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S U M M A R Y

Objectives: About 2–5% of HIV-1-infected subjects, defined as long-term non-progressors (LTNPs),

remain immunologically stable for a long time without treatment. The factors governing this condition

are known only in part, and include genetic factors. Thus, we studied 20 polymorphisms of 15 genes

encoding proinflammatory and immunoregulatory cytokines, chemokines and their receptors, genes

involved in apoptosis, and the gene HCP5.

Methods: We analyzed 47 Caucasian LTNPs infected for >9 years, compared with 131 HIV-1-infected

Caucasian patients defined as ‘usual progressors’. The genotypes were determined by methods based

upon PCR, and the statistical analysis was performed by univariate logistic regression.

Results: The well-known CCR5D32 del32 allele, the cell death-related TNF-a-238 A and PDCD1-7209 T

alleles, and HCP5 rs2395029 G, a non-coding protein associated with the HLA-B*5701, were found

positively associated with the LTNP condition. No association was observed for other single nucleotide

polymorphisms (SDF-1-801, IL-10-592, MCP-1-2518, CX3CR1 V249I, CCR2V64I, RANTES-403, IL-2-330,

IL-1b-511, IL-4-590, FASL IVS3nt-169, FAS-670, FAS-1377, FASL IVS2nt-124, PDCD1-7146, MMP-7-181,

and MMP7-153).

Conclusions: The novel genetic associations between allelic variants of genes TNF-a-238 and PDCD1-

7209 with the LTNP condition underline the importance of host genetic factors in the progression of HIV-

1 infection and in immunological preservation.

� 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The complexity of HIV-1 infection is influenced by individual
variability, especially as far as susceptibility to infection and
disease progression are concerned. About 2–5% of HIV-1-infected
patients, defined as long-term non-progressors (LTNPs), can
remain asymptomatic in the absence of therapy, from 7 up to
20 years, and with a CD4+ cell count >500 cells/ml.1 This
phenomenon is influenced by virus–host interactions and can be
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influenced by the host genetic polymorphisms.2 In this regard,
polymorphisms in chemokine receptors that mediate virus entry
significantly influence the pathogenesis and progression of HIV-1
disease.3 However, genetic variants of cytokines that modulate the
infection and replication of HIV-1 can potentially influence disease
progression.4 Indeed, it has been shown that interleukin (IL)-10
can inhibit viral replication,5,6 whereas proinflammatory cyto-
kines, such as tumor necrosis factor alpha (TNF-a) and IL-1
stimulate HIV-1 replication.7,8 Conversely, HIV-1 causes im-
pairment in the cytokine network, determining a decrease in T
helper type 1 cytokines and an increase of both T-helper type 2
cytokines (IL-4 and IL-10) and proinflammatory cytokines such as
TNF-a and IL-1.7
ses. Published by Elsevier Ltd. All rights reserved.

https://core.ac.uk/display/54003866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijid.2013.01.003
mailto:milena.nasi@unimore.it
http://www.sciencedirect.com/science/journal/12019712
http://dx.doi.org/10.1016/j.ijid.2013.01.003


M. Nasi et al. / International Journal of Infectious Diseases 17 (2013) e845–e850e846
Considering the importance of apoptosis in the maintenance of
T cell homeostasis and the ability of HIV-1 to alter the delicate
balance in the expression of apoptosis-related genes in the
immune system, the study of FAS ligand (FASL/CD178) and FAS
(CD95) variants seem particularly interesting. Despite their pivotal
role in the pathogenesis of HIV/AIDS,9–14 there are very few data on
the polymorphisms of these genes and disease progression.15

Furthermore, variants of genes involved in T cell exhaus-
tion,16,17 or in their regulation,18,19 could contribute to explain the
inter-individual variability of the immune system impairment.
Accordingly, the aim of our study was to investigate 20 well-
known polymorphisms of 15 key genes involved in different
aspects of innate and adaptive immunity in HIV-1 pathogenesis.
Some of these genetic variants have been investigated previously
in different inflammatory diseases or at different stages of HIV
infection, but they have never been evaluated in LTNPs.

2. Methods

2.1. Patients

Forty-seven Caucasian LTNPs were enrolled in our study. LTNPs
were defined by CD4 criteria as HIV-positive patients with
prolonged, AIDS-free survival in the absence of antiretroviral
therapy (ART) for at least 9 years, with an elevated CD4 cell count
always higher than 500 cells/ml. None of these patients could be
defined as elite controllers, as they were heterogeneous in their
degree of virologic control and were not characterized by a serial
viral load test below the limit of detection.20 LTNPs were enrolled
in the framework of the multicenter project ELVIS (Evaluation of
Long Term Non Progressors Viro-Immunological Study), which
comprises the Infectious Diseases Clinic of Modena University
Hospital, the Viral Pathogens and Biosafety Unit of San Raffaele
Scientific Institute in Milan, and the University Medical School,
DISP LITA Vialba in Milan.

As controls, we studied a population of 131 HIV-1-positive
subjects defined as ‘usual progressors’ (UPs). These were patients
who showed a symptomatic infection or initiation of ART and at
least one CD4+ T cell count below 250 cells/ml from the first
documented HIV-1 infection. Each control was enrolled from the
cohort followed at the Infectious Diseases Clinic of Modena
University Hospital. Demographic and clinical characteristics of
the patients at inclusion are summarized in Table 1. Written
informed consent was obtained from the patients before study
entry, and the human experimentation guidelines of the authors’
institutions were followed.

2.2. Analysis of polymorphisms

DNA was extracted from 2 ml of peripheral blood using a
QIAamp Blood Midi Kit from Qiagen (Alameda, CA, USA), following
the manufacturer’s instructions. All the genotypic analyses were
based on PCR reactions, performed in a PE 9700 Thermal Cycler
(PerkinElmer, Boston, MA, USA). Fourteen polymorphisms were
detected by restriction fragment length polymorphism (RFLP) as
Table 1
Characteristics of long-term non-progressors (LNTP) and usual progressors (UP)

LTNP (n = 47) 

Males 29 (61.7) 

Age, years 45 (30–58) 

Years of infection 20 (9–25) 

CD4+ count, cells/ml 792.0 (511.0–1278.0) 

Log10 plasma VL, copies/ml 3.33 (1.70–5.38) 

Undetectable viral load 11 (23.4) 

Results are n (%), or median (range). VL, viral load.
previously described: TNF-a-238,21 IL-10-592,22 MMP-7-181,23

SDF-1-801,24 RANTES-403,25 MCP-1,26 CX3CR1 V249I,24 PDCD1-
7209,27 CCR2V64I,24 IL-2-330,28 IL-1b-511,29 IL-4-590,28 FAS-
670,30 and PDCD1-7146.27 The 32-bp deletion of CCR5 gene was
detected by PCR.31 The FAS-1377 single nucleotide polymorphism
(SNP)30,32 was detected by allele-specific amplification (ASA)-PCR,
while MMP-7-153,23 FASL IVS2nt �124, and FASL IVS3nt �16930

were evaluated by amplification created restriction site (ACRS)
assay, as previously described. Finally, HCP5 rs2395029 is a G/T
substitution33 that we have detected by RFLP method using the
primers HCPC5dir (TCATTGTGTGACAGCAGCC) and HCP5rev
(TCCCATTCCTTCAACTCACC). The annealing temperature of the
PCR reaction was 61 8C and digestion of the PCR product (268 bp)
was performed by the restriction enzyme XcmI, generating two
fragments of 151 and 117 bp in the presence of T allele.

2.3. Statistical analysis

Fisher’s exact test was used to test if the genotype distribution
in both LTNPs and UPs is different from those predicted by the
Hardy–Weinberg equilibrium.34 The non-parametric Mann–Whit-
ney test was used to evaluate if groups were matched for age, as the
distribution of normality for age was not satisfied, and Fisher’s
exact was used to test if groups were sex-matched. The above-
mentioned analyses were performed using Prism 4.0 software.

The association between the LTNP condition and a genotype or
an allele was assessed by univariate logistic regression. The
estimate odds ratios (OR) and their 95% confidence intervals (CI)
were calculated. For genotype, the homozygous common allele
group was used as reference, while for allele the common allele
was considered as reference. The OR measures the odds of being in
the LTNP condition for the non-common genotype versus the
common genotype and for the non-common allele versus the
common allele. The Bonferroni correction for multiple testing was
applied when necessary;35 the Bonferroni corrected a value was
set at 0.0025. All the analyses were performed using STATA 10.

3. Results

One hundred seventy-eight Italians of Caucasian origin were
included in this study. Of these patients, 131 were UPs and 47 were
LTNPs. The groups were matched for sex (p = 0.320; Fisher’s exact
test) and age (p = 0.127; Mann–Whitney test; Table 1). Twenty
polymorphisms of 15 genes were analyzed, evaluating the
differences in genotype and allele frequencies between UPs and
LTNPs; 11 polymorphisms are related to cytokine and chemokine
genes, eight polymorphisms are related to programmed cell death,
and one polymorphism has no direct role in the immune system,
but is in linkage disequilibrium with HLA alleles (HCP5
rs2395029). The distribution of the genotypes of each polymor-
phism in both LTNPs and UPs did not differ significantly from those
predicted by the Hardy–Weinberg equilibrium.

In Table 2, we report the number of genotypes and alleles, and
the respective frequencies (in percentage), the OR, the 95% CI, and
the p-value for the two groups (LTNPs and UPs). As reported in the
UP (n = 131) p-Value

92 (70.2) 0.356

46 (29–79) 0.127

1 (1–16) <0.0001

145.0 (27–713.0) <0.0001

5.10 (2.20–6.00) <0.0001

0 (0.0) <0.0001



Table 2
Association between genotype/allele frequencies and the condition of long-term non-progressor. For each gene polymorphism, we indicate the number and percentage of

long-term non-progressors (LTNPs) and usual progressors (UPs) with a given genotype or allele, the odds ratio (OR), the 95% confidence interval (CI), and the p-value. The

common allele and the homozygous genotype of common allele are considered as the reference

Gene polymorphism Genotype/allele LTNPs, n (%) UPs, n (%) OR 95% CI p-Value

1. IL-1b-511

(rs16944)

C/C 23 (52.3) 64 (48.9) Reference

C/T 16 (36.4) 58 (44.3) 0.78 0.37–1.62 0.508

T/T 5 (11.4) 9 (6.9) 1.54 0.47–5.09 0.474

C 62 (70.5) 186 (71.0) Reference

T 26 (29.5) 76 (29.0) 1.03 0.58–1.79 0.923

2. TNFa-238

(rs361525)

G/G 27 (57.4) 116 (89.9) Reference

G/A 20 (42.6) 13 (10.1) 6.55 2.90–14.79 <0.0001a

A/A 0 (0.0) 0 (0.0) - - -

G 74 (78.7) 245 (95.0) Reference

A 20 (21.3) 13 (5.0) 5.09 2.27–11.65 <0.0001a

3. IL-2-330

(rs2069762)

T/T 25 (52.3) 89 (67.9) Reference

T/G 21 (44.7) 40 (30.5) 1.85 0.93–3.68 0.081

G/G 1 (2.1) 2 (1.5) 1.76 0.15–20.22 0.650

T 71 (75.5) 218 (83.2) Reference

G 23 (24.5) 44 (16.8) 1.60 0.86–2.93 0.102

4. IL-4-590

(rs2243250)

C/C 29 (63.0) 76 (58.0) Reference

C/T 13 (28.3) 49 (37.4) 0.71 0.34–1.50 0.369

T/T 4 (8.7) 6 (4.6) 1.75 0.46–6.64 0.413

C 71 (77.2) 201 (76.7) Reference

T 21 (22.8) 61 (23.3) 0.97 0.52–1.76 0.929

5. IL-10-592

(rs1800872)

C/C 21 (44.7) 83 (66.9) Reference

C/A 21 (44.7) 36 (29.0) 2.28 1.11–4.68 0.025

A/A 5 (10.6) 5 (4.0) 3.90 1.03–14.75 0.045

C 63 (67.0) 202 (81.5) Reference

A 31 (33.0) 46 (18.5) 2.16 1.21–3.81 0.004

6. CCR5del32

(rs333)

wt/wt 36 (78.3) 124 (94.7) Reference

wt/del32 10 (21.7) 7 (5.3) 4.88 1.73–13.74 0.003

del32/del32 0 (0.0) 0 (0.0) - - -

wt 82 (89.1) 255 (97.3) Reference

del32 10 (10.9) 7 (2.7) 4.44 1.46–14.15 0.002a

7. RANTES-403

(rs2107538)

G/G 32 (69.6) 73 (55.7) Reference

G/A 12 (26.1) 57 (43.5) 0.49 0.23–1.03 0.061

A/A 2 (4.3) 1 (0.8) 4.56 0.40–52.14 0.222

G 76 (82.6) 203 (77.5) Reference

A 16 (17.4) 59 (22.5) 0.72 0.37–1.37 0.300

8. CCR2 V64I

(rs1799864)

A/A 28 (63.6) 102 (77.9) Reference

A/G 16 (36.4) 29 (22.1) 2.08 0.99–4.37 0.053

G/G 0 (0.0) 0 (0.0) - - -

A 72 (81.8) 233 (88.9) Reference

G 16 (18.2) 29 (11.1) 1.78 0.85–3.62 0.085

9. MCP-1-2518

(rs1024611)

A/A 23 (53.5) 81 (61.8) Reference

A/G 18 (41.9) 41 (31.3) 1.53 0.74–3.14 0.251

G/G 2 (4.7) 9 (6.9) 0.77 0.15–3.83 0.753

A 64 (74.4) 203 (77.5) Reference

G 22 (25.6) 59 (22.5) 1.18 0.64–2.14 0.560

10. CX3CR1 V249I

(rs3732379)

C/C 22 (51.2) 58 (44.3) Reference

C/T 20 (46.5) 62 (47.3) 0.83 0.41–1.69 0.618

T/T 1 (2.3) 11 (8.4) 0.23 0.03–1.93 0.178

C 64 (74.4) 178 (67.9) Reference

T 22 (25.6) 84 (32.1) 0.73 0.40–1.30 0.257

11. SDF-1-801

(rs1801157)

G/G 31 (70.5) 65 (49.6) Reference

G/A 13 (2.5) 54 (41.2) 0.50 0.24–1.04 0.065

A/A 0 (0.0) 12 (9.2) - -

G 75 (85.2) 184 (70.2) Reference

A 13 (14.8) 78 (29.8) 0.41 0.20–0.80 0.005

12. FAS-670

(rs1800682)

A/A 11 (25.6) 34 (26.2) Reference

A/G 23 (53.5) 58 (44.6) 1.25 0.54–2.87 0.604

G/G 9 (20.9) 38 (29.2) 0.73 0.27–1.98 0.539

A 45 (47.7) 126 (48.5) Reference

G 42 (52.3) 134 (51.5) 0.86 0.51–1.44 0.534

13. FAS-1377

(rs2234767)

G/G 29 (74.4) 102 (79.1) Reference
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Table 2 (Continued )

Gene polymorphism Genotype/allele LTNPs, n (%) UPs, n (%) OR 95% CI p-Value

G/A 9 (23.1) 21 (16.3) 1.49 0.62–3.61 0.374

A/A 1 (2.6) 6 (4.7) 0.58 0.07–5.02 0.621

G 67 (85.9) 225 (87.2) Reference

A 11 (14.1) 33 (12.8) 1.12 0.48–2.42 0.763

14. FASL IVS2nt-124

(rs5030772)

A/A 30 (65.2) 98 (74.8) Reference

A/G 15 (32.6) 32 (24.4) 1.51 0.72–3.17 0.269

G/G 1 (2.2) 1 (0.8) 3.23 0.20–53.27 0.412

A 75 (81.5) 228 (87.0) Reference

G 17 (18.5) 34 (13.0) 1.52 0.75–2.98 0.196

15. FASL IVS3nt-169

(rs11385743)

T/T 32 (68.1) 107 (82.3) Reference

T/delT 15 (31.9) 22 (16.9) 2.26 1.05–4.86 0.037

delT/delT 0 (0.0) 1 (0.8) - - -

T 79 (84.0) 236 (90.8) Reference

delT 15 (16.0) 24 (9.2) 1.87 0.86–3.92 0.074

16. MMP7-153

(rs11568819)

C/C 39 (84.8) 119 (90.8) Reference

C/T 7 (15.2) 12 (9.2) 1.94 0.70–5.35 0.200

T/T 0 (0.0) 0 (0.0) - - -

C 85 (92.4) 250 (95.4) Reference

T 7 (7.6) 12 (4.6) 1.71 0.55–4.89 0.267

17. MMP7-181

(rs11568818)

A/A 16 (36.4) 27 (20.6) Reference

A/G 22 (50.0) 71 (54.0) 0.65 0.30–1.39 0.267

G/G 6 (13.6) 33 (25.2) 0.46 0.16–1.33 0.152

A 54 (61.4) 137 (52.3) Reference

G 34 (38.6) 125 (47.7) 0.57 0.34–0.97 0.027

18. PDCD1-7146

(rs11568821)

G/G 25 (65.8) 99 (75.6) Reference

G/A 11 (28.9) 30 (22.9) 1.44 0.63–3.26 0.385

A/A 2 (5.3) 2 (1.5) 3.92 0.52–29.21 0.183

G 61 (80.3) 228 (87.0) Reference

A 15 (19.7) 34 (13.0) 1.65 0.78–3.35 0.141

19. PDCD1-7209

(rs41386349)

C/C 27 (65.9) 110 (84.0) Reference

C/T 11 (26.8) 20 (15.3) 2.22 0.95–5.18 0.065

T/T 3 (7.3) 1 (0.8) 12.11 1.21–121.05 0.034

C 65 (79.3) 240 (91.6) Reference

T 17 (20.7) 22 (8.4) 2.85 1.33–5.99 0.002a

20. HCP5

(rs2395029)

T/T 30 (69.8) 126 (96.2) Reference

T/G 13 (30.2) 5 (3.8) 10.83 3.58–32.73 <0.0001a

G/G 0 (0.0) 0 (0.0) - - -

T 73 (84.9) 257 (98.1) Reference

G 13 (15.1) 5 (1.9) 9.15 2.92–33.61 <0.0001a

a p � 0.002.
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OR column, we have considered as reference the common allele
and the homozygous genotype. As far as polymorphisms of
cytokines and chemokines are concerned, in our study the alleles
TNF-a-238 A and CCR5D32 del32 were positively associated with
the LTNP condition, whereas no association was observed for the
other polymorphisms.

Regarding polymorphisms of genes involved in cell death and in
the regulation of the immune response, the allele PDCD1-7209 T
was associated with the LTNP condition, whereas the alleles of the
other polymorphisms did not show any association with the LTNP
condition. Finally, HCP5 rs2395029 G allele was significantly
overrepresented in LTNPs as compared to UPs; none of these
variants showed any significant co-segregation.

4. Discussion

Allelic variants in the human genome regulate either suscepti-
bility or resistance to HIV-1 infection and disease progression;
thus, the analysis of frequencies of polymorphisms in patients able
to control viral replication and to maintain a high number of CD4+
T cells is crucial to identify those alleles that could contribute to
limit viral replication.20 We have studied a cohort of 47 LTNPs,
found in the framework of a collaborative study that has involved
several Italian clinical centers.

As expected, a significant number of these patients presented
the CCR5D32 deletion, crucial in the control of the virus (reviewed
in Reiche et al.36). In contrast, we found no correlation between
the condition of LTNP and the allelic variants of other genes
(RANTES-403, SDF-1-801, CCR2-64I, MCP-1-2518, and CX3CR1
V249I). However, it should be noted that the role of these variants
in the progression of HIV-1 infection, including their role in LTNP,
is still controversial,36–40 and further studies are required to
clarify this point.

The most striking result that we found in the analysis of the
polymorphisms of proinflammatory cytokines was the favorable
role of the allele TNF-a-238 A in delaying the progression of HIV-1
infection. Although the functional role of the TNF-a-238 rare allele
A on transcriptional activity is not clear,41 this variant could be
related to a different production of the molecules, at least in some
particular subjects, and thus to a diminished viral replication,
contributing to the immunological preservation and disease
control that characterize LTNPs.

The over-representation of the PDCD1-7209 T allele in LTNPs
suggests a possible protective role of the T allele in HIV-1 infection.
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Along with functional studies, the analysis of a larger number of
patients will be necessary to test this possibility and to identify the
mechanisms underlying the single, and eventually additive,
effects. As the engagement of PDCD-1 by its ligands inhibits
immune responses, and as PDCD1 is highly expressed on
exhausted T cells during different infections, it is possible that
during HIV-1 infection these polymorphisms modulate the
expression of PDCD1/PDCD1L1 and reduce their capability to
exhaust virus-specific CD8+ T cells.16,17 Moreover, since it has
recently been demonstrated that the microbial translocation
during chronic HIV-1 infection leads to an up-regulation of PDCD1
with a subsequent increase in IL-10,42 it would be interesting to
evaluate the impact of PDCD1-7209 T allele on PDCD1 expression.
Indeed, even if the frequency of the IL-10-592 A allele does not
reach statistical significance after multiple comparison correc-
tion, such a variant shows an interesting higher frequency in
LTNPs.43–45

In vitro studies on CD4+ T cells from patients carrying or not the
two mutations indicated above, after infection with HIV-1, could
clarify if the presence of alternative alleles leads to different levels
of protein expression, both for TNF-a and PDCD-1.

Finally, the association of the HCP5 rs2395029 G allele with the
LTNP condition is in agreement with recent reports from genome-
wide association studies, which identified this allele as positively
associated with the viral set point as predictor of disease
progression.33 It is well known that the HCP5 allele G is in linkage
disequilibrium with HLA-B*5701 in populations with European
ancestry,46,47 and can be used as a screening tool for HLA typing;48

our data further confirm the central role of this locus in the ability
to control disease progression.

The main limitation of this study is the limited sample size and
the relative diversity of the two groups, which is due to the
difficulty in recruiting LTNP patients. However, our data will help
to understand possible mechanisms that characterize non-
progressive infections.

In conclusion, we found two novel genetic associations between
allelic variants of TNF-a-238 and PDCD1-7209 genes and the LTNP
condition. The significance of these differences is still not
completely clear, but our data could indicate that the LTNP
condition is likely due to a complex association of several genetic
variants that collectively contribute to the observed phenotype,
rather than to a single, crucial gene variant. Our data further
underline the importance of host genetic factors in the progression
of HIV-1 infection, evidencing the possible role of PDCD1 variants.
We are well aware of the difficulty in identifying a possible,
complex genotype that unequivocally characterizes LTNPs; how-
ever, if our data are confirmed by further analyses that consider
larger cohorts of patients, they could represent another piece of
this complex puzzle.
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