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Abstract

We study positive solutions y(u) for the first order differential equation
o,
y' =qlcy? — f(u))

where ¢ > 0 is a parameter, p > 1 and ¢ > 1 are conjugate numbers and f is a
continuous function in [0,1] such that f(0) = 0 = f(1). We shall be particularly
concerned with positive solutions y(u) such that y(0) = 0 = y(1). Our motivation
lies in the fact that this problem provides a model for the existence of travelling wave
solutions for analogues of the FKPP equation in one spacial dimension, where diffusion
is represented by the p-Laplacian operator. We obtain a theory of admissible velocities
and some other features that generalize classical and recent results, established for

p=2.
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1 Introduction

In this paper we study some features of positive solutions to ordinary differential equations
of the form

Y =qleysr — f(w), 0<u<l (1.1)
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where y; = max(y,0). We look for certain positive solutions y = y(u) of (1.1) that vanish
at one or both endpoints of the interval [0, 1]. Here p, ¢ are positive numbers such that

1

1
+-=1,
p g

¢ > 0 is a parameter, and f : [0,1] — R is a continuous function of types A, B or C, by
which we mean

(Type A) f(0) = f(1) =0 and f(u) >0if u e (0,1).

(Type B) f(0) = f(1) = 0 and there exists o € (0, 1) such that f(u) =0if u € [0,q]
and f(u) >0ifu € (o,1).

(Type C) f(0) = f(1) =0 and there exists o € (0,1) such that f(u) < 0if u € (0, )
and f(u) > 0ifu € (a,1).

This terminology was introduced by Berestycki and Nirenberg ([4]).

The motivation for considering (1.1) is the following. Consider the partial differential
equation
P72 Hy,

Ou m] + g(u), (1.2)

ox

ou 0

m_me
which, in case p = 2, provides a model for a large variety of biological and chemical
phenomena. We refer the reader to [3], [4],[11], [17], just to cite a few, and their references.
In this equation g is a reaction term, while the first term in the right-hand side represents
density dependent nonlinear diffusion in one-dimensional space. In the case p = 2 this is
the well known FKPP equation (without convection term). Recently, models where the
p-Laplacian operator replaces the usual Laplacian have been considered in the literature
(e.g. [13], [8)):

When ¢ is of one of the types A, B or C, u = 0 and v = 1 are two equilibrium
solutions. An important problem related to this equation is that of finding travelling wave
solutions, that is, solutions of the form wu(t,x) = U(x — ct) for some ¢ > 0. Here c is
the propagation speed of the wave. It is in addition required that the wave front U(s) is
defined in (—o0, +00) and satisfies U(—o0) = 1, U(+oc0) = 0. This amounts to look for
the solutions of the second order ordinary differential equation

(D)%Y + eul + g(u) = 0 (1.3)
satisfying the limit conditions
u(—o0) =1, u(+o0) =0. (1.4)

For certain values of the parameter ¢, such solutions are in addition monotone, with v’ < 0
in their whole domain. Now if we set

—v = D(u)|u/ [P,



for such monotone decreasing solutions, v may be seen as function of uw. For simplicity,
assume that D(u) > 0 for all uw € (0,1). Then a simple calculation shows that v = v(u)
must satisfy

1 d v \47!
Y oa =0
et () o
and therefore if we define
y(u) = v(u)?

the function y will solve (1.1) with f(u) = D(u)? tg(u).
Moreover, the conditions (1.4) for monotone solutions defined in the real line imply
that
u'(—o0) =0, u'(+00) = 0.

This fact is well known in case p = 2 (see for instance [5]) and the argument easily carries
out to the general case, as we show later for completeness. In terms of y this translates
into

y(0) =0, y(1) =0, (1.5)
thus motivating the study of the existence of solutions of (1.1)-(1.5).

The study of admissible speeds for the problem (1.3) in case p = 2 has a long and
rich history, starting with the seminal paper by Kolmogorov, Petrovski and Piscounov
[10], including the in-depth approach by Aronson and Weinberger [3], and many recent
contributions that the reader may find in the references. In Gilding and Kersner [6] and
Malaguti and Marcelli [13] a singular integral equation technique has been used in the
investigation of (1.3) and analogue equations for p = 2.

In this paper we propose, alternatively, to study the singular differential equation (1.1),
thus constructing a first order model for admissible speeds and asymptotic behaviour (a
method already used in [5]). This in turn provides information for (1.3) that is the coun-
terpart of classic and recent results which have been obtained along years by many authors
in case p = 2. In particular, we consider the differences between problems with functions
of type A, on one hand, and with types B and C, on the other [3, 4]; we acknowledge the
occurrence of sharp solutions, which were found in [16] and later systhematized in [14]; we
deal with sign change in diffusion density [11, 12] and with negative density diffusion [17].

The first order theory is developed in sections 2 to 4 and the applications to second
order equations are given in section 6.

Notation. Let us introduce some notation and basic conditions to be used in the next
sections. For ¢ > 0, we consider the function ¢, : [0,00) — R defined by

be(2) = cz\/P — 2. (1.6)

We remark that ¢, vanishes at the two points 0 and ¢?, is positive if and only if 0 < z < ¢
and ¢, attains its absolute maximum M, at a point w. € (0,¢?). Namely: w. = (¢/p)?,
M. = w.(p—1). Now for any = € [0, M,), the function ¢. takes the value z at exactly two
points, let us say w, (z) € [0,w.) and w} (z) € (w,,c?]: in particular, we set



If # > M, we set, by definition, w; (z) = w} (z) = w,.

Also, we shall be dealing with functions f of type A satisfying

sup f(zfz =pu < 400 (1.7)
u€(0,1) ud
or the stronger property
lim M =\ < +o0. (1.8)
u—0+t ud—1

2 Functions of type A: existence of solutions and admissible
speeds

Consider the boundary value problem

1

{y’(u) = qley+(w)r — f(w), 0<u<l 1)
y(0) =y(1) =0,

for which we look for positive solutions in the interval (0,1). By a solution we mean a
function y € C[0,1] satisfying the equation above and the boundary conditions. In what
follows positive solution means a solution y such that y(u) > 0 Vu € (0, 1).

The following proposition allows us to conclude that the existence of a positive lower
solution satisfying a strict inequality in the interval (0,1] is enough to get existence and
uniqueness for (2.1).

Proposition 2.1. Let f be of type A. Suppose that s(u) is a C'-function in [0,1] such
that s(0) =0, s(u) >0 if u e (0,1) and for all u € (0, 1],

, 1
$'(u) < g (es(u)r - f(u)). (2.2)
Then (2.1) has a unique positive solution.

Proof. By a well known argument, (2.2) implies that there exists a solution y(u) of the
differential equation in (2.1) with y(0) = 0 such that s(u) < y(u). Now consider the
solution 7 of the initial value problem

7 =a(cir — ), y1)=o0. (2.3)

(In fact this problem enjoys uniqueness in [0, 1] because the right-hand side of the equation
is nondecreasing in the dependent variable.) It is easy to see that g > 0 in [0, 1]. Moreover
0 < g(u) < y(u) for all w € (0,1). For, if up is a zero of g in (0, 1), then the differential
equation implies 7' (ug) < 0, which is a contradiction with the fact that § > 0; and if there
exists u; € (0,1) such that g(u;) = y(u1), then by uniqueness of solution we would have
y =y, which contradicts the fact that y(1) = 0. By continuity we have §(0) = 0. The fact
that the solution is unique is a direct consequence of uniqueness for (2.3). ]



Remark 2.2. One could also have invoked the fact that that the functions s and 0 are
lower and upper solutions with respect to the periodic problem for (1.1) in [0, 1].

Proposition 2.3. Assume that f is a function of type A in [0,1] satisfying (1.7). Then
there exists a constant ¢* > 0 (depending on f and p) such that (2.1) admits a unique
1 1 1

positive solution if and only if ¢ > ¢*. Moreover we have the estimate ¢* < gapr pa.

Proof. It is obvious that for ¢ large enough, the inequality ¢.(3) > u has positive solutions
B if and only if w.(p — 1) > p, that is,

1101
c> qiprpa.
For one such 3, let s(u) = fuf. Then, for all u € (0,1], we have
$'(u) = gBut™t < (e —p) qutt < q(cs(u)r — flu)).

The previous proposition allows us to conclude that for such value ¢, the boundary value
problem (2.1) has a unique positive solution.

Now let ¢* be the infimum of the values ¢ > 0 such that problem (2.1) has a unique
positive solution. The estimate for ¢* follows from what we have just seen. Let us prove
that for all ¢ > ¢*, problem (2.1) has a solution. Given ¢; > ¢*, let us consider a value ¢
such that (2.1) has a positive solution yz and ¢* < é < ¢;. For all uw € (0,1] we have

= (o0 = 1) <a (e - f0).

S0 Y is a lower solution for the problem with ¢ = ¢; and by the previous proposition, we
conclude the solvability for (2.1) with ¢ = ¢;.

To prove the solvability for ¢ = ¢*, consider a decreasing sequence ¢, tending to c*
and the correspondent positive solutions y,. First, the argument we used at the end of
the proof of Proposition 2.1 shows that y, < y; Vn. It is also easy to conclude that the
sequence (y,) is uniformly bounded in C'([0,1]). By the Ascoli-Arzeld theorem, there
exists a continuous function y* such that y, — y* uniformly in [0, 1]. It turns out that y*
satisfies (2.1) with ¢ = ¢* and y* > 0 in (0, 1).

Let us now prove that ¢* > 0. If ¢* = 0, using the above notation we would obtain
y*(u) = —q [y f(s)ds meaning that y* < 0 in (0, 1], a contradiction. O

3 Behaviour of the solutions near the origin

Throughout this section we suppose, as in the previous one, that f is a type A function,
and try to get more detailed information about the behaviour of the solutions of equation
(1.1) near 0, under the only condition y(0) = 0. To this end, we need conditions (1.7) or
(1.8) on f. We are going to show that, whenever (1.8) holds:

(a) lim y(u) =w, (A) or (b) lim y(u) =wl(N). (3.1)



In particular we point out that, if the stronger condition
fu)

sup ——= < +00 (3.2)
u€(0,1) ud

holds, then A = 0, so that w_ (A) = 0. In this case, actually, we can say more than (3.1a),
namely:
y(u)

sup —= < +o00. 3.3

0<u1:§)1 uPq ( )

In order to show the properties above, we need some preliminary results. To this end, let
y € S be fixed, and put

y'(u)

7(“’) = quq_17 Z(U) = ) )\(U) = a—1 (34)

Let us denote respectively by v~, [~ and A~ the lower limits of v(u), z(u) and A(u) as
u — 0. Similarly, the scripts v+, [T and A* will stand for the corresponding upper limits.
From

Y = q(cyr — f(u)) (3.5)

it is easy to see that z(u), at least for small values of u, solves the following differential
equation:

? = Lel(2) = A(w)): (3.6)
Lemma 3.1. Let f satisfy (1.7), y € Se, A\* and I* be defined as above. Then:
(a) M. > A=, that is: ¢ > (\~q)Y9pYP. In particular: c¢* > (\~q)YIp!/P.
() 1F € JuA), 1 & T,
(c) N\ W <M, = w.é¢ (I7,1T).
(d) (1.8) = (3.1).

Proof. (a) We remark that v~ <1~ <[t <47 as follows easily from Cauchy’s theorem.
Furthermore the function y, as long as it is positive, solves equation (3.5). If we divide
both its sides by qu?~!, and recall that (¢ — 1)p = ¢, we get:

v(u) = cz(u) P — \(u). (3.7)

But now (3.7) implies that v+ < ¢(IT)/? =\~ as we can argue on taking the upper limit of
both sides as u — 0. On the other hand, since y* > I, we actually get A\~ < ¢.(I1) < M,.

(b) It is enough to remark that ¢.(I*) > A~ and ¢.(I7) < A*. Indeed, the first
inequality was shown in the previous step. As regards the latter, it can be achieved in a
similar way, when taking in (3.7) a lower limit instead than an upper limit.

(c) Suppose, by contradiction, |~ < w. < I*: in particular, the maximum among the
three values At ¢.(17), ¢c(I1), say h, is less than M.. Now, let j,m € (h,M.) such
that j < m, and put I = [p~,pt] := ¢_'([m, M.]), so that I C (I=,1). According to
the definitions of A*, [~ and I* we can find § > 0 such that A\(u) < j for 0 < u < 6,
and two points v~ and ut € (0,6] such that v~ < ut, 2(u™) = p*, z(ut) = p~ and



pT < 2(u) < p~ for um < u < uw'. In particular, the interval [u™,u"] must contain a
point 0 at which 2z’ < 0. On the other hand ¢.(z(8)) > m, so that (3.6) would yield the
contradiction z'(6) > (q/0)(m — j) > 0. Hence, actually, w. ¢ (I7,1T).

(d) Since A~ = AT = A, from (a) we get A < M., and applying claim (c) we infer that
[~ and [ lie on the same side with respect to w.. On the other hand, let us replace A~
and AT in claim (b) by their common value \: according to whether, respectively, I~ and
[T lie to the left or to the right of w., we infer what follows: either [~ < wsy (A) < It <w,
or we <17 < wr(N\) <IT. In both cases it is enough to show that [~ = I*. As regards
the former, let us suppose, by contradiction, that I~ < I™: then both values [~ and [T
can be approximated along a sequence of local extrema of z, which are, in particular,
critical values. More precisely, we can find points a; and b; (i € Z1) at which 2’ vanishes,
in such a way that a; — 0, b; — 0 and the sequences (z(a;)); and (z(b;)); converge
respectively to [~ and {T. Since 2'(a;) = 2/(b;) = 0, (3.6) entails ¢.(2(a;)) = A(a;) and
be(2(b;)) = A(b;). Now, let us first suppose [T < w,.: then both equalities z(a;) = w_ (A(a;))
and z(b;) = w, (A(b;)) hold for large values of i: since w, is continuous, and A(u) — A as
u — 0, from the previous relations we get, as i — +00, the contradiction [~ = It = w_ (\).
Now assume let {7 = w.: then possibly z(b;) = wl (A(b;)) for infinitely many values of
i: in this case, however, w. = [T = wl()\), so that, actually, A\ = M.. Then we can
write again [t = w_ ()\), and get the same contradiction as before. Finally in the case
we <17 < wf(X\) <1 the conclusion is straightforward by virtue of (b). O

1

Corollary 3.2. If (1.7), (1.8) hold and p = A, then c* = q%p%)ﬁ.

Proof. It sufices to combine the Proposition 2.3 with Lemma 3.1 (a). O

This generalizes the well known result for the case p = 2, where A = f/(0), for which
M = f'(0) implies ¢* = 2,/ f/(0).

Now, let 7, A,¢ > 0 be fixed. For any function y € C([0,7]) we denote by N(y) the
supremum of |y(u)|/u? for 0 < u < r: then it is easy to check that the subspace V of
C([0,7]) where N(y) < +oc is a Banach space with respect to the norm ||y| := N(y).
Now we define a closed subset E of V and a map T : E — V as follows:

E = {yeV:yu) >Au?, 0<u<r}, (3.8)

T = [ (@)~ f6)ds, yeB, 0<usr (3.9
0
Lemma 3.3. Let f fulfil (1.8), v = sup{f(u)/u?™';0 < u < r}. Then the following
properties hold.
(a) T(E)C V.
(b) If A>w., T : E — V is a contraction with respect to || - ||.

(¢c) If pc(A) > v, then T(E) C E. In particular, if w. < A <w(v), T is a contraction
of E into itself.



Proof. (a) If y € E, then obvously w := T(y) € C(]0,7]). In order to prove that
||lw]| < 400 we only need to divide both sides of the following inequality by u?, and take
the supremum for 0 < u < r.

w(u) < q0/ y(s)/Pds < qC/ (lylls®)7Pds = clly||'/Pur. (3.10)
0 0

(b) We notice that, for any o > 0, the function y'/? admits, on the half-line [a, +00),
the Lipschitz constant L(a) = (pa'/?)~1. Now, for i = 1,2, let y; € E, w; = T(y;). Then:

s () — w1 ()] < eq /0 " ua()17 — g2 ()7)ds <
< oq /0 " L(AsY)ya(s) — 1 (s)|ds < (3.11)

c w _ c ,_
< ;q (As) "My — y[|s%ds = EA Yaylyy — g
0

Also here we can divide the extreme sides by u¢ and take the supremum for 0 < u < r, so
as to infer that k = (¢/p)A~'/4 is a Lipschitz constant for T' with respect to | - ||. But the
condition A > w, is just equivalent to k < 1.

(c) Ify € E and w = T(y), then w(u) > qfou[c(Asq)l/p — vs971ds, where the right-
hand side is precisely (cAYP — v)u?. Hence w(u) > Au? if and only if ¢.(A) > v. As
regards the last claim, it is enough to remark that the two conditions ¢.(A4) > v and
A > w, hold together if and only if w. < A < wl(v). O

Remark 3.4. The condition ¢.(A) > v in Lemma 3.3 is equivalent to state that the
function Au? is a subsolution of (1.1) on [0, r].

Proposition 3.5. Let f satisfy (1.8), set ¢ := (\q)Y9p'/?, and assume ¢ > . Then the
following properties hold true.

(a) S. contains exactly one function y which verifies (3.1b), say y =: V..
(b) Ify € Se, y # e, then (3.1a) holds.

(¢) Ify € Se, y # e, then Ye(u) > y(u) for any u € (0,1].

(d) If w is a subsolution of (1.1) and w(0) = 0, then ¥, > w on [0,1].
(e) If 0 > c then yg(u) > c(u) for any u € (0,1].

(f) sup {|vg(u) — the(u)|/u?; w e (0,1]} — 0 as 6 — c.

(9) If y € S, y # e and (3.2) holds, then y satisfies (3.3).

Proof. (a) From our condition on ¢ and Lemma 3.1-(a) we get M, > A: therefore, if r > 0
is suitably small, the number v which appears in Lemma 3.3 lies below M, as well, that
is we < wl(v). So, let w. < A < wl(v), and define F and T as in (3.8), (3.9). Since E
is a closed subset of the Banach space (V|| - ||), Lemma 3.2-(c) and Banach’s contraction



principle ensure that 7' admits a unique fixed point y, which obviously solves (1.1) on
[0,7] and fulfils the condition y(0) = 0. In particular, the extension of y to the whole
interval [0, 1] (as a solution of (1.1)) belongs to S.. On the other hand, since y(u) > Au?
on [0,7], of (3.1a) and (3.1b) only the latter can hold. As regards uniqueness, let y € S,
fulfil (3.1b): then gy belongs to the same space E as before, and is again a fixed point for
T, so that, necessarily, 7 = .

(b) It follows at once from Lemma 3.1-(d).

(c) Since y and 1. satisfy respectively (3.1(a)) and (3.1(b)), and w_ (A\) < w(N),
the inequality t.(u) > y(u) surely holds in a right neighbourhood of 0, say (0, p]. By
contradiction, let o € (p, 1] be the first point at which the function z = 1, — y vanishes:
since 2’ > 0 on [0,0] and z(0) = z(c) = 0, we should get the contradiction ¥ = y on
[0, o].

(d) By virtue of the previous claim, the inequality . > y holds true for any y € S..
On the other hand, since w is a subsolution of (1.1), we can find y > w such that y(0) =0
and (1.1) holds: then w <y < 1.

(e) If & > ¢, then ¢y > ¢. and therefore wl < wg. Hence 1. < 1y in a right
neighborhood of 0, by virtue of (3.1b). Then the inequality in fact holds in (0, 1].

(f) Let r,v and A be again as in the previous steps. Since M., w. and w] (v) depend
continuously on ¢, let « € (¢,¢), > ¢ such that M, > v and wg < A < wZ (v). For any
6 € U := (o,0) put ¢ = 0 in (3.9), denote by Tp the corresponding map and by 1) the
restriction of ¥y to [0, r], which can be characterized as the unique fixed point of Ty. We
point out that the maps Tjy, for 8 € U, are defined on the same set ¥ we introduced in the
proof of claim (a), a set which does not depend on . Furthermore, the map (6,y) — Typ(y)
is continuous, and k = (3/p)A~1/% < 1 is a Lipschitz constant, with respect to the norm
of V, for all maps Ty, # € U. Then it is easy to show that the fixed point of Ty depends
continuously on 6. More precisely: the map 6 — 1} is continuous from U to (E, ||-||), and
the same we can say, as a consequence, for the map 6 — 1y(r) from U to R. Then well-
known results about the dependence on initial data of the solution of a Cauchy problem
entail that, as 0 — ¢, 19 — 1., uniformly on [r, 1]. Now, let us put A(6) = ||y — ¢ ||, and
denote by S(6) the supremum of |1y — )| over [r, 1]: according to the previous arguments,
both A(f) and S(6) converge to 0 as § — c¢. On the other hand, the supremum which
appears in our claim does not exceed max(A(6), S(0)/r?).

(g) Let K < +o00 be the supremum in (3.2): in particular, as we already pointed out,
(1.8) holds true with A = 0. Since we are dealing with a function y which does not fulfil
(3.1b), and w_ (0) = 0, from (3.1a) we argue that y(u)/u? converges to 0 as u — 0, and
the same we can say of y(u)"/?/u. Now, let us suppose, by contradiction, that (3.3) is
not satisfied: actually, in this case, the ratio y(u)/uP? is not bounded from above on any
right neighbourhood of 0, and the same we can say of y(u)/?/u¢. By combining the two
previous remarks, we easily find € > 0 such that

y(g)l/p (C—py(e)l/q> > K. (312)

g9 € a
Let h = y(g)/eP?: then the function w(u) = huP? satisfies the conditions

(@) w(e) = yle),  (B) w'(u) < glew(w)’” - f(w)), 0<u<e. (3.13)



Indeed, (3.13a) is obviously due to our choice of h, while (3.13b) can be proved as follows:

fu) < Kul <[e(y(e)? /) — pP~! (y(e) /e")]u? = (3.14)

= (ch"? — pheP ™ Yul < ch/Pul — phuP?™! = cw(u)/P — (w'(u)/q).

In particular: the second inequality in (3.14) follows from (3.12). The inequality of the
second line of (3.14) comes from u < e and p + ¢ = pq. Then (3.13b) holds true as well,
so that w is a subsolution of (1.1), and (3.13a) implies y < w on [0, €]. But now, from the
expression of w, we conclude that (3.3) holds, in contrast with our initial assumption. [

Remark 3.6. Let us consider the estimate from below which is given by Lemma 3.1(a)
on the critical value ¢*, and combine it with the final claim of Prop. 2.3: under the
assumption (1 8) and accordlng to the notation we introduced in Proposition 3.5, we can

write ¢ = QQpp)\q <ct < quP/u We also point out that, in the limit case ¢ = ¢, the
maximum value M, of (1.6) is A, so that w_ (A\) = wl(\) = w.: hence (3.1) has no meaning
for c =ec.

Theorem 3.7. Let f satisfy (1.8), ¢ > ¢* and, according to Proposition 2.3, let y be the
only solution of (1.1) such that y(0) = y(1) = 0. Then:

(a) ¢ > c* = y satisfies (3.1a).
(b) c=c* = y satisfies (3.1b).

Proof. (a) Let ¢* <0 < ¢, put ¢ =0 in (1.1) and call g the solution of the corresponding
equation such that (0) = g(1) = 0. Suppose, by contradiction, that (3.1a) does not hold,
and exchange the roles of # and ¢ in Prop. 3.5e, so as to get y = 1. > 1y > g on (0,1]. In
particular, we get the contradiction 0 = y(1) > g(1).

(b) It is enough to prove that (3.1a) = ¢ > ¢*. So, let us suppose that y € S, y # ¥e:
then, from Prop. 3.3c, we infer that ¢.(1) > y(1) = 0. On the other hand, Prop. 3.5f
ensures, in particular, that the map ¢ +— (1) is continuous, so that 1g(1) > 0 for some
6 < c¢. Now, let us put ¢ = 0 in (1.1), and denote by ¢ the solution of the corresponding
equation which fulfils the condition (1) = 0. By the same arguments as in the previous
section, we get (0) = 0 as well: hence € > ¢*, so that ¢ > ¢*. O

The reader may find related and complementary results in [9] and in [1].

4 Functions of types B and C: existence of solutions

Let us now consider the cases where f is a type B or type C function.

Lemma 4.1. Assume f is continuous in [0,1], f(0) =0 and

hmme > — (4.1)
u—0 ud—
Then any solution of
1
Y =qlcysr — f(u), y(0)=0, (4.2)
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positive in a neighborhood of 0, satisfies

Proof.
Claim: Given k > 0, there exists M > 0 such that any solution of

Y =qlezpr +kut™h),  2(0) =0 (4.3)

positive in a neighborhood of 0, satisfies z(u) < Mu4, 0 < u < 1.
If we set w(u) = 2(u)/9, we have w' = ¢+ k(%)7~!, w(0) = 0. Defining
w(u) w(u)
u

[ = liminf , L =limsup
u—0 u u—0

and

' =liminfw'(u), L' = limsupw’(u)
u—0 u—0

k

we obtain c<U' <I<L< L =c+ =1 < +00 and our Claim follows.
Now choose k& > 0 so that —f(u) < ku?! if 0 < u < 1. For each h > 0 consider the
solution zp, of

2 = qlc thj + ku?™Y),  2,(0) = h. (4.4)

Then z;, converges, as h — 0, to the maximal solution of (4.3). On the other hand if we
pick a solution y of (4.2) it is clear that y < zj. Using the Claim, we obtain the conclusion
of the lemma.

Theorem 4.2. Let f be a type B or a type C function. In the latter case assume
fol f(s)ds >0 and (4.1) holds. Then there exists a number ¢ > 0 such that the boundary

value problem y' = q(c y+% —fw), 0<u<1, y(0)=y(1)=0 has a positive solution
if and only if c = ¢.

Proof. By the hypothesis there exists a € (0,1) so that f > 0 in («, 1) and either
f=0or f <0in (0,«). For ¢ > 0 consider the Cauchy problem

Y =qleysr — f(u), y(1)=0, (4.5)

which, as we have already remarked, has a unique solution y. in [0,1]. Also, the usual
compactness argument shows that y. depends continuously on ¢ € [0,400) in the norm
of C([0,1]). Clearly, y.(u) > 0 at least for u € (o, 1). In particular, by our assumptions,
yo(u) = qful f(s)ds >0 for all uw € [0,1).

Step 1: solutions decrease with c. Given c¢; < ca, the corresponding solutions y; = y.,
and y2 = y., are such that y;(u) > y2(u) whenever y;(u) > 0. In fact we cannot have
y1 < y2 in any open subinterval of (a, 1), otherwise y; — y2 would be decreasing in that
interval, contradicting the fact that it must reach the value 0.

Set ¢ = sup{c > 0| yc(u) > 0Vu € (0,1)}.

11



Step 2: 0 < ¢ < 4o00. It is obvious that ¢ > 0. If ¢ = +oo, there exists ¢, — +oo with
Yn = Ye, > 0in (0,1). If f is type B, then

1 1

yn(u)® = yn(@)® — cn(or—u) (4.6)

for u € (0, ). Note also that y,(a) < qf; f(s)ds. Hence y, must become negative for n
large, a contradiction. If f is type C the same argument applies because then the solution
in (0, @) must stay below the function given by the expression in the righthandside of (4.6).

Step 3: y:(0) = 0 and ya(u) > 0 Vu € (0,1). By definition of ¢ and continuous depen-
dence on ¢, y; must vanish in [0,«]. Let v € [0, ] be its largest zero. If v > 0, then for
c<cand u <y

ye(w)7 < ye(7)1 — ey — u)

and since y.(y) — 0 as ¢ — ¢, if ¢ — ¢ is sufficiently small y. must vanish in (0,7),
contradicting the definition of ¢.

Step 4: If ¢ > ¢ and f is of type B, then y. = 0 in some interval [0,7], 0 <y < a. By
Step 1, 0 < yo() < ya(a). The graph of y. cannot meet the graph of yz in [0, ] if y. > 0
in (0, «). Hence there exists v € (0, @] such that y.(y) = 0 and the claim follows.

Step 5: If ¢ > ¢ and f is of type C, then y.(0) < 0. As in the previous step, 0 < y.(«a) <
ye(a). Since f > 0 in (0, ) we easily obtain y.(u) < yz(u) Yu € [0, a.

Step 6: If ¢ < ¢, then y.(0) > 0. Suppose to the contrary that y.(0) = 0. By the pre-
vious arguments y. > yz on (0, 1).

Case 1: f is of type B. By separation of variables, the only solution of 3’ = qdy+%
satisfying y(0) = 0 and positive in a neighborhood of zero is the function yo(u) = d%uf.
Hence we obtain c?u? > ¢4u? in [0, a], a contradiction.

Case 2: f is of type C. By a lower solution argument, (4.2) with ¢ = ¢ has a solution
z(u) such that z(0) = 0 and z > y; in [0, . But we now show that such solutions must
coincide, obtaining a contradiction. Let z, w be two solutions of (4.2). If z # w it is easily
seen that they are ordered, say z < w in (0, «). By the preceeding Lemma there exists a
constant M > 0 so that, with a computation similar to that of (3.11),

w(s) — 2(s)

p(cqsq)l/q

“ M
0<w(u)—z(u)<qc/ ds < —ul, 0<u<a.
0 p
Iterating this argument we obtain

M
0<w(u)—zu) <—=ul, 0<u<a

3
o

and in fact M
0<w(u)—z(u) < —ul, 0<u<a
p

for all integers k € N. We conclude that z = w in [0, a].
O

Let f be a type A function such that supg.,.1 % < 4oo. It is easy to see that
there exists a decreasing sequence of positive values ¢, tending to zero such that the

12



corresponding sequence of type B functions

0, u e [0, fn—i-l]
fa(u) = § min (I, (w), f(u), € [ent1, €]
f(u), u € lep, 1],

where 1, (u) = f(en)%, is increasing and tends uniformly to f(u). Let é(f,) be the
unique value such that the boundary value problem (2.1) with f(u) = f,,(u) has a positive
solution. The following theorem uses this fact to give a new characterization of the critical

speed ¢* introduced in section 2. Results of this type may be also found in [4, 9].

f(w)

Theorem 4.3. Consider a type A function f with sup,c(o1y ;2-1 < +00 and a sequence
of type B functions f, in the conditions mentioned above. Then ¢(fy) is an increasing
sequence and lim &(f,) = ¢* where ¢* is associated to f in Proposition 2.3.

Proof. Consider two arbitrary consecutive elements f, and f,11 of the sequence of
type B functions considered above. These two functions are different in some interval
(én+2,b) C (0,€,), where fn(u) < fni1(u), having the same values outside the interval
(€ént2, €n). Consider the problem

Y =qlcys? — fura(w), 3(0) =0, (4.7)

and let ¢(f,+1) be the unique value such that there exists a solution of (4.7) satisfying
y(1) = 0. It is easy to see that this solution y,+1(u) satisties

i1’ (1) < Q@ fr1) i)+ ()% — fu(w), Vu € [0,1]

with strict inequality for u € (€,42,b). so the equation

Y (1) = (e(fas1) y4 (W) — fu(w)

has a solution z,(u) such that z,(0) = 0, z,(u) > ynyi1(u) for v € (ept2,1] and in
fact z,(u) > yny1(u) for u € (0,1] (since we see that z, — y,41 increases). Since the
positive solution starting from (0,0) is unique, the solution wy,(u) of the same equation
with wy (1) = 0 must vanish at some point v, € (0, €,] (see the argument in Step 4 of the
preceeding proof). Hence by the construction of ¢, we have ¢(f,,) < é(fn+1). This allows
us to conclude that é(f,) is an increasing sequence.

Now let ¢ > ¢* and consider the unique solution z(¢) of (2.1). Then we have 2z’ <
q(czuj — fa(w)) for u € (0,€,41) and 2/ < q(czuj — fu(u)) for w € [0,1], The same
argument as above allows us to conclude that ¢(f,) < ¢ and consequently, the sequence
is bounded from above by ¢*. A simple application of Ascoli-Arzela’s lemma allows us to
conclude that the solutions y, tend to a solution of (2.1). This implies that ¢(f,) — 1 > ¢*
and consequently we conclude that é(f,) ¢ O
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5 Behaviour near v =1

Lemma 5.1. Let ¢ > 0, and let y be a positive solution of (1.1) in some interval (a, 1)
such that y(1) = 0. Suppose that

m = lim S <00 exists. (5.1)
u—1- (1 —u)~!
Then lim,,_,{- % exists and is the root a of o + call/? = m.

Proof. Claim: sup,c(q,1) % < o0o. Just take my > m and integrate the inequality

y'(u) > —gm1(1 — )9t in a suitable interval of the form (b,1).

Let us complete the proof, setting y(u) = z(u)(1 — w)?. Then z is a solution of the

differential equation
1
(= (e ez — (), (5.2)

z

where p(u) = % Arguing as in the proof of Lemma 3.1-(d) it is easy to see that

liminf, ,; z(u) and limsup,_,; z(u) must be equal and must coincide with the root of
o+ ca/P =m.

6 Some applications to the second order problem

In this section we consider the problem (1.3)-(1.4) with several assumptions on D and g.

Lemma 6.1. Let g be a function of type A. The derivative of a nonincreasing solution
uw of (1.83) with 0 < u(x) < 1 does not vanish. If the interval where u is defined extends
to 4+00, we have limy_, oo D(u)|w/|P~1 = 0. A similar statement holds with —oo replacing
+00.

Proof. If there exists xo such that u/(z9) = 0 and 0 < u(zg) < 1, using the differential
/
equation we would have (D(u) /[P ) l(z=20) < 0, which contradicts the fact that

D(u) ||’/ attains a maximum at z = .

Concerning the statement on the limit we will only consider +o0o, the case of —oo
being similar. Suppose towards a contradiction that liminf, ., D(u)|u/[P~! = 6§ >
0. We can take two sequences t, and s, tending to +oc such that u'(¢,) — 0 and
D(u(sn))|u'[P71(s,) — §. Integrating the differential equation in [0,,], we easily conclude
that the sequence fot" g(u(z)) dz is bounded and therefore f0+°° g(u(x))dx is convergent.
Consequently we have

0= /sn (D(u) ‘u"p_2 u')l +cu' + g(u) dz =
tn

= D(u(30)) |t/ (50) [P~ 0 (52) — D(u(tn)) [t (ta) [P~ 0 (1) ¢ (usn) — ultn))+ /t " () da

and making n — oo we would get the contradiction —§ = 0. O
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We set
f(u) = D(u)?g(u), uelo0,1]. (6.1)

and we assume
(D1) D € C'[0,1] and D > 0 in (0, 1).
(G1) g is a function of type A.

Clearly, f given by (6.1) is of type A.

Proposition 6.2. We have that u(t) is a monotone solution of (1.3) in some interval
(a,b) such that 0 < u(t) <1Vt € (a,b) and

lim u(t) =1, lim u(t) =0, lim D(u)ld/|P~! = lim D(u)[u'|P~t =0 (6.2)
t—b—

t—at t—b— t—at
if and only if y = v? where v = D(u)|u/|P~1 is a positive solution of (1.1)-(1.5).

Proof. The necessary condition was essentially proved in the introduction. Conversely,
given a positive solution y(u) of (1.1)-(1.5), we recover a solution of (1.3) by solving the
Cauchy problem

1

y(u)” 1
The solution of (6.3) exists in (t_, ¢4 ), where
L' D) du 12 D(u)1=t du
= — ()7;’ ty = / ()71 (6.4)
12 y(uy 0oy
O
Consider the assumptions

g(u)
sup — < +00. 6.5
u€(0,1) ud—1 ( )
sup 9(w) < 400. (6.6)

u€(0,1) (1 - u)p—l
and the following strenghtened form of (D1)
(D1') D € C'0,1] and D > 0 in [0, 1].
Under the conditions (D1), (G1), (6.5), Proposition 2.3 is applicable to f = D97 1g
and a positive number ¢* is associated to f. This number plays a central role in the

following theorem, which in case p = 2 corresponds to well known results, see [10, 3, 13]
and references. Note that according to the results in sections 2 and 3 we have the estimate
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1 1

11 D qg—1 7 11 D qg—1 q

q;pzlv liminleg(u) ’ <c < q;p; sup ng(u) : (6.7)
u—0 ud— ue(0,1) ud—

Theorem 6.3. Suppose that (D1"), (G1), (6.5) and (6.6) are satisfied and let 1 < p < 2.
Then (1.3)-(1.4) has a decreasing solution u(t) taking values in (0, 1) if and only if ¢ > c*.
That solution is unique up to translation.

If, further, g*(0) = lim,,_, g+ 9(3)1 exists then

ud
- (D(0)a—1g*(0)'/?
u’(t) B _we ( (D)(O)qgl( ) , > c*
e ()T T ) _eh@O oyt
- D(0)7-1 y €=C

Proof. Let y(u) be a solution of (1.1)-(1.5) for some ¢ > c¢*. Consider the Cauchy
problem (6.3). The solution of (6.3) exists in (t—,¢y), given by (6.4). Since (1.1) implies
v < qey'/P, it turns out that

y(u)

sup ——= < 400, (6.8)
u€e(0,1) (s

and it is clear that £, = 400, since ¢ > 2. Similarly the estimate we get from (6.5) and
(D1') on

f(u)
(=T
implies y(u) < C(1 — u)? for some constant C' and therefore t_ = —oo. The solution of
(6.3) satisfies (1.3)-(1.4).
’ 1
On the other hand, since we can write #@1 = —(yiz))EW, the last statement
follows easily from Theorem 3.7. O

Next we shall consider the case where D is “degenerate” in the sense that
(D2) D € C'0,1], D > 0 in (0,1], D(0) = 0 and D’(0) > 0.

The following theorem corresponds to results given in [16, 13] for p = 2.

Theorem 6.4. Suppose that (D2), (G1), (6.5) and (6.6) are satisfied. Let 1 < p < 2.
Then

(i) Problem (1.3)-(1.4) has a decreasing solution u(t) taking values in (0, 1) if and only
if c > c*.

(i7) If ¢ = ¢* (1.3) has a decreasing solution defined in (—oo,0] with u(—oc0) = 1,

w(0) = 0 and 1
W(0) = — <szo)>q . (6.9)

Those solutions are unique up to translation.
(7i1) If ¢ < c*, problem (1.8) has no decreasing solution in any interval (—oo,b) with
limy oo u(t) =1, limy_,— u(t) = 0.
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The solutions considered in (i7) are called sharp solutions.

Proof. Proceeding as in the preceeding proof, we consider (6.3). Under the assumptions
of the theorem, we have f*(0) = 0. To compute the limit of the right-hand side of (6.3)

we write )
oy yw\» [ u !
S DT ( w ) \Dwy) - (6.10)

w. (0) =0, wl(0)=-c1

C

=

Noting that

and using Theorem 3.7 we may conclude:

1
» 0, c>c*
lim &)p_l - L vl (6.11)
u—0* D(u)q (D?i((])> , C= c*
Moreover if ¢ > ¢* and since f satisfies (3.2b), Proposition 3.5-(¢) implies t; = +o0.
The fact that t_ = —oo follows as in the proof of the preceeding theorem.
If ¢ = ¢* it is clear that the solution of (6.3) can remain positive for ¢ > 0 only in some
« 41
finite interval [0,b) so that lim, ;- u(t) = 0 and lim,_ ;- v/(t) = — (Dfi(o)> . O

We next consider a case of negative diffusion (see [17]), considering the assumption
(D3)  D(u) <0 Vue (0,1]; D(0) =0 and D'(0) < 0.

and introducing the conditions

sup 9(w) < 400, sup M < 4o00. (6.12)

we(0,1y (1 —u)rt ue(0,1) UP

In [17] the authors consider (1.3)-(1.4) with D < 0 for p = 2 and reduce this problem
to a non-singular system, assuming (D3) and additional regularity assumptions.
It is easily seen that the change of variables

u(—t) =1—2(t)
yields an equivalence between (1.3)-(1.4) and
(E(2)|Z[P722") 4+ ¢’ + h(z) =0, z(—00) =1, 2z(+o0) =0 (6.13)

where
E(z)=—-D(1—-2), h(z)=g(l—2), 0<z<L1. (6.14)

We have the following result that contains some statements made in Proposition 3 of [17]
for p = 2.
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Theorem 6.5. Let 1 < p < 2. Suppose that (D3), (G1) and (6.12) are satisfied. Then
there exists ¢ > 0 such that (1.3)-(1.4) has a decreasing solution u(t) taking values in
(0,1) if and only if ¢ > ¢*. Moreover

Q=

q—1
o (hmmf D(w) g<u>>

1
v o i1 [ D(w)|* tg(u) | *
minf =y <c* < qapr ( sup ———————= | . (6.15)

we01) (1—wu)at
Those solutions are unique up to translation.

Proof. Let us start with problem (6.13). We consider the associated first order
problem

Y =qleyrr — E(z)"'h(z)), 0<u<1, y(0)=y(1)=0. (6.16)

There exists ¢* such that this problem has a positive solution if and only if ¢ > ¢* and
c* satisfies the desired estimates. We recover the solution of (6.13) via the differential

equation
1

' y(=)»
Z = TET z2(0) =1/2.
As in the proof of Theorem 6.3 we see, using the first condition (6.12), that the solution
is defined in an interval (t_,t;) where t; = 4o00. The second condition (6.12) and (D3)
imply, as is easily seen, that y(z) < K(1 — 2)P*? for some constant K. Combining this
with (D3), it turns out that the integrand in the expression of ¢_ is bounded below by
some multiple of -1~ and therefore t_ = —oo. Setting u(t) = 1 — z(—t) we obtain the
desired solutions of (1.3). O

In a similar way we are able to deal with the analogue of a model considered in [18].

Theorem 6.6. Let 1 < p < 2. Assume —g is a function of type A, (D2), (6.5) and (6.6)
hold. Then there exists —c* < 0 such that (1.3)-(1.4) has a decreasing solution u(t) taking
values in (0, 1) if and only if ¢ < —c*. Moreover

1 1

11 D q—1 q 11 D q—1 q

qtlzp; <liminfw> ’ <c' < qtlzp; sup (u)—\g_(?ﬂ . (6.17)
u—1 (1 —wu)? u€(0,1) (1 —w)d

Those solutions are unique up to translation.

Proof. We use the change of variables u(—t) = 1 — 2(¢) again. Then the problem (1.3)-
(1.4) turns into

(F(2)|Z|P722)) — ¢/ + h(2) =0, z(—c0) =1, z(+o00) =0, (6.18)

where
F(z)=D(1—-2), h(z)=—-g(1l—%2), 0<z<L1. (6.19)
O
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Finally we examine a situation where both D and g change sign. A problem of this
type has been studied in [11] in the case p = 2.
We introduce the assumptions:

(G2) ¢g(0) = g(1) = 0 and there exists o € (0,1) such that (v — a)g(u) > 0 Yu €

(0, D\ {a}.

(D4) There exists 8 € (0,1) such that (u — 8)D(u) < 0 Vu € (0,1) \ {5}.

(GDO0)

. D(h)"g(h) $ D)\,
(GD1)

limsup’ ()" <+oo / Y4t dh = 4o0.

h—1  (L—=h)I"
(GD2) o < 3 and foﬁD(u)q_lg(u) du > 0.
Let us consider the problem in the interval [0, 3]

Y = aley? = D) 'gw), 0<u<p (6:20)

Note that D(u)?1g(u) is of type C on [0, 3]. According to Theorem 4.2 we know that
under the first condition in (GDO) and (GD2) there exists a (unique) number ¢ > 0 such
that (6.20) has a positive solution satisfying

y(0) =0 =y(B). (6.21)

On the other hand, the problem in the interval [, 1]

y' =aqleyr — D(=)"'§(2)), B<z<1 (6.22)

where
D(z)=|DA+p—-2), §z)=g(l+p—-2); B<=z<1 (6.23)

involves a function of type A (in [, 1], of course) and, since the first condition in (GD1)
holds, there exists a number ¢* such that (6.22) has a positive solution satisfying

y(B) =0 =y(1) (6.24)
if and only if ¢ > ¢*. We are now in a position to state the following

Theorem 6.7. Let 1 < p < 2. Assume (G2), (D4), (GDO0), (GD1), (GD2), D'(B) < 0.
Then if ¢ > c¢*, the problem (1.3)-(1.4) has a solution (unique up to translation) for ¢ = ¢é.
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Proof. Step 1: connection between 0 and (3. We fix ¢ = ¢ and consider the positive
solution of (6.20) satisfying (6.21). A corresponding solution of (1.3) is obtained via

1
: y(u)r B
IR CE (6.29)
Using assumption D’(3) < 0 and Lemma 5.1 we easily compute
1 1
Tl ) L (6.26)

wmp- D(w)rT DA

where a + éar = |D'(B)]9"Lg(B). Using the first part of (GDO0) and Lemma 4.1 (where

f =1|D|7tg) we see that quZ“) is bounded in (0, 3). Hence we have obtained a solution of

(1.3) that satisfies 0 < u(t) < 8 and (using the second part of (GDO0))

1
0%

u(ty) =06, u'(t)= D@

u(4+00) =0 (6.27)

for some t; > —oo.
Step 2: connection between B and 1. The change of variable

u(t) =1+ — (1)
defines a new second order problem
(D(2)|7|P72) + ¢z + §(z) =0 (6.28)

with D and § given by (6.23), in such a way that wu(t) takes values in (5,1) and solves
(1.3) if and only if z(¢) takes values in (5,1) and solves (6.28). Now since ¢ > ¢* the
problem (6.22) with ¢ = ¢ has a positive solution y(z) that satisfies (6.24). This originates
a solution of

/ y(2)» 1-p
=2 0) = —=—. 6.29
S =g =5 (6:29
~ —1.
Now lim,_,;- % = |D'(B)|9'g(B). hence, as in Step 1, we compute
1 1
lim 22)” ar (6.30)

o1 D(z)-1 | DI(B)e T

with the same meaning of a. Now from Lemma 3.1-(d) (where f = |D|9'§, 8 playing the

role of 0) and the first part of (GD1) we know that (zy_(g))q is bounded in (8,1). Taking

also the second part of (GD1) into account, we have shown that the solution of (6.29) is
defined in some interval (—tg, +00) with t3 < 400, 8 < z(t) < 1 and

1
oP

z(—t2) = 1, Z/(_t2) = —W’

2(400) = . (6.31)
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Accordingly, the function u(t) =1+ § — z(—t) satisfies § < u(t) <1 and

1
ap

D@

Step 3: conclusion. Comparing (6.27) with (6.32) we see that, after a translation of
one of the solutions thus defined, we obtain the desired connection between 0 and 1. [

u(te) = 3, U (t2) = u(—o0) = 1. (6.32)

Remark 6.8. (a) As in [11] for p = 2, it can be shown that the solution of (1.3)-(1.4)
exists only if ¢ = ¢.

(b) Under the conditions of Theorem 6.7 we must have

q—1
(P g0 h)] Q).

Remark 6.9. If we modify condition (D4) so as to extend the strict inequality to the
endpoints 0 and 1, then the second part of assumptions (GDO0) and (GD1) of Theorem
6.7 can obviously be dropped, since it follows from the inequality ¢ > 2.

¢ > {liminf
h—0

Remark 6.10. In the above theorems we have obtained heteroclinic solutions taking
values strictly between 0 and 1. If we let p > 2 the same procedure yields heteroclinics
that are possible finite in the sense that they become constant outside a finite interval.
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