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Abstract. The natural pseudo-distance is a similarity measure conceived for the purpose
of comparing shapes. In this paper we revisit this pseudo-metric from the point of view of
quotients. In particular, we show that the natural pseudo-distance coincides with the quo-
tient pseudo-metric on the space of continuous functions on a compact manifold, endowed
with the uniform convergence metric, modulo self-homeomorphisms of the manifold. As
applications of this result, the natural pseudo-distance is shown to be actually a metric on
a number of function subspaces such as the space of topological embeddings, of isome-
tries, and of simple Morse functions on surfaces.
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1 Introduction

The natural pseudo-distance was introduced by Frosini and Mulazzani in [13],
and further studied in [8–10, 12], as a measure of similarity that behaves nicely
when invariance to deformations or different poses of the compared objects is
a key requirement. These contributions stemmed from the actual need for these
sort of similarity measures in pattern recognition to cope with the matching of nat-
ural or articulated objects. In general, such measures are reckoned to be beneficial
for the organization of the huge collections of digital models produced nowadays
through massive data acquisitions and shape modeling. In recent years, the de-
velopment and study of topology-invariant metrics with stability properties has
widely increased, as the numerous studies on similarity of non-rigid shapes testify
(cf., e.g., [2, 6]).

The natural pseudo-distance is usually defined on the space C.M;Rn/ of
Rn-valued continuous functions with domain a compact manifold M in the fol-
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1730 F. Cagliari, B. Di Fabio and C. Landi

lowing way. Assuming Rn endowed with the usual maximum norm

k.x1; x2; : : : ; xn/k1 D max
1�i�n

jxi j;

for f; g 2 C.M;Rn/,

ı.f; g/ D inf
h2H.M/

max
p2M

kf .p/ � g ı h.p/k1;

H .M/ being the set of self-homeomorphisms of M .
In the shape comparison problem,M is conceptualized as the object under study

(up to homeomorphisms), and f; g as measures of some shape properties of the
object (e.g., height, depth, curvature, or color) which are relevant in a specific
context [1]. Then, the dissimilarity between shapes is measured by the natural
pseudo-distance as the variation in these properties when we move from one shape
to the other through homeomorphisms.

In practice, one wishes the natural pseudo-distance to be zero only when com-
puted on objects that share the same shape properties with respect to the chosen
functions, i.e. when g D f ı h for some homeomorphism h. In general, this is not
the case, but we can ask ourselves whether it is true at least for some subspace
of functions, possibly generic, since counterexamples usually involve non-generic
functions (see, for example, [5, 9]).

Starting from an idea presented in [4], the aim of this paper is to put the natural
pseudo-distance in context with the classical notion of quotient pseudo-metric.

This link between the natural pseudo-distance and quotients is not only inter-
esting per se, but also enables to positively answer the aforementioned question.
Indeed, as a further contribution of this paper, we show that, for an open dense
subspace of smooth functions on a surface, the space of simple Morse functions,
up to homeomorphisms, the natural pseudo-distance is actually a metric, thus dis-
tinguishing surfaces with different shape properties (Section 4.3). For the case of
curves, the analogue of this result was obtained in [5] using a constructive tech-
nique, while it is proved here for surfaces by indirect arguments based on proper-
ties of quotient pseudo-metrics.

Besides this result, we also prove that the natural pseudo-distance turns to a met-
ric when defined on subspaces of C.M;Rn/ such as the spaces of embeddings and
immersions (Section 4.1), and on quotient spaces induced by compact subgroups
of H .M/ (Section 4.2). As a special case of this type, we consider another space
of functions quite common in applications, i.e. simplicial functions on compact
simplicial manifolds.

In perspective, we hope that other well-known properties of quotient pseudo-
metrics will turn useful for the study of the natural pseudo-distance.
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The natural pseudo-distance as a quotient pseudo-metric 1731

2 Quotients of pseudo-metric spaces

In this section we review the notion of a quotient pseudo-metric. Further details
can be found in [3] (where the quotient pseudo-metric is called the quotient semi-
metric).

Let us recall that a pseudo-metric space is a pair .X; d/ where X is a set and
d is a pseudo-metric (also known as pseudo-distance), i.e. a function with all the
axioms of a metric except the requirement that, for x; y 2 X , d.x; y/ D 0 im-
plies x D y.

Let us consider the category PMet of pseudo-metric spaces and non-expansive
maps, i.e. functions between pseudo-metric spaces that do not increase metrics:
A map h W .Z; d/! .Z0; d 0/ is non-expansive if, for all z1; z2 2 Z,

d 0.h.z1/; h.z2// � d.z1; z2/:

A map h between pseudo-metric spaces is an isometry if and only if it is non-
expansive, it is a bijection, and its inverse is also non-expansive. In particular, since
non-expansive maps are always continuous, any isometry in PMet is a homeomor-
phism.

Non-expansive maps are the suitable maps between pseudo-metric spaces to
pass to quotients. Indeed, if .Z; d/ is a pseudo-metric space and � is an equiv-
alence relation on Z, the quotient set Z=� can be endowed with the following
pseudo-metric: Given two equivalence classes Œz� and Œy�, the quotient pseudo-
metric is defined by

d�.Œz�; Œy�/ D inf

´
nX
iD1

d.zi ; yi /

µ

where the infimum above is taken over all finite sequences .z1; z2; : : : ; zn/ and
.y1; y2; : : : ; yn/ with Œz1� D Œz�; Œyi�1� D Œzi �; : : : ; Œyn� D Œy�, i D 2; : : : ; n (see
[3, Definition 3.1.12]).

The quotient pseudo-metric d� is characterized by the following universal
property. If h W .Z; d/! .Z0; d 0/ is a non-expansive map between pseudo-metric
spaces such that h.z/ D h.y/ whenever z � y, then the induced quotient map
h� W .Z=�; d�/! .Z0; d 0/ is non-expansive, that is the following diagram com-
mutes in PMet:

Z
�
//

h !!

Z=�

h�
��

Z0.
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1732 F. Cagliari, B. Di Fabio and C. Landi

In general the quotient topology induced by � is different from the topology in-
duced by the quotient pseudo-metric d�. However, when the equivalence classes
are the orbits of the action of a group of isometries, the following result holds.

Theorem 2.1. If .Z; d/ is a pseudo-metric space endowed with an equivalence
relation where the equivalence classes are the orbits of the action of a group of
isometries on .Z; d/, then:

(i) d�.Œz�; Œy�/ D inf¹d.z0; y0/ W z0 � z; y0 � yº.

(ii) The topology induced by the quotient pseudo-metric coincides with the quo-
tient topology.

(iii) d� is a metric if and only if the topology it induces is T0.

(iv) d� is a metric if and only if the orbits of the action are closed.

Proof. Statements (i) and (ii) have been proved in [14, Theorem 4], while state-
ment (iii) can be found in [20, p. 85].

It remains to verify (iv). From (iii), .Z=�; d�/ is a metric space if and only if
the topology it generates is T0. Let us observe that a pseudo-metric space is T0 if
and only if is T1. Therefore .Z=�; d�/ is a metric space if and only if its points are
closed, i.e. if and only if the equivalence classes Œz� 2 Z=� are closed. Moreover,
since from (ii) the projection � W .Z; d/! .Z=�; d�/ is a topological quotient,
Œz� 2 Z=� is closed if and only if ��1.Œz�/, that is the orbit of z in Z induced by
the action, is closed.

3 The natural pseudo-distance as a quotient pseudo-metric

In this section we show that the natural pseudo-distance is a quotient pseudo-
metric. In order to see this, we endow the space of continuous functions C.M;Rn/
with the uniform convergence metric d , d.f; g/ D maxp2M kf .p/ � g.p/k1,
which induces the compact open topology. In this way, the space C.M;Rn/ be-
longs to PMet.

Next we quotient C.M;Rn/ by the following equivalence relation: denoting by
H .M/ the set of self-homeomorphisms of M , for f; f 0 2 C.M;Rn/, f � f 0 if
and only if there exists an h 2 H .M/ such that f 0 D f ı h. In other words, the
equivalence classes of � coincide with the orbits induced by the action of H .M/

on C.M;Rn/ given by

ı W H .M/ � C.M;Rn/! C.M;Rn/;

.h; f / 7! f ı h:
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The natural pseudo-distance as a quotient pseudo-metric 1733

By definition, the natural pseudo-distance is trivial on the orbits of this action:
ı.f; f ı h/ D 0 for every f 2 C.M;Rn/ and every h 2 H .M/. Therefore it is
natural to identify functions in the same orbit and consider the natural pseudo-
distance on C.M;Rn/=� rather than on C.M;Rn/:

Definition 3.1. The natural pseudo-distance

ı W C.M;Rn/=� � C.M;Rn/=� ! R

is defined by setting

ı.Œf �; Œg�/ D inf
h2H.M/

max
p2M

kf .p/ � g ı h.p/k1:

Clearly this definition does not depend on the choice of the representatives f; g.
Let us observe that ı is not in general a metric, even when we define it on

C.M;Rn/=� rather than on the space C.M;Rn/. Indeed, there may exist func-
tions f; g 2 C.M;Rn/ such that ı.Œf �; Œg�/ D 0, but with no h 2 H .M/ for which
f D g ı h. Some examples of this fact can be found in [5, Section 2].

Now, as a corollary of Theorem 2.1, we get the result below.

Corollary 3.2. The following statements hold:

(i) The natural pseudo-distance ı is the quotient pseudo-metric induced by the
action of H .M/ on .C.M;Rn/; d/: ı D d�.

(ii) The topology induced on C.M;Rn/=� by ı coincides with the quotient topol-
ogy.

(iii) .C.M;Rn/=�; ı/ is a metric space if and only if the topology induced by ı
is T0.

(iv) .C.M;Rn/=�; ı/ is a metric space if and only if each orbit induced by the
action of H .M/ on C.M;Rn/ is closed.

Proof. We observe that

ı.Œf �; Œg�/ D inf¹max
p2M

kf 0.p/ � g0.p/k1 W f
0
2 Œf �; g0 2 Œg�º

D inf¹d.f 0; g0/ W f 0 � f; g0 � gº:

Furthermore, any self-homeomorphism of M induces an isometry on the metric
space .C.M;Rn/; d/: for every h 2 H .M/,

max
p2M

kf .p/ � g.p/k1 D max
p2M

kf ı h.p/ � g ı h.p/k1:

Hence, it is sufficient to apply Theorem 2.1 (i) to obtain that ı D d� and Theo-
rem 2.1 (ii–iv) to obtain the other three claims.
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1734 F. Cagliari, B. Di Fabio and C. Landi

We end the section by considering the case when the natural pseudo-distance is
defined using only homeomorphisms in a subgroup K.M/ of H .M/.

Definition 3.3. Let K.M/ be a subgroup of H .M/, and let us consider the ac-
tion of K.M/ on C.M;Rn/: f �K f 0 if and only if f 0 D f ı k, for some
k 2K.M/. We define ıK W C.M;Rn/=�K

� C.M;Rn/=�K
! R by

ıK.Œf �K ; Œg�K/ D inf
k2K.M/

max
p2M

kf .p/ � g ı k.p/k1:

Proposition 3.4. The following statements hold:

(1) ıK is a quotient pseudo-metric induced by the action of K.M/ on the metric
space .C.M;Rn/; d/.

(2) The topology induced on C.M;Rn/=�K
by ıK coincides with the quotient

topology.

(3) If the subgroup K.M/ is compact in H .M/ with the compact open topology,
then .C.M;Rn/; ıK/ is a metric space.

Proof. The proofs of (1) and (2) follow immediately from Theorem 2.1 (i–ii). As
for (3), by Theorem 2.1 (iv) it is sufficient to show that each orbit induced by
K.M/ on C.M;Rn/ is closed. Let Œ Nf �K 2 .C.M;Rn/=�K

; ıK/, and let .fi / be
a sequence such that d.fi ; f /!i!1 0 for some f 2 C.M;Rn/, and fi 2 Œ Nf �K
for every i . Since fi D Nf ı ki , with ki 2K.M/, for every i , and K.M/ is com-
pact, there exists a subsequence .kij / of .ki / converging to a certain k 2K.M/.
Then we can take the subsequence .fij / of .fi /, with fij D Nf ı kij for every j .
As composition is continuous with the compact open topology [11, Theorem 2.2],
it follows that Nf ı kij converges to Nf ı k, and hence, f D Nf ı k. This proves that
f 2 Œ Nf �K , i.e. that the orbit ��1.Œ Nf �K/ is closed, being � a topological quotient
from (2).

4 Applications

This section concerns some applications of Corollary 3.2 and Proposition 3.4 to
subspaces of C.M;Rn/ under the action of H .M/ or its subgroups K.M/. In
particular, in Section 4.1 we show that the natural pseudo-distance is a metric
when induced by the action of H .M/ on the space E.M;Rn/ of topological em-
beddings, and of the group D.M/ of diffeomorphisms on the space I.M;Rn/ of
immersions; Section 4.2 provides some examples of compact subgroups K.M/

whose action on C.M;Rn/ induces a metric ıK ; Section 4.3 is devoted to prove
that the natural pseudo-distance is a metric when we consider the space of simple
Morse functions on surfaces under the action of C2-diffeomorphism.
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The natural pseudo-distance as a quotient pseudo-metric 1735

4.1 Embeddings in Rn under the action of H .M/

Let us consider the space .E.M;Rn/; d/ of topological embeddings of M in Rn

(i.e. of homeomorphisms onto their image) endowed with the uniform conver-
gence metric d . If K is a compact subset of M , and U is an open subset of
Rn, then V.K;U / D ¹f 2 E.M;Rn/ W f .K/ � U º is an open set in the compact
open topology induced by d .

Let us pass to the quotient by considering the action of H .M/ on E.M;Rn/,
and take Rn endowed with the maximum norm. The following result, whose proof
is inspired by [18, Lemma 13.9], holds.

Proposition 4.1. .E.M;Rn/=�; ı/ is a metric space.

Proof. Since .E.M;Rn/=�; ı/ is pseudo-metric, from Corollary 3.2 (iii), it is suf-
ficient to verify that it is T0. Let Œf �; Œg� 2 E.M;Rn/=�, Œf � ¤ Œg�. We want to
show that there exists an open set containing Œf � and not Œg� or viceversa.

Observe that Œf � ¤ Œg� implies f .M/ ¤ g.M/. Indeed, if f .M/ D g.M/,
then we have g D f ı .f �1 ı g/, with f �1 ı g 2 H .M/, i.e. Œf � D Œg�. There-
fore, since Œf � ¤ Œg�, without loss of generality, we can assume that there exists
a point y 2 f .M/ n g.M/. Since g.M/ is compact as the image of a compact
space through a continuous function, an open set U � Rn can be found such that
g.M/ � U , y … U . Then, considering the open subset V.M;U / of E.M;Rn/,
we have g 2 V.M;U /, while f … V.M;U /. Now, let us observe that �.V.M;U //
is open if and only if ��1 ı �.V.M;U // is open. Given that

��1 ı �.V.M;U // D V.M;U /

which is open, then �.V.M;U // is open. Clearly, the class Œf � cannot belong to
�.V.M;U //, while Œg� does. Hence, E.M;Rn/=� is T0.

The above result can be generalized by considering the action of the group
D.M/ of diffeomorphisms of class C1 of M on the space .I.M;Rn/; d/ of
C1-immersions of M in Rn (i.e. of diffeomorphisms whose differential is injec-
tive) without points of self-tangency. Let us recall that an immersion f WM ! Rn

has no points of self-tangency if whenever p; p0 are distinct points of M with
f .p/ D f .p0/, then im dfp ¤ im dfp0 .

To prove that I.M;Rn/=�D
is T0, let us consider f; g 2 I.M;Rn/ such that

Œf �D ¤ Œg�D and show that this implies f .M/ ¤ g.M/. The rest of the proof
can be obtained using the same arguments as in the case of embeddings.

Let us assume f .M/ D g.M/ and prove the existence of h 2 D.M/ such that
f D g ı h, i.e. Œf �D D Œg�D . Let Pf ;Pg �M be the sets of preimages of mul-
tiple points of f and g. Since f; g 2 I.M;Rn/, it follows that fjMnPf

, gjMnPg
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1736 F. Cagliari, B. Di Fabio and C. Landi

are C1-diffeomorphisms betweenM nPf and f .M nPf /, and betweenM nPg
and g.M nPg/, respectively.

Moreover, as f .M/ D g.M/, for any p 2M , the set g�1.f .p// is not empty.
Seeing that in particular f .Pf / D g.Pg/, if p 2M nPf , the set g�1.f .p// con-
tains only one point p0 and we can define h.p/ D p0. If p 2 Pf , then we have
g�1.f .p// � Pg . In this case, there is just one point p0 2 g�1.f .p// verifying
im dgp0 D im dfp because multiple points of g are without self-tangency. Thus,
we can define h.p/ D p0. Because of its definition, the function h verifies the
equality g ı h D f . Let us show that h 2 D.M/. Recalling that f .M/ D g.M/,
the definition of h implies that h is injective and surjective. Furthermore, for each
point p 2M , there exist an open neighborhood U.p/ of p in M such that fjU.p/
is a C1-diffeomorphism, a point p0 2M for which g.p0/ D f .p/, and an open
neighborhood U 0.p0/ of p0 in M such that gjU 0.p0/ is a C1-diffeomorphism and
g.U 0.p0// D f .U.p//. Hence, the restriction hjU.p/ equals the C1-diffeomor-
phism g�1

jU 0.p0/
ı fjU.p/. This proves that Œf �D D Œg�D .

4.2 C .M; Rn/ under the action of compact groups

As an application of Proposition 3.4 (3), let us consider the space .C.M;Rn/; d/
with M a submanifold of Rn verifying one of the following properties:

� M is of revolution,

� M is invariant with respect to a rotation of 2�
n

.

In the previous cases or in each combination of them we can consider respec-
tively K.M/ Š S1, K.M/ Š Zn or the corresponding product of these compact
groups. Then the orbits induced by the action of K.M/ on C.M;Rn/ are closed,
so that ıK is a metric on C.M;Rn/=�K

:

More in general, we can consider the action of the group I .M/ of isometries
on M (i.e. of metric preserving self-homeomorphisms of M ). Indeed, as stated
in [15, Theorem 1.2], in the case M is a compact manifold, the group I .M/

results to be compact in the compact open topology. Consequently, because of
Proposition 3.4 (3), we obtain that .C.M;Rn/=�I

; ıI / is always a metric space.
As another application of Proposition 3.4, we consider the space .S.M;R/; d/

of simplicial maps on a compact simplicial manifold M , under the action of the
subgroup SH .M/ of H .M/ of simplicial homeomorphisms ofM . This subgroup
is finite, and therefore compact, since each h 2 SH .M/ is defined by the natural
extension from its value at the finitely many vertices of M to all the simplices
ofM . Hence, Proposition 3.4 (3) allows to conclude that .S.M;R/; ıSH / is a met-
ric space.
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The natural pseudo-distance as a quotient pseudo-metric 1737

4.3 The Morse functions space under the action of the group of
diffeomorphisms

In what follows, M will denote a 2-dimensional smooth compact connected man-
ifold without boundary, and .M0.M;R/; d/ the space of simple Morse functions
onM endowed with the uniform convergence metric d . Let us recall the following
facts: f WM ! R is a Morse function if it is of class C2 and all its critical points
are non-degenerate (i.e. the Hessian matrix at each critical point is non-singular);
the number of negative eigenvalues of the Hessian matrix at a critical point is
called the index of f at the critical point; as a consequence of the compactness
of M and the property of being non-degenerate, Morse functions’ critical points
are isolated [19]. Moreover, the Morse function f is said to be simple if each of
its critical values corresponds to a different critical point. Accordingly, it makes
sense to use the terminology index of a critical value c to indicate the index of f
at the only critical point whose value is c.

Given f 2M0.M;R/, we denote by K.f / the set of its critical points, and by
f a the set f �1..�1; a�/, a 2 R.

We want to show that, under the action of the group D.M/ of C2-diffeo-
morphisms on M , the natural pseudo-distance ıD turns out to be a metric:

Theorem 4.2. .M0.M;R/=�D
; ıD/ is a metric space.

By virtue of Corollary 3.2 (iv), the proof of Theorem 4.2 will be provided show-
ing that any orbit in M0.M;R/ induced by the action of the group D.M/ is closed.
To be more precise, we will prove that, if .fi / is a converging sequence of sim-
ple Morse functions with d.fi ; f /!i!1 0 for some f 2M0.M;R/, and such
that fi 2 Œ Nf �D D ¹f 0 2M0.M;R/ W f 0 D Nf ı h; h 2 D.M/º for every i , then
f 2 Œ Nf �D . All these notations will be maintained throughout the section.

The main tool we will use is a result by Kudryavsteva [16, Lemma 1], rewritten
here in Lemma 4.11, that works only in the case of surfaces. It states that two
Morse functions sharing the same collection of critical points, the same graph in
the sense of Definition 4.9, and the same values at critical points, belong to the
same equivalence class under the action of D.M/.

The proof of Theorem 4.2 is by steps. Firstly, we prove that f and Nf share
the same set of critical values with the same indices (Proposition 4.5); secondly,
we show that each converging sequence of critical points of .fi / corresponding
to a certain critical value converges to the critical point of f corresponding to
the same critical value (Corollary 4.7); thirdly, we demonstrate the existence of
a function f 0 2 Œ Nf �D with the same collection of critical points, the same values
at critical points as f (Proposition 4.8), and the same graph as the one of f (Re-
mark 4.10). In this way, applying Lemma 4.11 to f and f 0, Theorem 4.2 is proved.
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1738 F. Cagliari, B. Di Fabio and C. Landi

The following two lemmas will be used to prove that f and the functions in
Œ Nf �D have the same critical values with the same indices (Proposition 4.5).

Lemma 4.3. .[17, Lemma 4.1]/ LetX1; X2; X3; X 01; X
0
2; X

0
3 be topological spaces

such that X1 � X2 � X3 � X 01 � X
0
2 � X

0
3. Assume that Hk.X3; X1/ D 0 and

Hk.X
0
3; X

0
1/ D 0 for every k 2 Z. Then the homomorphism induced by inclusion

Hk.X
0
1; X1/! Hk.X

0
2; X2/ is injective for every k 2 Z.

Lemma 4.4 ([7, Theorem A.3]). Let g 2M0.M;R/, and let c be a critical value
of index k of g. Then there exists a real number �.g; c/ > 0 such that each function
g0 2M0.M;R/ verifying d.g; g0/ � �.g; c/ admits at least one critical value c0

of index k for which jc � c0j � d.g; g0/.

Proposition 4.5. The functions f , Nf , and all fi have the same critical values with
the same indices.

Proof. Since fi 2 Œ Nf �D , i.e. fi D Nf ı hi for some hi 2 D.M/, and critical val-
ues are preserved under diffeomorphisms, fi and Nf share the same set of critical
values with the same indices for every i .

Let us prove the claim for fi and f . By Lemma 4.4, if c is a critical value
of index k of f , then there exists a real number �.f; c/ > 0 such that each fi
verifying d.fi ; f / � �.f; c/ admits at least one critical value c0 of index k, with
jc � c0j � d.fi ; f /. Let us underline that c0 does not depend on the index i as
seen at the beginning of the proof. Letting i tend to infinity, we obtain c D c0.
This proves that the set of critical values of f is contained in the set of critical
values of fi for every i .

To show that this inclusion cannot be proper, let us assume, by contradiction,
that there exists a c 2 R that is a critical value for some, and hence all, fi , and
it is regular for f . Since f 2M0.M;R/, there exists a real number �.f; c/ > 0
such that Œc � �.f; c/; c C �.f; c/� does not contain any critical value of f . If we
consider i large enough that d.fi ; f / � �.f; c/, Lemma 4.4 implies the existence
of at least one critical value of f distant less than �.f; c/ from c. This gives a con-
tradiction.

The result below shows that there exists a subsequence of critical points of .fi /
corresponding to a certain critical value which converges to the critical point of f
corresponding to the same critical value.

Proposition 4.6. Let c be a critical value of Nf , and hence of f and all fi . Let
qi 2 K.fi / \ f

�1
i .c/ for every i . Then q 2 K.f / \ f �1.c/ if and only if there

exists a subsequence of .qi / converging to q.
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Proof. Let us begin by proving that, if q 2 K.f / \ f �1.c/, then there exists
a subsequence of .qi / converging to q.

Let us assume by contradiction that no subsequences of .qi / converging to q
exist. Then a sufficiently small neighborhood U �M of q can be found such that
U contains neither any other critical point of f besides q, nor critical points of fi
for any i . Moreover, since f 2M0.M;R/ and we are assuming f .q/ D c, there
exists a real number �.f; c/ > 0 such that Œc � 3 � �.f; c/; c C 3 � �.f; c/� does not
contain any critical value of f besides c.

Let us consider an index N{ so large that �0 D d.fN{ ; f / < �.f; c/, and write

f c�3��
0

\ U D X1; f
c�2��0

N{ \ U D X2; f c��
0

\ U D X3;

f cC�
0

\ U D X 01; f
cC2��0

N{ \ U D X 02; f cC3��
0

\ U D X 03:

Since X1 � X2 � X3 � X 01 � X
0
2 � X

0
3, and both Hk.X3; X1/ and Hk.X 03; X

0
1/

are trivial for every k 2 Z, we can apply Lemma 4.3 to obtain that the homo-
morphism Hk.X

0
1; X1/! Hk.X

0
2; X2/ induced by inclusion is injective for ev-

ery k 2 Z. But assuming that c is a critical value of index Nk of f , H Nk.X
0
1; X1/

is not trivial because the critical point q 2 f �1.Œc � 3 � �0; c C �0�/ \ U , while
H Nk.X

0
2; X2/ D 0 because f �1

N{ .Œc � 2 � �0; c C 2 � �0�/ \ U does not contain any
critical point of fN{ . This implies a contradiction.

Let us prove now that if there exists a subsequence of .qi / converging to q, then
q 2 K.f / \ f �1.c/.

Let us denote again by .qi / the subsequence converging to q. The fact that
d.fi ; f /!i!1 0, with fi .qi / D c for every i , immediately implies f .q/ D c.
By contradiction, let us assume that q is a regular value of f . Since f is a sim-
ple Morse function, an arbitrarily small neighborhood U �M of q can be found
such that U does not contain critical points of f . Because of the convergence
of .qi /, U contains the critical points qi of fi for every i > O{, for a certain index O{.
Moreover, since fi 2M0.M;R/ for every i , it is not restrictive to assume that U
does not contain any other critical point of fi besides qi for every i large enough.
Hence, under the assumption fi .qi / D c, a real number �.fi ; c/ > 0 can be cho-
sen such that Œc � 3 � �.fi ; c/; c C 3 � �.fi ; c/� does not contain any critical value
of fi besides c.

Fixed an index N{ large enough, we obtain again a contradiction using the same
arguments as in the first part of the proof with the roles of f and fN{ exchanged.

Corollary 4.7. Let c be a critical value of Nf , and hence of f and all fi . Let
qi 2 K.fi / \ f

�1
i .c/ for every i . Every converging subsequence of .qi / converges

to q 2 K.f / \ f �1.c/.
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Proof. It is sufficient to observe that, if two different converging subsequences
of .qi / converged to two different points q and q0, respectively, by Proposition 4.6
we would have that both q and q0 are critical points of f , with f .q/ D f .q0/,
against the assumption that f is simple.

The following result shows the existence of a function in Œ Nf �D havingK.f / as
the set of its critical points, as well as the same values at critical points as f .

Proposition 4.8. There exists an f 0 2 Œ Nf �D such that f and f 0 have the same
collection of critical points, the same index and the same value at each of them.

Proof. Let K.fi / D ¹q1i ; : : : ; q
n
i º and K.f / D ¹q1; : : : ; qnº, and let us assume

that fi .q
j
i / D f .q

j / for every j D 1; : : : ; n. We apply iteratively Corollary 4.7 to
extract a subsequence of .fi /, say again .fi /, such that, for every j D 1; : : : ; n,
the sequences of critical points .qji / converge to qj 2 K.f /. Moreover, for every
j D 1; : : : ; n, let .U j ;  j / be a local chart centered at qj , and fix an index i large
enough that qji 2 U

j .
Let h WM !M be a C2-diffeomorphism such that

h.p/ D

´
p; p 2M n

Sn
jD1 U

j ;

. j /�1 ı h
j
i ı  

j .p/; p 2 U j ; j D 1; : : : ; n

where, denoting byD2 the unit 2-disk in R2, hji W D
2 ! D2 is a diffeomorphism

which takes  j .qj / to  j .qji /, and is the identity in a neighborhood of @D2.
Then we can define the function f 0 WM ! R as f 0 D fi ı h.

We observe that f 0 is a simple Morse function because obtained from fi by
composition with a diffeomorphism. Hence f 0 2 Œ Nf �D . By Proposition 4.5, f 0

and f have the same critical values with the same indices. Furthermore, by con-
struction, h.qj / D qji , and therefore, f 0.qj / D fi .h.qj // D fi .q

j
i / D f .q

j /.
Since diffeomorphisms take critical points to critical points, qj 2 K.f 0/. This
shows that K.f 0/ � K.f /. On the other side, K.f 0/ and K.f / have the same
cardinality, so K.f 0/ D K.f /. In conclusion, f and f 0 have the same set of crit-
ical points ¹q1; : : : ; qnº, and the same values at them since f 0.qj / D f .qj / for
every j D 1; : : : ; n.

Let us recall the following concept introduced in [16].

Definition 4.9. Let g WM ! R denote a Morse function with r saddle points
p1; : : : ; pr . The graph Gg associated with g is the graph obtained from the set
g�1¹g.p1/; : : : ; g.pr/º by removing all connected components containing no sad-
dle critical points.
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Note that the graph Gg in Definition 4.9 has r vertices (which are the saddle
points p1; : : : ; pr ); the degree of each vertex is equal to 4 and hence the graph has
2r edges.

Remark 4.10. The functions f , f 0 considered in Proposition 4.8 have the same
associated graph in virtue on the fact that they are both simple Morse functions.

To prove Theorem 4.2, we use the following Lemma 4.11.

Lemma 4.11 ([16, Lemma 1]). Let g; g0 WM ! R be Morse functions with the
same collection of critical points, the same graph Gg D Gg 0 , and the same values
at critical points. Then

g D g0 ı h

for some h 2 D.M/ homotopic to idM .

Proof of Theorem 4.2. Observe that Proposition 4.8 and Remark 4.10 allow to ap-
ply Lemma 4.11 to f and f 0. This proves that Œf �D D Œf 0�D , and therefore that
the orbits induced by D.M/ on M0.M;R/ are closed. Eventually, applying Cor-
ollary 3.2 (iv), the claim follows.
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