
 1 

APPLICATION OF DATA FUSION TECHNIQUES TO DIRECT GEOGRAPHICAL 1 

TRACEABILITY INDICATORS 2 

Michele Silvestri; Lucia Bertacchini; Caterina Durante, Andrea Marchetti, Elisa Salvatore, 3 

Marina Cocchi, 4 

 5 

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 6 

Via Campi, 183 – 41125 Modena (Italy).  7 

* corresponding author: marina.cocchi@unimore.it Tel. +390592055029; Fax: +39059373543 8 

 9 

Abstract 10 

A hierarchical data fusion approach has been developed proposing Multivariate Curve 11 

Resolution (MCR) as a variable reduction tool.  12 

The case study presented concerns the characterization of soil samples of the Modena District. It 13 

was performed in order to understand, at a pilot study stage, the geographical variability of the 14 

zone prior to planning a representative soils sampling to derive geographical traceability models 15 

for Lambrusco Wines. Soils samples were collected from four producers of Lambrusco Wines, 16 

insisting in in-plane and hill areas. Depending on the extension of the sampled fields the number 17 

of points collected varies from three to five and, for each point, five depth levels were 18 

considered.   19 

The different data blocks consisted of X-ray powder diffraction (XRDP) spectra, metals 20 

concentrations relative to thirty-four elements and the 87Sr/86Sr isotopic abundance ratio, a very 21 

promising geographical traceability marker.  22 

A multi steps data fusion strategy has been adopted. Firstly, the metals concentrations dataset 23 

was weighted and concatenated with the values of strontium isotopic ratio and compressed. The 24 

resolved components describe common patterns of variation of metals content and strontium 25 

isotopic ratio. The X-ray powder spectra profiles were resolved in three main components that 26 
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can be referred to calcite, quartz and clays contributions. Then, an high-level data fusion 27 

approach was applied by combining the components arising from the previous data sets.  28 

The results show interesting links among the different components arising from XRDP, the 29 

metals pattern and to which of these 87Sr/86Sr Isotopic Ratio variation is closer. The combined 30 

information allowed capturing the variability of the analyzed soil samples. 31 
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1. Introduction 40 

High-throughput methodologies, megavariate database, fast fingerprinting and profiling 41 

techniques are words that nowadays are commonly present in recent literature. The recent 42 

development of analytical techniques able to describe, in a fast way and from different points of 43 

view, several features of the samples under investigations has resulted, in lot of cases, in the 44 

paradox of having a huge amount of data without an effective interpretation [1, 2]. Data fusion 45 

approaches [3-8] are oriented towards the simultaneous use of the information arising from data 46 

of different nature. The joint evaluation of the analytical results allows, at the same time, to 47 

better describe the investigated system and to answer different questions pertaining to which 48 

information it is expected (it is possible) to gain from the different sets/blocks of data, such as 49 

highlighting the consensus, common and distinctive information carried by each block, and the 50 

linkage among them [8]. 51 

Data fusion techniques can be classified in three main groups: a) low-level data fusion consists of 52 

the simple concatenation of the data of different nature b) mid-level data fusion is based on 53 

features extraction or variable selection prior to multivariate analysis c) high-level or 54 

hierarchical data fusion is based on the concatenation of the scores, extracted by means of 55 

multivariate projection techniques such as PCA, PLS, etc. [3, 7, 9] or wavelet transform [4], i.e. 56 

models are built separately on the different data blocks and the derived latent variables (or meta 57 

variables in a broad sense) are fused to obtain a final high-multivariate-model. 58 

This last approach could be particularly effective in the case of data blocks, which are difficult to 59 

render comparable/commensurable, i.e. a suitable preprocessing procedure may not be available 60 

or completely solve the issue. 61 

To the best of our knowledge, multivariate curve resolution (MCR) methodology has not yet 62 

been used as data reduction technique for extraction of data blocks information in high-level data 63 

fusion. The possibility to obtain chemically meaningful components, e.g. that can be 64 
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characterized in terms of chemical concentration and spectra profiles, allows a better 65 

understanding and highlighting, in the data fusion process, of the correlation between the 66 

resolved profiles of the different analytical techniques. 67 

Most often, in data fusion context, MCR has been used combining the information acquired by 68 

the different analytical techniques in the multi-sets structure [10-12]. This is surely a sound 69 

approach, however it may be non optimal when the data sets to be fused all share the samples 70 

mode and each data block is constituted of different kind of variables, e.g. metal contents and 71 

spectral fingerprint for the same set of samples, but there is not a varying condition for each 72 

sample such as time of measurement, pH, or a second spectral dimension. In other word, when 73 

data augmentation limits to variables concatenation and there is not real replicate information for 74 

the same sample to assist the resolution of the underlying components. 75 

Here, we present a case study where MCR was used as variable reduction tools for the 76 

development of hierarchical data fusion model in a study aimed at achieving information about 77 

the geochemical variability of soils samples. 78 

In particular, this work is a part of a pilot study belonging to a project concerning assessment of 79 

geographical traceability models for Lambrusco wines of protected denomination of origin 80 

(PDO), a typical food product of the Province of Modena (Italy).  81 

Food geographical traceability studies are targeted to establish the correlation between the soils 82 

of origin and the final products, hence, one of the main aspect to face is the representativeness of 83 

the sampling of the territories under investigation. To characterize soils samples the 84 

determination of several metals content together with the isotopic abundance ratio 87Sr/86Sr (a 85 

very promising geographical traceability marker) were used jointly with the X-Ray Powder 86 

diffraction profile to obtain information about the inter and intra-site variability, including depth, 87 

of soil samples at few selected locations, as well as to evaluate the link among main 88 

mineralogical phases, metals and isotopic abundance ratio 87Sr/86Sr. 89 
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The MCR data fusion approach was preferred instead of the multiset based one, for the reason 90 

explained above taking into account the great difference among data blocks in terms of number 91 

of variables and measurement scales. 92 

Several examples are present in literature for the identification of patterns of variation of 93 

pollutants or metal sources based on MCR [13, 14] whereas it is the first time that an approach 94 

based on multivariate curve resolution is proposed to attempt a partial resolution of XRDP 95 

components. In particular, we were interested on one hand to fully exploit soil samples 96 

differences and similarity, by building a comprehensive model merging the resolved MCR 97 

components from metals and isotopic ratio dataset with the XRDP one, and on the other hand to 98 

focus on the linking relations between the fused data blocks. 99 

2. Materials and Methods 100 

2.1. Experimental 101 

The sampling procedure and the analytical determinations concerning the data reported in each 102 

data block have been described in our previous works [15 and references therein]. Here we will 103 

briefly report only the salient information. 104 

2.1.1.  Soils Sampling 105 

Production of PDO Lambrusco wines is subjected to stringent regulations [16, 17] allowing 106 

grapes cultivation in the whole district of Modena.  The territory of the Province of Modena 107 

varies from in-plain area (centre-north) to moderate hill area in the south. 108 

The extension of the area (more than 90 km2) and the amount of Lambrusco producers insisting 109 

on it (more than four thousand) made it mandatory to develop a pilot sampling to evaluate, on a 110 

reduced scale, variability of soils in the district, sampling conditions and operating procedures 111 

[15]. Thus, four long chain producers were considered, three of these producers, named here on 112 

as A, B and D are located in in-plain region, where the majority of the production of Lambrusco 113 
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wines insists, the fourth one, C producer, insists in the hill area. For each producer, depending on 114 

the dimension of the field, from three to five coring where collected. In order to obtain 115 

information about both horizontal and vertical variability, each core was split in five aliquots of 116 

10 cm of length, starting from 10 cm of depth to 60 cm. All depths were analyzed for the hill 117 

field and only lower and upper aliquots for the plain ones for a total of 47 samples. 118 

2.1.2 Analytical Determination 119 

X-ray diffraction of powder, XRDP, was carried out by a θ/θ PANalytical X'Pert Powder 120 

diffractometer equipped with a Real Time Multiple Strip (RTMS) detector (PANalytical 121 

X'Celerator). Metals quantification needed a preliminary phase of sample pretreatment. Analytes 122 

were transferred from soils into solution, in order to perform the analytical measurement, by 123 

means of an acid leaching, with concentrated Suprapur® HNO3, assisted by microwave. The 124 

quantification of the Ca, Mg, K, Na content was evaluated by means of a F-AAS (SpectrAA 125 

220FS, supplied by Varian, equipped with a sample introduction/dilution system, SIPS 10) . An 126 

inductively coupled plasma mass spectrometer, ICP/qMS, XSeriesII from Thermo Fisher 127 

Scientific (Bremen, Germany), was used for the determination of the following isotopes: 7Li, 128 

51V, 52Cr, 60Ni, 63Cu, 66Zn, 68Zn, 71Zn, 85Rb, 88Sr, 109Ag, 114Cd, 133Cs, 137Ba, 139La, 140Ce, 146Pr, 129 

149Sm, 151Eu, 158Gd, 163Dy, 165Ho, 167Er, 169Tm, 172Yb, 175Lu, 205Tl, 208Pb, 232Th, 238U. The 130 

evaluation of isotopic abundance ratio 87Sr/86Sr was achieved by means of a multi-collector high-131 

resolution ICP/MS Neptune® provided by Thermo Scientific after the separation of the isobaric 132 

interference of rubidium via SPE with Eichrom's Sr Resin (4,4'(5')-di-t-butylcyclohexano 18-133 

crown-6 crown ether). 134 

2.2 Data Analysis 135 

2.2.1 Multivariate Curve Resolution 136 

MCR is based on bilinear decomposition of the data matrix [18, 19] according to the model: 137 
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D = C ST 138 

The model is calculated by alternating least squares algorithm (MCR-ALS). 139 

Since MCR is not an orthogonal decomposition such as PCA, it needs constraints to resolve the 140 

system in a way that the S (spectra) matrix corresponds to a real chemical behavior.  141 

Constraints can be applied both to the spectra (S) and the concentration (C) matrices, in order to 142 

reduce the rotational ambiguity of the model since MCR-ALS has not a unique solution. 143 

Constraints can be considered as the translation in mathematical formulae of a characteristic of 144 

the investigated system. 145 

Two types of constraints can be implemented in an MCR model: i) soft constraints such as non-146 

negativity, unimodality, selectivity and closure constraints that allow reducing rotational 147 

ambiguities; ii) hard constraints, based on physicochemical models able to describe the system 148 

under investigation such as kinetic or equilibrium model are able to reduce in the same time both 149 

rotational and intensity ambiguities. 150 

In the resolution of a chemical system, non-negativity constraints are very common. Furthermore 151 

within the family of constraints [20] other usefully adopted for the reduction of the ambiguities 152 

are: unimodality (i.e. the resolved profiles are imposed to have only a maximum), closure (i.e. 153 

the total amount of the species within the system is constant) and selectivity (i.e. imposition of 154 

the presence or absence of a species in a mixture or a region of the spectrum). 155 

Here, we adopted soft constrains, such as non-negativity constraints both for concentrations and 156 

spectral profiles.   Constrains motivation and application details for each data block are reported 157 

in the section 3, Discussion. 158 

   159 

2.2.2 Datasets and Preprocessing  160 
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As pointed out in the Introduction, we decided to follow a hierarchical data fusion approach, 161 

analyzing separately by multivariate curve resolution methodology the two data sets and then 162 

merging the extracted concentration profiles by each of them. In fact, the way in which variables 163 

are weighted is one of the most important tasks in data-fusion. In particular, in the case of fusion 164 

of blocks with very different number of variables and measurement scales, as in this case, low-165 

level data fusion could be difficult. Forcing a block of few variables to have the same variance as 166 

a more numerous one can lead to a concatenated dataset having the majority of variable with 167 

“intensities” very low and few ones with high values. This is more troublesome in the case of the 168 

use of multivariate curve resolution instead of orthogonal methods, such as PCA.  169 

The data fusion approach we adopted addresses two purposes:  meaningful components are 170 

extracted and the two data blocks are made comparable as more or less the same number of 171 

variables (resolved component) each one having a high variance with respect to the original data 172 

are concatenated. 173 

The whole data fusion process is illustrated in figure 1 and described here after. 174 

The collected diffractograms consist of 6882 2θ intensities (from 0° to 120° on 2 theta scale). 175 

The last part of the signals was cut at 79.99 2θ and diffractograms were then preprocessed in 176 

order to reduce noise and background effects and to minimize horizontal shift [15]. The signals 177 

were finally arranged in a 47x4488 matrix called “XRDP dataset”. By means of MCR-ALS 178 

three concentration profiles were extracted and arranged in a 47x3 matrix call “MCR-XRDP 179 

dataset”. 180 

On the other side, the concentrations (mg kg-1) of the 34 metals were scaled to unit variance 181 

(without centering) and merged together with the isotopic abundance ratio values. The obtained 182 

matrix, namely “Met-I.R. dataset” of dimension 47x35 was block-scaled in a way that the 15% 183 

of the total variance correspond to 87Sr/86Sr in order to assign to this important primary indicator 184 

a value six times higher with respect to each other metals concentration. Strontium abundance 185 
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isotopic ratio is an important parameter in geochemistry and geochronology, its value depends 186 

on several factors such as the age of formation of soils and the initial concentration of 86Sr, 87Sr 187 

and 87Rb. 87Rb is not a stable isotope and decays to 87Sr with an half-life time (t1/2) of more than 188 

ten to the tenth years. Given all these properties, we decided to enhance the importance of this 189 

variable with respect to all the others. 190 

Four concentration profiles were extracted with MCR-ALS and arranged in a 47x4 dataset called 191 

“MCR- Met-I.R. dataset” 192 

Finally the two concentration profiles matrices were concatenated and block-scaled in order to 193 

give the same variance to each block and then MCR-ALS were applied giving the bilinear 194 

decomposition of the arranged dataset “DF MET-I.R.-XRDP Dataset” based on three 195 

components. 196 

2.2.3 Software 197 

Multivariate Curve Resolution was carried out by MCR-ALS GUI 198 

(http://www.ub.edu/mcr/web_mcr/mcrals.html). Arrangement of dataset and fusion of data was 199 

obtained by homemade routine written with MATLAB (Mathworks MA, USA) and PLS 200 

Toolbox 6.0 (distributed by Eigenvector Research Inc WA, USA). 201 

 202 

3 Results and Discussion 203 

This section is divided in three parts describing the application of MCR-ALS to the different 204 

datasets: 3.1 results on “XRDP dataset”, 3.2 results on “MET-I.R. dataset”, 3.3 results on “DF 205 

MET-I.R.-XRDP Dataset” 206 

3.1 XRDP Dataset 207 
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Diffractograms of soils powders are very complex signals characterized by a high number of 208 

peaks of different intensities. The number of mineralogical phases contributing to the whole 209 

signal (chemical rank) depends on the complexity of the soils. In this work the application of 210 

MCR-ALS on the XRDP signals is not oriented to a complete quantitative resolution of the 211 

system under investigation but it is proposed as tool for the extraction of the meaningful 212 

information able to characterize the investigated soils. In fact, here the aim is not the 213 

quantification of the single mineralogical phases, but rather a qualitative identification of the 214 

phases responsible of the main sources of variability for soil samples differentiation. The use of a 215 

rank deficient model for the description of a system leads to a not complete resolution of the 216 

components that results in overlapped spectra profiles. If few major components are presents and 217 

able to characterize adequately the system under investigation, as in this case, the choice of a 218 

rank deficient model is sufficient but the so called “pure component” probably contains part of 219 

the information of other components not considered in the curve resolution process.  220 

Several attempts were tried for the application of MCR-ALS on the “XRDP dataset”, varying 221 

the number of components, initial estimates, constraints and normalization strategies. 222 

Preliminarily a MCR model with three components was chosen, based on singular value 223 

decomposition (SVD) results. Initial estimates were determined by SIMPLISMA [21] on spectra, 224 

non-negativity constraints were applied both for concentration and spectra, and spectra profiles 225 

were height normalized. Two of the three resolved spectra profiles (not reported) by this 226 

preliminary model resulted to be very similar to signals of the pure compounds calcite (the most 227 

stable polymorph of calcium carbonate) and quartz (silicon dioxide). In the third spectra profile 228 

most of the bands were present in the low 2θ region and many clays related peaks could be 229 

identified in the middle region of the spectrum. 230 

Quartz, clays and calcite, in order of abundance, are the main constituents covering the majority 231 

of the compositional profile of soils insisting in the Modena district, so it seems reasonable to 232 
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refine the model described above implementing selectivity constraints in order to reduce the 233 

rotational ambiguity of the system. 234 

In particular, few selected peaks were forced to be modeled only by one of the component on the 235 

basis of the XRPD signal of the pure quartz and calcite respectively, as retrieved by the database 236 

powder diffraction files version 4 (ICDD). The XRPD region corresponding to 50.1 2θ was 237 

imposed to be selective for quartz. The regions corresponding to 29.5 2θ, 39.4 2θ, 48.5 2θ were 238 

imposed to be selective for the “calcite” component, in these regions calcite responds, and not 239 

any other interfering species, or at least a contribution may be given only by species that are 240 

extremely rare in the investigated territory.  241 

The three components model built implementing selectivity constraints explains 92% of the total 242 

variance with a lack of fit with respect to PCA of 1.1%.  In figure 2 are reported the three 243 

resolved spectra profiles, The tentative identification of the three resolved profiles, as clays, 244 

calcite and quartz does not pretend we are referring to completely resolved profiles for these pure 245 

components, as pointed out above, we are aware of having chosen to fit a rank deficient model 246 

leading to not complete resolution. However, the three MCR components, as shown by the 247 

results obtained by the MCR model not forced with selectivity constraints and then confirmed by 248 

the constrained MCR model, are quite close to the pure spectra of these mineralogical phases, 249 

that represent the main constituents of soils of the Province of Modena. Hence, for convenience 250 

the terms “clays”, “calcite” and “quartz” will be associated to the resolved spectra profiles. 251 

In figure 3 is highlighted a region of the spectra in which is clear the good resolution of other 252 

peaks belonging to the calcite component that were not forced by the applied selectivity 253 

constraints.  254 

In order to inspect the information about samples, pertaining to the concentration matrix C, a 255 

scatter plot representation of its columns is proposed in figure 4. As MCR is not an orthogonal 256 

decomposition, this representation, while offering an easier way, with respect to separate bar 257 
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graphs for each C column, to formulate considerations about the similarities or differences of 258 

samples on the basis of two components at time, does not have the same meaning as samples 259 

distance in PCA spaces. However, the coordinates of samples in the concentration space of the 260 

MCR factors are directly related to the concentration and should have a more directly 261 

interpretable meaning than the distances between samples in the space of orthogonal factors. 262 

The most striking observation that emerges in figure 4 is the separation of the hill samples 263 

(producer C) that are separated for low concentration values for the clays component with 264 

respect to all the in-plane samples (producers A, B and D).  Moreover, the hill samples are split 265 

in two groups due to a different amount of both calcite and quartz. The distinction in two clusters 266 

of the hill samples is in agreement with a certain degree of soils variability at the site of producer 267 

C (hill area) that was also noticed during the on field sampling (15) and confirmed by 268 

preliminary results from texture analysis of the same soil samples where the whole content of 269 

sand, clay, silt and CaCO3 were determined. The distribution of these components in the 270 

different holes shows a great complexity and heterogeneity of these soils. Thus the intra site 271 

location of the collected samples may reflect the presence of a more calcareous soil fraction with 272 

respect to others characterized by a high amount of quartz. At variance, all in-plain samples are 273 

slightly more homogeneous and only the samples of the producer A present a lower amount for 274 

the calcite component and higher for the quartz ones with respect to the samples of the producers 275 

B and D.  276 

3.2 MET-I.R. Dataset 277 

The dataset “MET-I.R. dataset” containing the concentrations of the 34 metals determined and 278 

the isotopic abundance ratio 87Sr/86Sr was pretreated as described in the previous section, also in 279 

this case several attempts were tried for the selection of the best parameters for the application of 280 

MCR-ALS. 281 
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A four components model was calculated using SIMPLISMA on concentration direction for the 282 

evaluation of initial estimates, applying non-negativity in both concentration and “spectra” 283 

(variables) direction (99% of total variance explained, lack of fit with respect to PCA 0.8%). 284 

The resolved component profiles (variables mode) are reported in figure 5. Each profile 285 

represents a common pattern of variation of the investigated soils resolved by MCR-ALS. The 286 

information that can be extracted from these profiles is a characterization of the samples on the 287 

basis of groups of metals that vary likewise for all the soils analyzed. It is possible to denote that 288 

some variables present high values for almost all the components (Cr, U, Ni).  289 

On the other hand, other variables are not present in some components, for example Calcium 290 

presents values near or equal to zero for the first, second and fourth component and the highest 291 

one for the third one, as magnesium, which shows the same behavior. Sodium and potassium 292 

have high contribution in the second and third components but not in the other two, the same 293 

trend is observed for rare earths elements in the first, second and fourth component. Isotopic 294 

abundance ratio of 87Sr/86Sr presents high values for the first component and low or very low for 295 

all the other ones.  296 

Considering the samples concentration profiles obtained for the MET-I.R. dataset, which are 297 

reported in figure 6, they share similarities with respect to the trends shown above in figure 4. In 298 

particular the second component arising from the MET-I.R. model is associated to a distribution 299 

of the samples, as regards concentrations values, very similar to the clays component of the 300 

XRDP dataset. The same consideration can be extended for the third MET-I.R. component and 301 

the calcite ones. The first component, on the other hand, presents higher values for all the hill 302 

samples with respect to the in-plane ones. The fourth component is not able to highlight 303 

differences on the groups of soils, only one hill sample is present at very high values indicating a 304 

great amount for this soil of one or more of the variables with high contribution on the fourth 305 

component (e.g. cadmium). 306 
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3.3 DF MET-I.R.-XRDP Dataset 307 

The three resolved concentration profiles from XRDP model were concatenated with the four 308 

from the analysis of metal and isotopic ratio dataset in a way that the variance explained by each 309 

block was the same, since the aim the data fusion process is to extract the correlation between 310 

the two blocks of variables in order to better explain the variability of the soils samples. 311 

The resulting “DF MET-I.R.-XRDP dataset” of dimensionality 47x7 was evaluated by a three 312 

component MCR-ALS model, using SIMPLISMA on concentration direction for the evaluation 313 

of initial estimates and applying non-negativity constraints for both concentration and “spectra” 314 

(variables mode). The model is characterized by 95.9% of variance explained, lack of fit with 315 

respect to PCA 0.3%. 316 

In figure 7a, 7b and 7c are shown the bar graphs of the three MCR components respectively, for 317 

the S matrix (variables mode). To better describe the linkage among the components extracted by 318 

the different data blocks in figure 7d the three-dimensional scatter plot is shown. In particular, it 319 

can be observed the grouping of the quartz component from the XRDP model and the first 320 

component from MET-I-R that get the highest value on the first resolved component of the fused 321 

dataset. The first MET-I.R. component is principally related to the values of the isotopic 322 

abundance ratio of 87Sr/86Sr, U, Cr, (that presents the maximum value, figure 5 top left) and to 323 

the contribution of all the rare earths patterns. Thus, in the investigated soil samples to higher 324 

quartz content corresponds as well a higher isotopic abundance ratio 87Sr/86Sr. 325 

On the second resolved component of the fused dataset, clays (XRDP data set) and the second 326 

and fourth of the MET-I.R. dataset show the highest values.  The correlation between one XRDP 327 

component and two components from the metal dataset (mostly influenced by transition metals: 328 

zinc, nickel, cobalt, vanadium, cadmium, monovalent elements such as rubidium, potassium, 329 

sodium, and by the rare earths pattern) highlight the complexity of the possible relation between 330 

the different variables (metals composition and lattice structures) and it can also be due to the not 331 
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complete resolution of the clays component, that is a combination of several crystalline structure 332 

of different clays (muscovite, illite, chlorite, serpentine) typically presenting the inclusion of 333 

different metals in the lattice. 334 

The third component shows the correlation between the calcite component and the third MET-335 

I.R. component that, as expected, is characterized by the highest contribution of calcium with 336 

respect to all the other spectra profiles and other bivalent elements that commonly are presents in 337 

carbonate soils, such as magnesium, strontium, zinc, nickel and by alkaline metals such as 338 

sodium, potassium, rubidium. 339 

In figure 8 are reported the concentration profiles. The distribution of the samples presents 340 

similarities with the separate models presented above. All in-plain samples have the highest 341 

values for the second component (as they showed on the second component in MET-I.R model 342 

and the clays component in the XRDP model) but are more differentiated in the first and third 343 

component. Samples from the A producer present more positive values for the first component 344 

and lower values for the third one with respect to all other in-plain samples. This indicates that 345 

the field of producer A has higher amount of quartz and strontium isotopic ratio, the most 346 

important variable for the second component of the MET-I.R model. 347 

Regarding the samples from the hill field, it is clear the greater variability compared to the in-348 

plain ones. Analyzing the first and third component plot in figure 8b it is evident the separation 349 

in two groups of the hill samples. These components are related to variables from XRDP and 350 

MET-I.R. dataset that appear to be mutually complementary. The presence of a high amount of 351 

one of them is linked to the presence of a lower one for the other component. These results are in 352 

agreement with preliminary information regarding the textures analysis of the same soils, such as 353 

the percentage of sand and silt. This variability is so pronounced that some samples of the same 354 

hole but at different depth present high values for the third component in some cases and lower 355 

for some other. 356 
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4. Conclusions 357 

The high-level data fusion approach adopted for the analysis of data of different nature proved to 358 

be a powerful tool for a preliminary inspection of blocks of data characterized by a very different 359 

dimensionality. In this contest, MCR-ALS proved to be a relevant variable reduction mean 360 

because the extracted components bear chemically meaningful information, hence an easier 361 

interpretation of the data in each stage of the data fusion process. 362 

When preliminary knowledge about variability and features of samples are not present or not 363 

detailed, as in this case, the possibility of the interpretation of the results on the basis of a 364 

multifold instrumental approach helps the determination of both the characteristics of samples 365 

and of the single results of each block of variables. In particular, the linkage among the metal 366 

profile and some mineralogical phases with the isotopic ratio may furnish a preliminary estimate 367 

of what variability has to be expected depending on field location and thus aids the planning of 368 

soil sampling. 369 

The applications of MCR-ALS on very complex data, such as diffractograms, demonstrate the 370 

capability of this tool of achieving good results when used on fingerprinting techniques data in a 371 

way similar to an exploratory analysis. 372 
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Captions of  figures 410 

Figure 1: Schematization of the data fusion process 411 

Figure 2: MCR-ALS resolved spectra profiles of XRDP dataset. a) First component, “clays”. b) 412 

Second Component, “calcite”. c) Third Component, “quartz”. 413 

Figure 3: Zoom of the 40-49 2theta region showing superimposed the MCR-ALS resolved 414 

profiles for the three XRDP components.  415 

Figure4: MCR-ALS resolved concentration profiles of XRDP dataset. a) “clays” versus “calcite” 416 

resolved concentration profiles. b) “calcite” resolved versus “quartz” resolved concentration 417 

profiles. 418 

Figure5: MCR-ALS resolved “spectra” profiles (variables mode) of MET-I.R. dataset. 419 

Figure6: MCR-ALS resolved concentration profiles of MET-I.R. dataset. a) third component 420 

versus first component; b) second component versus third component; c) first component 421 

versus fourth component. 422 

Figure7: MCR-ALS resolved “spectra” (variables mode) of the fused dataset DF MET-I.R.-XRDP. 423 

a) First component. b) Second component. c) Third component. d) Scatter plot of three of the 424 

resolved components. 425 

Figure8: MCR-ALS resolved concentration profiles of the fused dataset DF MET-I.R.-XRDP. a)  426 

Second component versus first component; b) first component resolved versus third 427 

component; c) second component versus third component. 428 

 429 



Fi
gu

re
 1

Cl
ic

k 
he

re
 to

 d
ow

nl
oa

d 
hi

gh
 re

so
lu

tio
n 

im
ag

e



Figure 2
Click here to download high resolution image
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