section 6.3.

Figure 3 also indicates that there is a significant number of zero events that needs to be

taken into account explicitly (see Section 6.4).

6.2. Marginal modeling

For the estimation of weekly operational losses per BL and ET we consider the fol-

lowing frequency and severity distributions: zero-truncated Poisson, generalized Poisson

(Consul and Jain, 1973) and negative binomial for loss frequency, and gamma, Weibull,

log normal, Pareto and generalized Pareto for loss severity. Each severity distribution is

translated to the reporting threshold of 5000 Euro (see Expression (A.1)).
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 97.6%  98.4% ET3
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Figure 3: Pairwise scatter plots of aggregate losses S+
j per ET on the log scale. The lower

triangle shows the percentage of pairwise complete observations of (S+
j , S

+
k ). Labels are

omitted from the axes for confidentiality reasons.

Using QQ-plots and goodness-of-fit tests, it turns out that negative binomial fits for

the loss frequency are quite good and always superior to the respective Poisson fits,

which postulate equidispersion that cannot be observed in the available data. Generalized

Poisson fits, which also allow for non-equidispersion, gave similar results as the negative

binomial, so that we decided to use the latter model. In an exploratory pre-analysis,

we also determined that significantly fewer losses are observed in three weeks in August.

We account for this holiday season effect by fitting appropriate mean regressions with

indicator variable for these three weeks3. Severities are not observed to be different in

3Let fN+ denote the probability mass function of the zero-truncated negative binomial distribution

for the number of losses of a given cell. Then, we set

fN+(n) =
Γ(n+ k)

Γ(k)n!

(
k

k + µi

)k (
µi

k + µi

)n/(
1−

(
k

k + µi

)k )
, n ∈ N,
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Figure 4: Comparison of empirical and fitted log normal distribution functions for all

eight BLs and the main range of the individual losses Xij. Labels are omitted from the

horizontal axes for confidentiality reasons.

summer compared to the rest of the year.

For the loss severities, we also used QQ-plots and goodness-of-fit tests to determine

the best fitting distributions per BL and ET. From the above list of distributions the log

normal gave the best fit for the individual positive losses. Figure 4 shows that the fitted

log normal distribution functions in fact very closely follow the empirical distribution

functions of the different BLs. A look at the very tail of the distributions (see Figure 5)

underlines this. For ETs similar results hold.

In the next step, we then compute the convolution of the chosen severity and frequency

with season-dependent mean parameter µi > 0 and size k > 0. We model µi as

µi = exp (β0 + β1Isummer(i)) ,

where β0, β1 ∈ R denote regression parameters, and the indicator variable Isummer is defined as

Isummer(i) :=

1, observation i occurs in one of the three summer weeks

0, otherwise

.

That is, we have two different frequency distributions for each BL and ET, depending on whether a loss

occurs in summer or not.
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Figure 5: Comparison of empirical and fitted log normal distribution functions on the log

scale for all eight BLs in the upper tail of the individual losses Xij. Labels are omitted

from the horizontal axes to maintain confidentiality.

distributions for each BL and ET by Monte Carlo simulation with 100 000 samples (see

Klugman et al. (2008)). For each BL and ET we obtain two convolutions: one for the three

summer weeks with significantly fewer losses and one for the rest of the year. This provides

us with estimates F̂S+
j

and F̂ s
S+
j

of the marginal aggregate loss distribution functions FS+
j

and F s
S+
j

, where the latter indicates the one for the three summer weeks. (Note that we

have j = 1, ..., 8 for BLs and j = 1, ..., 7 for ETs.) These estimates are used to transform

the observed aggregate losses sij, i = 1, ..., 451, to approximately uniform data following

the IFM approach described in Appendix B.5. That is, we set

ûij :=


F̂ s
S+
j

(sij), observation i occurs in one of the three summer weeks

F̂S+
j

(sij), otherwise

. (6.1)

These pseudo observations are then used in the following dependence analysis.

6.3. Copula modeling of positive losses

Based on the marginal transformations, we then fitted the copula models for positive

losses of Section 3 to the ûijs (6.1). As Archimedean copulas we choose the Frank, which

is symmetric and does not exhibit any tail dependence, and the Gumbel, which has upper

17



BL/ET 1 2 3 4 5 6 7 8

1 -0.14 0.02 -0.07 0.08 0.18 0.05 -0.10

2 0.12 0.12 0.16 0.00 0.06 0.10 0.20

3 0.08 0.15 0.23 0.01 0.12 0.10 0.23

4 0.10 0.30 0.16 0.01 0.04 0.06 0.22

5 0.04 -0.01 0.06 0.04 -0.06 0.12 0.07

6 0.05 0.13 0.10 0.12 0.05 0.18 0.06

7 0.07 0.20 0.18 0.29 0.07 0.08 0.10

Table 3: Empirical Kendall’s τ values of jointly observed pairs of positive aggregate losses

(S+
j , S

+
k ) per BL (upper triangle) and per ET (lower triangle).

but no lower tail dependence. Upper tail dependence is of particular interest here, because

it describes the joint probability of very large losses and therefore needs to be accounted

for in risk capital calculations (see Section 6.5). General dependence is however rather

weak between BLs and ETs, respectively: Pairwise empirical Kendall’s τ values between

BLs range from −0.14 to 0.23 and between ETs from −0.01 to 0.30 (see Table 3, and also

Figure 3). This is in line with previous studies (see Dalla Valle et al. (2008), Cope and

Antonini (2008), and Giacometti et al. (2008)) and clearly different from comonotonicity

as postulated by the standard approach (see Expression (1.2)).

As described in Appendix B.4, the use of vine copulas in our multivariate model for

operational losses defined in (2.5) is quite challenging, since multivariate margins are not

available in closed form but involve possibly high-dimensional integration. We therefore

checked both for BLs and ETs which combinations of non-zero events are actually ob-

served, that is, which margins need to evaluated. For a vine copula to be tractable for

statistical inference, it is important to construct it such that only low-dimensional inte-

grations are required for the margins. Such a vine copula can be determined as described

in Appendix C.

We found a PCC for ETs such that only one-dimensional integration is needed to

evaluate the multivariate operational loss model (2.5). This is similar to the individual

Student’s t copula. Unfortunately, for BLs the best possible vine copula still required up
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to three-dimensional integrations, which are numerically very demanding. We therefore

do not consider a vine copula for BLs. For ETs, we fit two different vine copulas: one with

only Student’s t copulas and one with Student’s t copulas for all unconditional variable

pairs and Gaussian copulas for all pairs that are specified conditionally.

Log likelihoods, numbers of parameters as well as AIC values (to penalize the log

likelihood for the number of parameters) of the considered models for BLs and ETs are

shown in Table 4. While both Archimedean copulas are clearly not appropriate for the

operational risk data per BL or ET, elliptical copulas provide a good fit. The individ-

ual Student’s t copula however provides an even better fit than the standard Student’s

t copula. This indicates that tail dependencies are not only present but also quite het-

erogeneous, implying that the standard Student’s t copula with only one parameter for

the degrees of freedom is too restrictive. In fact, the estimated number of degrees of

freedom of the standard Student’s t copula is 42.04 for BLs and 54.78 for ETs, while the

estimated individual degrees of freedom of the individual Student’s t copula vary between

6.30 and more than 300 for BLs (of which three out of eight are below 50) and between

7.62 and also more than 300 for ETs (of which three out of seven are below 50). Hence,

the standard Student’s t copulas create the false impression that dependence is almost

Gaussian, as indicated by the large estimated numbers of degrees of freedom. These can

be seen as averages of the respective estimated individual degrees of freedom, which are

rather heterogeneous. Entries of the correlation matrices range between −0.23 and 0.31

for BLs and between 0 and 0.33 for ETs, corresponding to a rather weak to medium level

of dependence. Computing tail dependence coefficients for these parameters however re-

sults in values very close to 0. This is a very interesting result, since the use of the two

Student’s t copulas allows for an exact quantification of the tail dependence (λUj,k ∈ [0, 1];

see (B.4) and (B.6)), which the non-tail dependent Gaussian copula does not allows for

(λUj,k = 0).

The two vine copulas for dependence between ETs as alternative extension of the

standard Student’s t copula also improve the log likelihood, as larger values imply better

model fitting. This also stresses the need for a flexible tail dependence modeling, but as

before estimated tail dependence coefficients are very small and close to 0. In contrast to

the standard and the individual Student’s t copulas, the vine copulas however strongly
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BLs ETs

Log lik. #Par. AIC Log lik. #Par. AIC

Gumbel 29.14 1 -56.27 51.99 1 -101.99

Frank 36.62 1 -71.23 70.96 1 -139.92

Gaussian 92.92 28 -129.83 107.14 21 -172.28

Student’s t 96.01 29 -134.02 111.32 22 -178.65

Individual Student’s t 105.35 36 -138.70 119.50 28 -183.01

Vine (uncond.: t, rest: Gaussian) - - - 112.80 27 -171.61

Vine (Student’s t) - - - 121.39 42 -158.78

Table 4: Log likelihoods, numbers of parameters and AIC values of copulas for dependence

among BLs and ETs.

suffer from the large number of model parameters, so that AIC values are better for the

elliptical copulas and the individual Student’s t copula. The number of parameters could

however be reduced by setting bivariate Student’s t copulas with, for example, more than

100 degrees of freedom to Gaussian copulas. This would hardly impact the log likelihood

value, but significantly reduce the number of parameters. If a correlation parameter is

very small and close to independence, one could even think of using independence copulas

to reduce the number of parameters even further (see Dißmann et al. (2013)). Also the

individual Student’s t copula could be simplified to some extent, either by grouping vari-

ables with similar numbers of degrees of freedom (the resulting model being the grouped

Student’s t copula by Daul et al. (2003)) or by removing the χ2 mixing variables in the

definition of the individual Student’s t copula (B.5) for components with a large number

of degrees of freedom.

Having identified a range of appealing models for operational risk data, the question

yet is if the data are actually fitted well by the models. Since testing the goodness-of-fit of

multivariate copulas is difficult, especially in our zero-inflated setup, we employ a simple

diagnostics tool to validate our models: From each of the fitted models we simulate a

large sample of size 1 000 000 and compare its characteristics with the observed data: We

calculate pairwise empirical Kendall’s τ values of all observations and of the observations
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BLs ETs

Quadrant(s) All Lower Upper All Lower Upper

Gaussian 0.0008 0.0200 0.0143 0.0008 0.0057 0.0034

Student’s t 0.0009 0.0193 0.0138 0.0006 0.0054 0.0030

Individual Student’s t 0.0009 0.0190 0.0136 0.0008 0.0049 0.0029

Vine (uncond.: t, rest: Gaussian) - - - 0.0011 0.0053 0.0032

Vine (Student’s t) - - - 0.0011 0.0053 0.0028

Table 5: Mean squared differences of pairwise empirical Kendall’s τ values for the observed

operational loss data and data simulated from the dependence models per BL and per

ET. Values are calculated for all observations and for the observations in the lower left

and the upper right quadrant.

in the lower left quadrant [0, 0.5]2 and in the upper right quadrant [0.5, 1]2. Because of the

moderate sample size of 451 and the significant number of zero losses, we do not attempt

to use measures of tail dependence here. Such measures would hardly be reliable, and

therefore not comparable, under such circumstances. For this reason, we focus on the

lower left and the upper right quadrant here.

Mean squared differences of the values for the simulated and the observed data are

reported in Table 5. They are expected to be close to zero when ever the models fit well.

While this is the case with respect to the general level of dependence, there are some

differences in the lower left and the upper right quadrant. The individual Student’s t

copula reaches the smallest numbers here. The larger numbers for BL modeling compared

to ET modeling are due to the larger number of joint zero observations among BLs, which

complicate the empirical measurement and fitting of dependencies.

6.4. Copula modeling of zero losses

As discussed in Section 4, essentially any copula could be used to construct a flexible

multivariate binary distribution for the zero losses, but due to computational and other

limitations we focus here on a Gaussian copula. Empirical marginal probabilities of zero

losses per BL range between 0 and 0.81 in the first BL, while for ETs the largest number

of zero losses is observed for the sixth ET, being about 0.20.
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Figure 6: Annual α-VaRs on the log scale for α = 90%, 95%, 99%, 99.5%, 99.9% and

for the different copula models for positive losses. The left panel shows the results for

BL modeling, the right for ET modeling. Vertical axes have been scaled to maintain

confidentiality.

In a pre-analysis, it turns out that many of the empirical pairwise probabilities of zero

losses are very small (below 0.01). We therefore restrict our copula analysis to those BLs

and ETs with significant pairwise probabilities. These are the BLs 1, 5, 6 and 7 and the

ETs 3, 5 and 6. That is, we fit a four-dimensional Gaussian copula for zero losses of

BLs and a three-dimensional one for the ETs. Estimated entries of the correlation matrix

range between 0.02 and 0.28 for BLs and between 0.05 and 0.51 for ETs. Correlation

coefficients to and between the other BLs and ETs are set to zero.

6.5. Risk measures

After carefully modeling the dependence between positive and zero losses for BLs and

ETs, we evaluate the different models in terms of their risk capital estimates and assess the

diversification benefit compared to the comonotonicity assumption (see also Embrechts

et al. (2009)). In particular, we focus on the Gaussian, the Student’s t, the individual

Student’s t and the vine copula with only Student’s t copulas, since they provided the

best fit. They differ mainly in if and how tail dependencies are modeled. For comparison,

a model with independence between positive and zero losses is also used.

We obtained 100 000 annual samples from the different models, that is, we simulated
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each week of the year respecting the different marginal distributions in summer and then

summed over the weeks. Based on these samples we computed annual VaRs (5.1) for dif-

ferent levels (that is, α = 90%, 95%, 99%, 99.5%, 99.9%) as shown in Figure 6. Obviously,

risk measures are lowest when no dependence among BLs and ETs is assumed. Using a

Student’s t copula as underlying dependence model however results in the highest VaR

estimates, while its extensions, the individual Student’s t and the vine copula with only

Student’s t copulas, lead to smaller estimates. This is very instructive, since a standard

Student’s t copula is often chosen instead of a Gaussian copula to respect tail dependence,

but it apparently leads to an overestimation of quantiles. This is certainly due to the re-

strictive modeling approach of allowing only one parameter to govern the overall level

of tail dependence. Although tail dependence here is very small, its impact is obvious

and a more accurate modeling of it, using extensions of the Student’s t copula, yields

refined estimates of risk measures. Also, notice that when α = 99.9% as under Basel II,

differences between the Gaussian, Student’s t and individual Student’s t copula are more

pronounced compared to the independence assumption. Comparing the BL and the ET

modeling shows that the picture is essentially the same for both. This is reassuring given

that the modeling is based on the same data, which only have been grouped differently.

The second question of interest is the diversification effect of considering the VaR of

the total loss rather than the sum of the individual VaRs (see Expressions (1.1) and (1.2)).

That is, we are interested in the fraction

Divα :=
VaRα(

∑d
j=1 Sj)−

∑d
j=1 VaRα(Sj)∑d

j=1 VaRα(Sj)
, (6.2)

which gives the relative reduction in the VaR compared to the Basel comonotonicity

assumption. If Divα < 0, there is a diversification benefit.

The diversification effect for the copula models considered here is displayed in Figure

7. There is a clear diversification benefit of up to 38% for BLs and 32% for ETs when

explicitly modeling the dependence. This mirrors the fact that dependence between BLs

and ETs, both in general and in the tails, is observed to be rather weak and therefore

clearly differs from the standard Basel comonotonicity approach, where Divα = 0. Inter-

estingly, there is no clear-cut difference between the different models that we choose as

the most accurate ones among a larger pool of models (see Section 6.3). This indicates

that the diversification effect mainly is driven by the general level of dependence modeled,
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Figure 7: VaR diversification effect Divα (6.2) for α ∈ [90%, 99.9%] and for the Gaussian,

Student’s t and individual Student’s t copula models for positive losses of BLs and ETs.

Since differences between lines are very small, no distinction between the different models

is made.

which is about similar for the different models considered here.

7. Conclusion

In this work, we introduce a rather general and flexible multivariate modeling ap-

proach for operational risk losses, which explicitly takes into account the multivariate

dependence among losses and the presence of scarce data. Our aim is to introduce a

more accurate model and then evaluate its implications on the estimation of the total

risk capital compared to the Basel II comonotonicity assumption for the entire set of BLs

and ETs using real-world data. Explicit dependence modeling is discussed critically by

considering different copula classes and introducing, from both statistical and business

perspectives, four key characteristics the ideal model should allow to take into account:

heterogeneous pairwise dependence, tail dependence, interpretable parameters and com-

putational tractability. It turns out that from a theoretical perspective, the individual

Student’s t copula is probably the most appealing model for operational losses, as it

only poses a moderate computational challenge, while still being easily interpretable in

its parameters and structure and allowing for the presence of different pairwise and tail

dependencies. Compared to the Student’s t copula with only one degrees of freedom
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parameter, tail dependence is determined by the degrees of freedom of the individual

variables and therefore flexible in considering potentially heterogeneous behaviors among

losses. Vine copulas add even more flexibility, but at the expense of a more complex pa-

rameter interpretability and computational tractability, which make it less appealing in

our zero-inflated model framework. Gaussian copulas are an option when it is reasonable

to assume no tail dependence, while Archimedean copulas, despite used in practice, are

of less interest for operational risk modeling, as they cannot account for heterogeneous

pairwise dependence.

Empirical results on real-world data suggest that Gaussian and even better Student’s

t copulas can provide a good fit to positive losses grouped by BLs or ETs, despite the

Gaussian implies zero tail dependence and the Student’s t copula results in a potential

overestimation of tail dependence due to its inflexible degrees of freedom parameter.

However, as expected, the individual Student’s t copula shows the best fit in terms of

AIC and log likelihood to the data at hand and allows to build an easily interpretable

model for operational losses, from which to run Monte Carlo estimation to determine the

overall effect on risk capital. In fact, while the Student’s t copula results in the highest VaR

estimates for both BL and ET modeling, with an increase with respect to the independence

assumption of up to 35% and 43% for BLs and ETs, respectively, individual Student’s

t copula estimates result only in an increase of 17% and 37%. This reflects the more

accurate assessment of tail dependence by the individual Student’s t copula, which can

account for heterogeneous tail dependence through the individual degrees of freedom per

variable, of which the standard Student’s t copula’s degrees of freedom can be regarded

as an average.

Finally, when considering the diversification ratio to evaluate the effect of a potential

reduction of risk capital estimates compared to the standard Basel assumption of comono-

tonic losses, results suggest that a more realistic modeling of the multivariate distribution

of BLs and ETs leads to a reduction in capital of up to 38% for BLs and 32% for ETs

for high quantiles (α = 99.9%, with few differences between models). This confirms, as

also previously reported in the literature for much simpler bivariate settings, that the

comonotonicity assumption of the standard Basel framework is unduly strong when eval-

uating the overall effect. Banks might therefore have an incentive to move towards more
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sophisticated but then realistic and accurate risk management models. However, fur-

ther investigations on different real-world data and larger sample sizes for out-of-sample

evaluation are still required to draw irrefutable conclusions.
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Appendix A. Marginal modeling

The topic of marginal modeling of operational losses has already been extensively

discussed in the literature (see, amongst others, Aue and Kalkbrener (2006)). We therefore

only briefly mention the most relevant points. Since here we only deal with one particular

cell, we suppress indices relating to the different cells and simply denote the aggregate

loss by S.

The aggregate loss S is the sum of individual operational losses within a given cell,

that is,

S =
N∑
i=1

Xi,

with the number of losses N ∼ FN and the independent and identically distributed

individual losses Xi ∼ FX , i = 1, ..., N . The severity distribution FX is positive and

continuous and the frequency distribution FN is a count distribution with support on

N0 = {0, 1, 2, ...}. The case N = 0 means that no losses are observed, that is, S = 0 (the

empty sum is taken to be zero). As this case is explicitly taken into account by the zero

loss variable W , we denote the positive number of losses by N+ ∈ N = {1, 2, ...} with
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zero-truncated distribution FN+ . Therefore, we have

S+ =
N+∑
i=1

Xi.

Typical choices for FN+ are the zero-truncated Poisson and negative binomial distributions

(see, e.g., Grogger and Carson (1991)). As is commonly known, the Poisson distribution

assumes equidispersion, that is, it fixes mean and variance to be equal. Since this is a

very strict assumption, the negative binomial distribution may often be a more realistic

choice.

It is typically the case that operational losses below some threshold are not reported.

That is, only losses above a certain threshold are observed. In this case, the severity

distribution has to be translated to this threshold. Let F0 be an arbitrary positive con-

tinuous distribution, then translation to the threshold m > 0 means that we define the

severity distribution for x ∈ (m,∞) as

FX(x) =
F0(x)− F0(m)

1− F0(m)
. (A.1)

An important issue of the distribution of individual operational losses is that it may be

heavy-tailed as noted above. Examples of heavy-tailed (or subexponential) distributions

are in particular the log normal, Pareto, Weibull (with shape parameter smaller than 1)

and generalized Pareto, while the also commonly used gamma distribution is light-tailed

(see Embrechts et al. (1997)). Furthermore, according to a classification based on mo-

ments, Pareto tails can be shown to be heavier than log normal tails. An alternative

proposed in extreme value theory is to use the generalized Pareto as explicit tail distri-

bution above a certain threshold, while a different distribution is used for the body of the

distribution (see Chavez-Demoulin et al. (2006) for more details).

Appendix B. Copulas Families

Appendix B.1. Archimedean copulas

A d-dimensional Archimedean copula is defined in terms of its generator function

ϕ : [0, 1]→ [0,∞) (see McNeil and Nešlehová (2009)):

C1,...,d(u1, ..., ud) = ϕ−1 (ϕ(u1) + ...+ ϕ(ud)) , u1, ..., ud ∈ [0, 1]. (B.1)
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Popular Archimedean copulas are the Clayton, Gumbel and Frank. According to our

proposed key characteristics, this class exhibits:

(i) Pairwise dependence: Each margin of an Archimedean copula is again of the same

copula type with the same parameter. That is, pairwise dependence is fixed to be

the same for all pairs. This quite restrictive property is the reason why Archimedean

copulas are mainly used in bivariate applications, but are not quite appropriate for

multivariate applications with heterogeneous pairwise dependence.

(ii) Tail dependence: Depending on the chosen generator function, Archimedean copulas

can exhibit different tail behavior. For instance, the Gumbel copula is upper tail

dependent, while the Frank does not have any tail dependence.

(iii) Interpretability: For most Archimedean copulas there is a close correspondence

between copula parameter(s) and Kendall’s τ , which measures the general level of

dependence. The Gumbel copula, which has just one parameter θ, for example

implies the following Kendall’s τ value: τj,k := τj,k(θ) = 1 − 1/θ for each pair

of cells j and k. The corresponding upper tail dependence coefficient is λUj,k :=

λUj,k(θ) = 2−21/θ. For other such relationships see, amongst others, Brechmann and

Schepsmeier (2013).

(iv) Computational tractability: The major advantage of Archimedean copulas is that

all margins are readily available and the copula often only depends on one or two

parameters. This strongly simplifies statistical inference (Hofert et al., 2012).

Clearly, because of the insufficient flexibility in pairwise dependence, Archimedean copulas

should be ruled out as reasonable models for multivariate operational losses when moving

beyond the bivariate case.

Appendix B.2. Elliptical copulas

By inverting Sklar’s theorem (2.1), copulas can be constructed for arbitrary multivari-

ate distribution functions F1,...,d and marginal distribution functions F1, ..., Fd as

C1,...,d(u1, ..., ud) = F1,...,d(F
−1
1 (u1), ..., F

−1
d (ud)), u1, ..., ud ∈ [0, 1]. (B.2)

Elliptical copulas are obtained by letting F1,...,d be an elliptical distribution function (see

Fang et al. (1990) and McNeil et al. (2005)) and F1, ..., Fd the corresponding marginal
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distribution functions. The most popular examples are the Gaussian and the Student’s t

copula. Their properties are:

(i) Pairwise dependence: Pairwise dependence of Gaussian and Student’s t copulas

can be different for each pair. In the (d × d)-correlation matrix each pair has a

corresponding entry.

(ii) Tail dependence: While the Gaussian copula does not exhibit any tail dependence,

the Student’s t copula has symmetric upper and lower tail dependence. The degree

of tail dependence for each pair is controlled by the degrees of freedom: the smaller

the degrees of freedom, the stronger the tail dependence. Conversely, the Student’s t

copula converges to the Gaussian copula when the degrees of freedom go to infinity.

(iii) Interpretability: As noted above, pairwise dependence is essentially determined by

the correlation matrix, whose entries can be directly related to the general level of

dependence of each pair. The pairwise Kendall’s τ of cells j and k is

τj,k := τj,k(ρj,k) =
2

π
arcsin(ρj,k), (B.3)

where ρj,k ∈ (−1, 1) is the (j, k)th entry of the correlation matrix (McNeil et al.,

2005). In case of the Student’s t copula with ν > 2 degrees of freedom, the upper

(and lower) tail dependence of each pair can be obtained as

λUj,k := λUj,k(ρj,k, ν) = 2Tν+1

(
−
√
ν + 1

√
1− ρj,k√
1 + ρj,k

)
, (B.4)

where Tν is the univariate Student’s t distribution function with ν degrees of free-

dom.

(iv) Computational tractability: The margins of elliptical copulas are again elliptical of

the same class. The correlation matrix is a sub-matrix of the full correlation matrix.

Although easily tractable density expressions are available, statistical inference is

complicated by the fact that the correlation matrix has to be positive definite. Good

starting values for numerical optimization are often provided by computing pairwise

empirical Kendall’s τ estimates and then inverting Expression (B.3).

The above properties present elliptical copulas as an appealing model for multivariate

operational losses. The major disadvantage certainly is that the Gaussian copula does
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not exhibit any tail dependence, while the tail dependence of the Student’s t copula is

symmetric in both tails and governed by only one parameter for all pairs.

To illustrate the model defined in (2.5) in terms of elliptical copulas, we consider a

trivariate example. If d = 3, then Expression (2.5) can be written as

fW ,S(w, s) = pW (w)
[
1{w=(1,1,1)′} + 1{w=(0,1,1)′}fS+

1
(s1)

+ 1{w=(1,0,1)′}fS+
2

(s2) + 1{w=(1,1,0)′}fS+
3

(s3)

+ 1{w=(0,0,1)′}c1,2
(
FS+

1
(s1), FS+

2
(s2)

)
fS+

1
(s1)fS+

2
(s2)

+ 1{w=(0,1,0)′}c1,3
(
FS+

1
(s1), FS+

3
(s3)

)
fS+

1
(s1)fS+

3
(s3)

+ 1{w=(1,0,0)′}c2,3
(
FS+

2
(s2), FS+

3
(s3)

)
fS+

2
(s2)fS+

3
(s3)

+1{w=(0,0,0)′}c1,2,3
(
FS+

1
(s1), FS+

2
(s2), FS+

3
(s3)

)
fS+

1
(s1)fS+

2
(s2)fS+

3
(s3)

]
.

That is, dependence is modeled by the trivariate copula C1,2,3 with bivariate margins C1,2,

C1,3 and C2,3. If C1,2,3 is an elliptical copula with correlation matrix

R(ρ1,2, ρ1,3, ρ2,3) =


1 ρ1,2 ρ1,3

ρ1,2 1 ρ2,3

ρ1,3 ρ2,3 1

 ,

then each bivariate margin Cj,k, 1 ≤ j < k ≤ 3, is also elliptical of the same class and

has a 2×2-correlation matrix with parameter ρj,k. In case of the Student’s t copula, each

margin also has the same number of degrees of freedom as C1,2,3.

Appendix B.3. Individual Student’s t copula

Recently, Luo and Shevchenko (2010) defined the Student’s t copula with multiple

degrees of freedom or individual Student’s t copula as follows. Let Z = (Z1, ..., Zd)
′ fol-

low a multivariate normal distribution with zero mean vector, unit variances and positive

definite correlation matrix R. Further, let Q be uniformly distributed on [0, 1] and inde-

pendent of Z. Then define Vj =
√
νj/F

−1
χ2
νj

(Q) for constants νj > 2 and j = 1, ..., d, where

F−1χ2
ν

is the inverse χ2 distribution function with ν degrees of freedom. This means that

V1, ..., Vd are perfectly dependent.

The individual Student’s t copula is then defined as the copula obtained by inverting

Sklar’s theorem as in (B.2) for the distribution of

X := (V1Z1, ..., VdZd)
′. (B.5)
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The univariate margins of X are univariate Student’s t distributions with νj degrees of

freedom, j ∈ {1, ..., d}. In other words, each component of an individual Student’s t

copula has an individual degrees of freedom parameter. The standard Student’s t copula

is obtained when ν1 = ν2 = ... = νd. Another special case is the grouped Student’s t

copula with fixed degrees of freedom for groups of variables by Daul et al. (2003). Luo

and Shevchenko (2010) show that the individual Student’s t copula has the following

properties.

(i) Pairwise dependence: As an extension of the standard Student’s t copula, the pair-

wise dependence of the individual Student’s t copula can also vary between different

pairs. The dependence of a pair of variables is determined in terms of the corre-

sponding entry in the correlation matrix and by the two parameters for the degrees

of freedom of the variables.

(ii) Tail dependence: The tail dependence of the individual Student’s t copula is again

symmetric in both tails. In contrast to the standard Student’s t copula, it is however

decisively determined by the degrees of freedom of the individual variables (see

below) and therefore much more flexible.

(iii) Interpretability: With respect to the general dependence the pairwise Kendall’s

τ of cells j and k is approximately given by τj,k := τj,k(ρj,k) = 2
π

arcsin(ρj,k) as

for elliptical copulas (see (B.3)). According to Daul et al. (2003) and Luo and

Shevchenko (2010), the approximation error typically is very small.

The determination of tail dependence coefficients is however less simple. The upper

tail dependence of cells j and k can be shown to be

λUj,k := λUj,k(ρj,k, νk, νj) = A(ρj,k, νj, νk) + A(ρj,k, νk, νj), (B.6)

with

A(ρ, ν1, ν2) =

∫ ∞
0

fχ2
ν1+1

(t)Φ

(
−B(ν1, ν2)t

ν1/(2ν2) − ρt1/2√
1− ρ2

)
dt,

B(ν1, ν2) =

(
2ν2/2Γ((1 + ν2)/2)

2ν1/2Γ((1 + ν1)/2)

)1/ν2

,

where fχ2
ν

denotes the χ2 density function with ν degrees of freedom and Φ the

standard normal distribution function. If ν = νj = νk, this reduces to Expres-
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sion (B.4) for the standard Student’s t copula with ν degrees of freedom. As be-

fore, small degrees of freedom indicate a stronger tail dependence. It holds that

λUj,k(ρj,k, ν
(1)
k , νj) > λUj,k(ρj,k, ν

(2)
k , νj) if ν

(2)
k > ν

(1)
k > νj.

(iv) Computational tractability: Despite its more sophisticated structure, the individual

Student’s t copula is still computationally tractable. The margins are simply indi-

vidual Student’s t copulas with corresponding degrees of freedom parameters and

sub-matrix of the full correlation matrix. Furthermore the multivariate density only

involves a one-dimensional integration, as

c1,...,d(u1, ..., ud) =

∫ 1

0

φR(z1(u1, q), ..., zd(ud, q))
d∏
j=1

(vj(q))
−1dq

(
d∏
j=1

tνj(T
−1
νj

(uj))

)−1
,

where vj(q) =
√
νj/F

−1
χ2
νj

(q) and zj(uj, q) = T−1νj
(uj)/vj(q) for j = 1, ..., d. Here, tν

denotes the univariate Student’s t density function with ν degrees of freedom and

φR the multivariate normal density function with zero mean vector, unit variances

and correlation matrix R.

Statistical inference of the individual Student’s t copula is therefore feasible also in

higher dimensions. To obtain good starting values for numerical optimization, it is

convenient to use inverted pairwise empirical Kendall’s τ values as for elliptical cop-

ulas. For the individual degrees of freedom parameters, we propose to preliminarily

fit bivariate individual Student’s t copulas for each pair and then take the average

estimated degrees of freedom of each variable as starting value. In our numerical

examples, this typically provided reasonably good starting values, which sped up

the numerical optimization.

The individual Student’s t copula hence extends the standard Student’s t copula at the

critical point: Individual degrees of freedom parameters for each variable allow for a

more flexible range of tail dependence of the different pairs, while the assumption of one

common parameter for the degrees of freedom can be very restrictive if larger numbers of

variables are considered. On the other hand, the individual Student’s t copula is harder

to interpret in terms of its parameters, as its tail dependence coefficients are of more

complicated form. Statistical inference is also more difficult due to a one-dimensional

integration in the density expression.
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Appendix B.4. Vine copulas

Vine copulas are a completely different approach to construct multivariate copulas and

can also be used to generalize the Student’s t copula. They are based on bivariate copulas

as building blocks, which made them to be called pair copula constructions (PCCs) as

introduced by Aas et al. (2009). A special case of vine copulas was already discussed by

Joe (1996), however Bedford and Cooke (2001, 2002) independently constructed a general

class of multivariate distributions, called regular vine distributions, which depend only on

bivariate and univariate distributions. They are best illustrated in a trivariate example.

Let X = (X1, X2, X3)
′ ∼ F1,2,3. The multivariate density f1,2,3 of X can then be

decomposed as

f1,2,3(x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2). (B.7)

With Sklar’s theorem (2.2) it follows that

f2|1(x2|x1) =
f1,2(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)

= c1,2(F1(x1), F2(x2))f2(x2),

(B.8)

where C1,2 is the bivariate copula of the pair (1, 2). In the same way, it holds that

f3|1,2(x3|x1, x2) =
f2,3|1(x2, x3|x1)
f2|1(x2|x1)

=
c2,3|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)

f2|1(x2|x1)

= c2,3|1(F2|1(x2|x1), F3|1(x3|x1))f3|1(x3|x1)
(B.8)
= c2,3|1(F2|1(x2|x1), F3|1(x3|x1))c1,3(F1(x1), F3(x3))f3(x3),

where

F2|1(x2|x1) =
∂F1,2(x1, x2)

∂x1

1

f1(x1)
=
∂C1,2(F1(x1), F2(x2))

∂F1(x1)
=: C2|1(F2(x2)|F1(x1)) (B.9)

and similarly for F3|1.

Thus, we have decomposed the density f1,2,3 of X in terms of the marginal densities

and the three bivariate copulas C1,2, C1,3 and C2,3|1 with densities c1,2, c1,3 and c2,3|1,

respectively. In particular, we have decomposed the three-dimensional copula of X into

these bivariate copulas, of which two are unconditional and one is conditional on another

variable. The copulas can be chosen independently of each other from different copula

classes. For example, C1,2 could be a Gaussian, C1,3 a Student’s t and C2,3|1 a Gumbel
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copula. This flexible way of constructing multivariate copulas therefore allows for a wide

range of different dependence structures to be captured.

Clearly, the above decomposition can be extended to the general multivariate case.

A d-dimensional PCC of d(d − 1)/2 bivariate copulas then requires different choices re-

garding the order of variables in the decomposition as in (B.7). To organize the different

decompositions, Bedford and Cooke (2001, 2002) therefore introduced vines as a graphi-

cal representation of PCCs. Rather than stating the general definition of vines and vine

copulas, we concentrate here on the properties and refer to Kurowicka and Cooke (2006)

and Kurowicka and Joe (2011) for more details. Statistical inference and model selection

are considered in Brechmann et al. (2012) and Dißmann et al. (2013).

(i) Pairwise dependence: Due to the flexibility in the choice of copulas in the decompo-

sition, different pairs of cells can have very different dependence structures such as

asymmetry or tail dependence. However, vine copulas only allow for d − 1 uncon-

ditional bivariate copulas, which are straightforward to interpret (in the example

above: for the pairs (1, 2) and (1, 3)), while the dependence of the pairs, for which

copulas are specified conditionally, is harder to work with (see the discussion below;

in the example above: the pair (2, 3) given cell 1).

(ii) Tail dependence: Joe et al. (2010) showed that for each pair of cells to have tail

dependence, it is sufficient for the unconditional bivariate copulas to have tail de-

pendence. That is, if for instance all d − 1 unconditional copulas are specified as

Student’s t, then each pair of cells is tail dependent.

(iii) Interpretability: As noted above, the interpretation of the dependence patterns of

vine copulas is complicated by the fact that most pairs are specified conditionally.

Only for the dependence of the d − 1 pairs, for which the copula is given uncon-

ditionally, the interpretation is as simple as for the copulas discussed previously.

However, simulation from vine copulas is very simple so that properties can be

assessed empirically based on sufficiently large simulated data sets.

(iv) Computational tractability: Statistical inference of vine copulas is in principle rather

straightforward, since the density of a vine copula is conveniently given in terms of

a product of bivariate copulas. In the example above we have

c1,2,3(u1, u2, u3) = c1,2(u1, u2)c1,3(u1, u3)c2,3|1(C2|1(u2|u1), C3|1(u3|u1)),
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where C2|1 and C3|1 depend on the copulas C1,2 and C1,3, respectively (see Expression

(B.9)). For log likelihood calculations, this nicely transforms into a sum of log copula

densities.

To be useful for our multivariate operational loss model (2.5), we however also

require the margins of vine copulas. The availability of the multivariate margins

is unfortunately a major issue of vine copulas. Clearly, some margins are available

in closed form, in particular those of the d − 1 pairs with unconditional copula.

However, in most cases integration is needed to compute the margins. For example

in the above illustration, the margin of the pair (2, 3) is given by

c2,3(u2, u3) =

∫ 1

0

c1,2,3(u1, u2, u3)du1.

In the worst case, where a pair of cells (j, k) is specified conditionally on all other

cells {1, ..., d} \ {j, k}, (d− 2)-dimensional integration may be needed to compute a

bivariate margin. This renders the use of vine copulas in model (2.5) hardly feasible

even if d is only as large as 5 or 6. Only if there are few zero events, margins

may stay sufficiently well tractable. In our application in Section 6, we will show

how to calibrate a seven-dimensional vine copula for operational losses per ET (see

Appendix C).

Although building blocks of vine copulas can be of arbitrary type, we focus here on

elliptical copulas. On the one hand, this narrows the wide range of possible constructions,

from which it is difficult to choose (see Czado et al. (2013) for an overview on this issue).

On the other hand, this allows us to define an extension of the Student’s t copula, which

stays interpretable for the following reason: Stöber et al. (2013) show that a Student’s

t copula can be represented as a vine copula, where the parameters of the bivariate

copulas are obtained as partial correlations and degrees of freedom are increased by one

for each additional variable that is conditioned on. The Student’s t copula can therefore

be generalized by a vine copula with Student’s t building blocks, where each bivariate

Student’s t copula is allowed to have a different number of degrees of freedom. Since

this results in a model with a large number of parameters (two parameters per building

block), a simpler model can be constructed by only choosing Student’s t copulas for the

d − 1 unconditional pairs and Gaussian copulas for all conditioned pairs. According to

Joe et al. (2010), this construction also has tail dependence for all pairs. A further model
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simplification could be achieved by even choosing independence copulas for pairs that

are conditioned on a certain number of other variables as discussed by Brechmann et al.

(2012). Note that if a vine copula is specified completely in terms of Gaussian copulas, it

is in fact equivalent to a Gaussian copula.

Appendix B.5. Estimation of copulas

The number of copula parameters to be estimated depends on the family: While

Archimedean copulas typically have just one or at most two parameters, elliptical copulas

require the specification of the full correlation matrix with d(d − 1)/2 entries. Student’s

t copulas have an additional parameter for the degrees of freedom, while the individual

Student’s t copula has individual degrees of freedom parameters per variable, that is,

d(d− 1)/2 + d parameters in total. If a vine copula has only Student’s t building blocks,

it has twice d(d − 1)/2 parameters, that is, d(d − 1) parameters. This can be reduced

by using Gaussian copula for the conditional pairs. Then, the number of parameters is

d(d− 1)/2 + d− 1.

These parameters are typically estimated by maximum likelihood estimation. Often

the method of inference functions for margins (IFM; Joe and Xu (1996)) is used for

this purpose. To avoid estimation of too many parameters at the same time, marginal

parameters are estimated first and then hold fixed in copula parameter estimation. That

means, if we have n independent and identically distributed observations sij of the total

loss in cell j for j = 1, ..., d and i = 1, ..., n, then we estimate the marginal distribution

FS+
j

by F̂S+
j

in a first step (see Appendix A) and set

ûij := F̂S+
j

(sij). (B.10)

Using these pseudo observations, the copula log likelihood `C is then maximized in terms

of the copula parameters θ (see Expression (2.5)):

`C(θ|û1, ..., ûd,w) =
n∑
i=1

log c{j ∈D(w)}(ûij, j ∈ D(wi)|θ), (B.11)

where ûj = (û1j, ...., ûnj)
′ and w = (w1, ...,wn)′ indicates whether zero losses were ob-

served or not. Note that, by assumption, the zero event distribution pW is independent

of the copula parameters and therefore does not need to be considered in the estimation

here.
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For the trivariate Gaussian copula example above, it is θ = (ρ1,2, ρ1,3, ρ2,3)
′ and (B.11)

can be written as

`C(ρ1,2,ρ1,3, ρ2,3|û1, û2, û3,w)

=
∑

i: wi=(0,0,1)′

log c1,2(ûi1, ûi2|ρ1,2) +
∑

i: wi=(0,1,0)′

log c1,3(ûi1, ûi3|ρ1,3)

+
∑

i: wi=(1,0,0)′

log c2,3(ûi2, ûi3|ρ2,3) +
∑

i: wi=(0,0,0)′

log c1,2,3(ûi1, ûi2, ûi3|R(ρ1,2, ρ1,3, ρ2,3)).

For instance, the parameter ρ12 is estimated based on the information when wi = (0, 0, 1)′

and when wi = (0, 0, 0)′, that is, every time when the pair (1, 2) is observed.

Appendix C. Vine copula selection for zero-inflated data

From the conditional density decomposition (B.7) it is clear that a d-dimensional PCC

can always be extended to a (d+1)-dimensional one by adding the term fd+1|1,...,d(xd+1|x1, ..., xd)

to the existing PCC. That is, we can construct the vine copula by starting with a bivari-

ate one and then iteratively extending it to the seven-dimensional one, which is needed

to describe the dependence between all ETs. For this, we check which set of jointly ob-

served ETs (these are {3,4}, {1,2,4,7}, {1,2,3,4,7}, {1,2,4,5,7}, {1,2,3,4,5,7}, {1,2,3,4,6,7},

{2,3,4,5,6,7}, {1,2,4,5,6,7}, and {1,2,3,4,5,6,7}) is a subset of another as displayed in Fig-

ure C.8. One option is to start with a vine copula for {3,4}. It is reasonable to extend

it to {1,2,3,4,7}, which is the smallest set of which {3,4} is a subset. Then, we choose

{1,2,3,4,5,7} and finally {1,2,3,4,5,6,7} as indicated by solid lines in Figure C.8. The

reason why we choose {1,2,3,4,5,7} instead of {1,2,3,4,6,7}, of which {1,2,3,4,7} also is a

subset, is that {1,2,4,5,7}, which is not explicitly included in the vine copula, is a subset of

{1,2,3,4,5,7}. In this way, every multivariate margin that is not an explicit sub-model of

the PCC is a subset of a set that is included and has only one element more. For the vine

copula, this means that only one-dimensional integration is needed to integrate out this

one additional element. For instance, the margin of {1,2,4,7} is obtained by integrating

out variable 3 from the sub-model for {1,2,3,4,7}, since {1, 2, 4, 7} ⊂ {1, 2, 3, 4, 7} and

{1, 2, 3, 4, 7} \ {1, 2, 4, 7} = {3}.
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1,2,4,5,6,7

1,2,4,7 1,2,4,5,7 1,2,3,4,5,7

3,4 1,2,3,4,7 1,2,3,4,6,7 1,2,3,4,5,6,7

2,3,4,5,6,7

Figure C.8: Combinations of observed non-zero events in ETs, where arrows indicate that

a set is the subset of another.
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Embrechts, P., Lambrigger, D. D., Wüthrich, M. V., 2009. Multivariate extremes and the

aggregation of dependent risks: examples and counter–examples. Extremes 12, 107–127.

Erhardt, V., Czado, C., 2012. Modeling dependent claim totals including zero claims in

private health care insurance. Scandinavian Actuarial Journal 2012 (2), 106–299.

Fang, K., Kotz, S., Ng, K., 1990. Symmetric Multivariate and Related Distributions.

Chapman & Hall, London.

Frachot, A., Roncalli, T., Salomon, E., 2004. The correlation problem in operational risk.

Working paper, Crédit Lyonnais.

Genz, A., Bretz, F., 2009. Computation of Multivariate Normal and t Probabilities.

Springer, New York.

Giacometti, R., Rachev, S., Chernobai, A., Bertocchi, M., 2008. Aggregation issues in

operational risk. Journal of Operational Risk 3 (3), 3–23.

Gourier, E., Farkas, W., Abbate, D., 2009. Operational risk quantification using extreme

value theory and copulas: from theory to practice. Journal of Operational Risk 4 (3),

3–26.

Grogger, J. T., Carson, R. T., 1991. Models for truncated counts. Journal of Applied

Econometrics 6 (3), 225–238.

40



Hofert, M., Mächler, M., McNeil, A. J., 2012. Likelihood inference for Archimedean cop-

ulas in high dimensions under known margins. Journal of Multivariate Analysis 110,

133–150.

Joe, H., 1996. Families of m-variate distributions with given margins and m(m − 1)/2
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