
Improving Application Responsiveness

with the BFQ Disk I/O Scheduler

Paolo Valente

Dipartimento di Ingegneria dell’Informazione

Università di Modena e Reggio Emilia

paolo.valente@unimore.it

Mauro Andreolini

Dipartimento di Ingegneria dell’Informazione

Università di Modena e Reggio Emilia

mauro.andreolini@unimore.it

Abstract

BFQ (Budget Fair Queueing) is a production-quality,propor-

tional-share disk scheduler with a relatively large user base.

Part of its success is due to a set of simple heuristics that we

added to the original algorithm about one year ago. These

heuristics are the main focus of this paper.

The first heuristic enriches BFQ with one of the most

desirable properties for a desktop or handheld system: re-

sponsiveness. The remaining heuristics improve the robust-

ness of BFQ across heterogeneous devices, and help BFQ to

preserve a high throughput under demanding workloads. To

measure the performance of these heuristics we have imple-

mented a suite of micro and macro benchmarks mimicking

several real-world tasks, and have run it on three different

systems with a single rotational disk. We have also compared

our results against Completely Fair Queueing (CFQ), the de-

fault Linux disk scheduler.

Categories and Subject Descriptors D.4.2 [Storage Man-

agement]: Secondary storage; D.4.8 [Performance]: Mea-

surements.

General Terms Experimentation, measurement, perfor-

mance.

Keywords Disk scheduling, latency, interactive applica-

tions, soft real-time applications, throughput, fairness.

1. Introduction

BFQ is a proportional-share disk scheduler [1] that allows

each application to be guaranteed the desired fraction of the

disk throughput, even if the overall throughput fluctuates.

At the same time, BFQ achieves a high disk throughput and

guarantees a low latency to applications performing little and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SYSTOR ’12 June 4–6, Haifa, Israel.
Copyright c© 2012 ACM 978-1-4503-1448-0/12/06. . . $10.00

sporadic I/O, such as multimedia applications. BFQ has been

implemented by Checconi and Valente in the Linux kernel,

and is publicly available [2].

Thanks to the above properties, BFQ allows a user to en-

joy the smooth playback of a movie while downloading other

files, or while some service is accessing the disk. Unfortu-

nately, BFQ may not achieve the same good performance

in terms of responsiveness, i.e., time to load, and hence to

start, applications, and time to complete the batches of I/O

requests that interactive applications issue sporadically. For

example, what is the start-up time of a large application on a

loaded disk? If the application is guaranteed the same frac-

tion of the disk throughput as the other applications (as it

usually happens), and if many other applications are com-

peting for the disk, then transferring all the sectors needed to

load the application may take a long time.

A further important limitation of the original version of

BFQ is that it has been thoroughly tested on just one system,

equipped with a low-end disk (to make sure that the disk

was the only bottleneck), and under workloads generated

by at most five processes reading one private file each. The

robustness and the effectiveness of BFQ should be verified

across heterogeneous systems, including also RAIDs and

solid-state drives (SSD), and against both a higher number of

concurrent requests and a sudden increase of the workload.

Finally, in previous work [1] an important problem has

been highlighted theoretically: with most mainstream appli-

cations, disk-drive internal queueing—such as Native Com-

mand Queueing (NCQ)— should cause both fairness and la-

tency guarantees to be violated with any scheduler, including

BFQ. However, experimental evidence was still missing.

Contributions of this paper

In this paper we report our contributions for overcoming the

above limitations of BFQ:

• A set of simple heuristics added to BFQ to improve re-

sponsiveness, preserve a high throughput under demand-

ing workloads and improve the robustness with respect

to heterogeneous systems. Hereafter we call BFQ+ the

resulting new version of BFQ.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/54000085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• A suite of micro and macro benchmarks [2] mimicking

several real-world tasks, from reading/writing files in par-

allel to starting applications on a loaded disk, to watching

a movie while starting applications on a loaded disk.

• A detailed report of the experimental results collected by

running the above suite with BFQ+, BFQ and CFQ [14],

on three Linux systems with a single rotational disk. One

system was NCQ-capable, and we ran our experiments

also with a FIFO scheduler on it.

In our experiments we did not consider either sched-

ulers aimed only at throughput boosting or real-time and

proportional-share research schedulers. The reason is that

these schedulers may suffer from more or less obvious la-

tency problems, as discussed in §5. Addressing these issues

is out of the scope of this paper.

Our results with BFQ+ can be summarized as follows:

differently from CFQ and regardless of the disk load, inter-

active applications now experience almost the same latency

as if the disk was idle. At the same time, BFQ+ achieves up

to 30% higher throughput than CFQ under most workloads.

The low latency of interactive applications is achieved by

letting them receive more than their fair share of the disk

throughput. Nevertheless, the heuristic fits the original accu-

rate service provided by BFQ well enough to still guarantee

that non-interactive, time-sensitive applications (e.g., video

players) experience a worst-case latency not higher than 1.6
times that experienced under CFQ.

The scheduling decisions made by BFQ+ comply with

keeping a high throughput also with flash-based devices

(§3). This fact and, above all, the new low-latency features

described in this paper have made BFQ+ appealing to smart-

phones as well. In general, BFQ+ has been adopted in a few

Linux distributions and is currently the default disk sched-

uler in some Linux-kernel variants as well as in a variant of

Android. See [2] for more information.

As for disk-drive internal queueing, our results show that

NCQ does affect service guarantees as foreseen in [1], up to

the point of making a system unusable. Finally, we are inves-

tigating the impact of RAIDs and SSDs, see the conclusions.

Organization of the paper

In §2 we introduce both the system model and the common

definitions used in the rest of the paper. BFQ is then de-

scribed in §3, while the proposed heuristics can be found in

§4. Finally, after describing the related work and the prob-

lems caused by disk-drive internal queueing in §5, we de-

scribe the benchmark suite and report our results in §6.

2. System model and common definitions

We consider a storage system made of a disk device, a set

of N applications to serve and the BFQ or BFQ+ scheduler

in-between. The disk device contains one disk, modeled as

a sequence of contiguous, fixed-size sectors, each identified

by its position in the sequence.

The disk device serves two types of disk requests: reading

and writing a set of contiguous sectors. We say that a request

is sequential/random with respect to another request, if the

first sector (to read or write) of the request is/is not located

just after the last sector of the other request. This definition

of a random request is only formal: the further the first sector

of the request is from the last sector of the reference request,

the more the request is random in real terms.

Requests are issued by the N applications, which repre-

sent the possible entities that can compete for disk access in

a real system, as, e.g., threads or processes. We define the

set of pending requests for an application as the backlog of

the application. We say that an application is backlogged if

its backlog is not empty, and idle otherwise. For brevity, we

denote an application as sequential or random if most times

the next request it issues is sequential or random with re-

spect to the previous one, respectively. We say that a request

is synchronous if the application that issued it can issue its

next request only after this request has been completed. Oth-

erwise we denote the request as asynchronous. We say that

an application is receiving service from the storage system if

one of its requests is currently being served.

3. The original BFQ algorithm

In this section we outline the BFQ algorithm. A more de-

tailed description is available in this technical report [3],

whereas a full description can be found in the original pa-

per on BFQ [1]. BFQ+ is identical to BFQ, apart from that it

also contains the heuristics described in §4.

BFQ grants exclusive access to the disk to each applica-

tion for a while, and implements this service model by as-

sociating every application with a budget, measured in num-

ber of sectors. After an application is selected for service,

its requests are dispatched to the disk one after the other,

and the budget of the application is decremented by the size

of each request dispatched. The application is deactivated,

i.e., its service is suspended, only if one of the following

three events occurs: 1) the application finishes its budget, 2)

the application becomes idle and its last request was asyn-

chronous, 3) a special budget timeout fires (§3.3).

When an application is deactivated, BFQ performs two

actions. First, it assigns a new budget to the application. This

budget is calculated using a simple feedback-loop algorithm,

described in detail in §3.2. Second, BFQ chooses the next

application to serve through an internal fair-queueing sched-

uler, called B-WF2Q+ and described in some detail in §3.1.

When an application becomes idle but its last request was

synchronous, BFQ does not deactivate the application. In

contrast, it idles the disk and waits for the possible arrival

of a new request from the same application. In particular,

BFQ waits for a time interval in the order of the seek and

rotational latencies. The purpose is to allow a possible next

sequential synchronous request to be sent to the disk as it

arrives. On rotational devices, this wait usually results in a

boost of the disk throughput [4]. Disk idling is instrumen-

tal also in preserving service guarantees with synchronous

requests [1]. On flash-based devices, the throughput with

random I/O is high enough to make idling detrimental at a

first glance. But most operating systems perform readahead,

which makes idling effective also on these devices.

In contrast, idling the disk to wait for the arrival of a ran-

dom request usually provides little or no benefits on both

rotational and non-rotational devices. Hence BFQ automati-

cally disables disk idling for random applications.

3.1 B-WF2Q+ and service properties

Under BFQ each application is associated with a fixed

weight, and B-WF2Q+ schedules applications in such a way

that each application receives, in the long term and regard-

less of the budgets assigned to the application, a fraction of

the disk throughput equal to the weight of the application,

divided by the sum of the weights of the other applications

competing for the disk. If an application is not assigned a

weight explicitly, then BFQ sets the weight of the applica-

tion to a common, system-wide value.

The above guarantee on throughput distribution may

seem counterintuitive at first glance, because the larger the

budget assigned to an application is, the longer the appli-

cation will use the disk once granted access to it. But B-

WF2Q+ basically balances this fact, because the larger the

budget assigned to the application is, the longer B-WF2Q+

postpones the service of the application (see the original

paper on BFQ [1] for full details and proofs). Besides, as

shown in §3.2, the budgets assigned to an application are

independent of the weight of the application.

As for short term guarantees, B-WF2Q+ guarantees that

each request is completed with the minimum possible worst-

case delay with respect to when the request would be com-

pleted in an ideal perfectly-fair system (more precisely BFQ

guarantees the minimum possible worst-case delay for a

budget-by-budget service scheme). In more detail, the worst-

case delay guaranteed by BFQ to the requests of an applica-

tion is given by the sum of two components, with each com-

ponent proportional to, respectively: 1) the maximum budget

that BFQ may assign to any application, and 2) the maxi-

mum possible difference between the budget that BFQ may

assign to the application and the actual number of sectors

that the application consumes before it becomes idle. It fol-

lows that, the tighter the budgets assigned to the application

are, the lower the second component of the delay is. Assign-

ing, in general, a small budget to any application would in-

stead keep low both components. These issues are taken into

account in the budget-assignment algorithm described in the

next subsection.

3.2 Budget assignment

The decoupling between the budgets assigned to an ap-

plication and the fraction of the throughput guaranteed to

the application gives BFQ an important degree of freedom:

for each application, BFQ can choose, without perturbing

throughput reservations, the budget that presumably best

boosts the throughput or fits the application’s requirements.

First, to achieve a high throughput many sequential re-

quests must be performed. In this respect, when a new appli-

cation is selected for service, its first request is most certainly

random with respect to the last request of the previous appli-

cation under service. As a result, depending on the hardware,

the access time for the first request of the new application

may range from 0.1 ms to about 20 ms. In the best case,

after this random access all the requests of the new applica-

tion are sequential, and hence the disk works at its peak rate

(more precisely, for a rotational disk, the peak rate for the

zone interested by the I/O). However, since the throughput

is zero during the access time for the first request, the aver-

age disk throughput gets close to the peak rate only after the

application has been served continuously for a long enough

time. In the end, to achieve a high disk throughput, sequen-

tial applications should be assigned large enough budgets.

To put into context, even with a worst-case access time of 20
ms, the average throughput reaches ∼90% of the peak rate

after 150 ms of continuous service.

In contrast, assigning small budgets to applications im-

proves service guarantees, as it reduces the delay mentioned

in §3.1. These facts are at the heart of the feedback-loop al-

gorithm of BFQ for computing budgets: each time an appli-

cation is deactivated, the next budget of the application is in-

creased or decreased so as to try to converge to a value equal

to the number of sectors that the application is likely to re-

quest the next time it becomes active. However, the assigned

budgets can grow up to, at most, a disk-wide maximum bud-

getBmax. BFQ computes/updatesBmax dynamically. Espe-

cially, BFQ frequently samples the disk peak rate, and sets

Bmax to the number of sectors that could be read, at the esti-

mated disk peak rate, during a disk-wide, user configurable,

maximum time slice Tmax. The default value of Tmax is 125
ms, which, according to the above estimates, is enough to

get maximum throughput even on average devices. We de-

scribe in more detail the feedback-loop algorithm and the

disk peak rate estimator in §4.2 and §4.3, where we show

how, by enhancing these components, we improve the ser-

vice properties and increase the throughput under BFQ.

3.3 Preserving fairness with random requests

BFQ imposes a time constraint on disk usage: once an appli-

cation has been granted access to the disk, the application is

served for at most Tmax time units (Tmax is the maximum

time slice defined in §3.2), after which a budget timeout fires,

and the application is deactivated, even if it has still backlog.

This falling back to time fairness prevents random appli-

cations from holding the disk for a long time and substan-

tially decreasing the throughput. To further limit the extent

at which random applications may decrease the throughput,

on a budget timeout BFQ also (over)charges the just deac-

tivated application an entire budget even if the application

has used only part of it. This reduces the frequency at which

applications incurring budget timeouts access the disk.

4. Proposed heuristics

In addition to low responsiveness on loaded disks, in our ex-

periments with BFQ we have also found the following prob-

lems: slowness in increasing budgets if many disk-bound ap-

plications are started at the same time, incorrect estimation

of the disk peak rate, excessive reduction of the disk utiliza-

tion for applications that consume their budgets too slowly or

that are random only for short time intervals, and tendency of

disk writes to starve reads. The heuristics and the changes re-

ported in the following subsections address these problems.

Each heuristic is based on one or more static parameters,

which we have tuned manually. According to our experi-

ments, and to the feedback from BFQ+ users, it seems un-

likely that an administrator would have to further tune these

parameters to fit the system at hand.

4.1 Low latency for interactive applications

A system is responsive if it starts applications quickly and

performs the tasks requested by interactive applications just

as quickly. This fact motivates the first step of the event-

driven heuristic presented in this subsection and called just

low-latency heuristic hereafter: the weight of any newly-

created application is raised to load the application quickly.

The weight of the application is then linearly decreased

while the application receives service.

If the application is interactive, then it will block soon and

wait for user input. After a while, the user may then trigger

new operations after which the application stops again, and

so on. Accordingly, as shown below, the low-latency heuris-

tic raises again the weight of an application in case the appli-

cation issues new requests after being idle for a sufficiently

long (configurable) time.

In the rest of this subsection we describe the low-latency

heuristic in detail and discuss its main drawback: the low-

latency heuristic achieves responsiveness at the expense of

fairness and latency of non-interactive applications (as, e.g.,

soft real-time applications). Trading fairness or latency of

soft real-time applications for responsiveness may be point-

less in many systems, such as most servers. In this respect,

under BFQ+ the low-latency heuristic can be dynamically

enabled/disabled through a low latency parameter.

When a new application is created, its original weight

is immediately multiplied by a weight-raising coefficient

Crais. This lets the application get a higher fraction of the

disk throughput, in a time period in which most of its re-

quests concern the reading of the needed portions of executa-

bles and libraries. The initial raising of the weight is shown

in the topmost graph in Fig. 1, assuming that the applica-

tion is created at time t0 and that its original weight is w.

The graph also shows the subsequent variation of the weight,

which is described below. The bottommost graph shows in-

t0 t1 t2 t3 t4 t5 t6 t7 t8

B rais

B rais

t

t

t

...

...

...

...

...

w

Weight

(# sectors)
Service

budget (# sectors)
Weight−raising

raisw * C

Figure 1: Weight raising for an application created at time t0, be-

come idle at time t5 and again backlogged at time t6; the applica-

tion is served only during [t1, t2], [t3, t5] and [t7, t8].

stead the amount of service received by the application (do

not consider the graph in the middle for a moment).

If a new application keeps issuing requests after its start

up is accomplished, then preserving a high weight would of

course provide no further benefit in terms of start-up time.

Unfortunately, a disk scheduler does not receive any notifi-

cation about the completion of the loading of an application.

To address this issue, BFQ+ decreases the weight of an ap-

plication linearly while the application receives service, un-

til the weight of the application becomes equal to its original

value. This guarantees that the weight of a disk-bound appli-

cation drops back smoothly to its original value.

To compute the slope at which its weight is decreased, an

application is also associated with a weight-raising budget,

set to an initial value Brais when the application is created.

As shown in the middle graph in Fig. 1, while an applica-

tion enjoying weight raising is served (intervals [t1, t2] and

[t3, t5]), this special budget is decremented by the amount of

service received by the application, until it reaches 0 (time

t4). Also the weight of the application is linearly decreased

as a function of the service received, but with such a slope

that it becomes again equal to its original value exactly when

the weight-raising budget is exhausted (time t4). In formu-

las, for each sector served, the weight is decremented by
Crais−1

Brais

w, where w was the original value of the weight.

After the weight-raising budget is exhausted, the weight

of the application remains unchanged ([t4, t5]). But, if

the application becomes backlogged after being idle for a

configurable minimum idle period Tidle ([t5, t6]), then the

weight of the application is again multiplied by Crais and

the application is assigned again a weight-raising budget

equal to Brais (time t6). The weight and the weight-raising

budget of the application are then again decremented while

the application receives service ([t6, t8]), as in the case of a

newly-created application.

As already noted, disk idling is instrumental in preserv-

ing service guarantees in the presence of synchronous re-

quests [1]. Accordingly, to make sure that the applications

whose weight is being raised do enjoy a low latency even

if they perform random I/O, BFQ+ does not disable disk

idling for these applications, whatever their request patterns

are. There is however a time constraint, whose purpose is,

in contrast, to prevent random applications from keeping a

high weight and hence harming the disk throughput for too

long. An application must consume its weight-raising bud-

get within a configurable maximum raising time Trais from

when its weight is raised. If this time elapses, the weight-

raising budget is set at zero and the weight of the application

is reset to its original value.

After some tuning, we set the above parameters to the

minimum values sufficient to achieve a very low start-up

time even for as large applications as the ones in the OpenOf-

fice suite: Crais = 10, Brais = 24 MB, Trais = 6 sec,

Tidle = 2 sec. We are also investigating ways for adjusting

all or part of these parameters automatically.

Raising the weight of interactive applications is a straight-

forward solution to reduce their latency with any weight-

based scheduler. The crucial point is what the consequences

on non-interactive long-lived applications are. In fact, non-

interactive long-lived applications do not benefit from any

weight raising and are therefore penalized if other applica-

tions can get more throughput than their fair share.

The user of a desktop may be willing to tolerate a tem-

porary drop of throughput for long-lived best-effort applica-

tions, as file download or sharing, in return of a definitely

higher system responsiveness. In contrast, few users would

be happy if their long-lived soft real-time applications, as,

e.g., audio players, suffered from perceptible quality degra-

dation. Hence only a small increase in latency can be ac-

cepted for these applications. Fortunately, the service prop-

erties of BFQ+ come into play exactly in this respect: the

effectiveness of BFQ+ in reducing the latencies of soft real-

time applications balances the tendency of the heuristic to

increase the same latencies. We investigated this important

point in our experiments, and discovered that, with the above

values of Crais and Brais, non-interactive time-sensitive

applications—as, e.g., video players—are still guaranteed

latencies comparable to the ones they enjoy under CFQ (also

thanks to the smaller initial budget now assigned to applica-

tions, §4.3).

4.2 A new peak rate estimator

As showed in §3.2, the maximum budget Bmax that BFQ/

BFQ+ can assign to an application is equal to the number of

sectors that can be read, at the estimated peak rate, during

Tmax. In formulas, if we denote as Rest the estimated peak

rate, then Bmax = Tmax ∗ Rest. Hence, the higher Rest is

with respect to the actual disk peak rate, the higher is the

probability that applications incur budget timeouts unjustly

(§3.3). Besides, a too high value of Bmax degrades service

properties unnecessarily (§3.1).

The peak rate estimator is executed each time the appli-

cation under service is deactivated after being served for at

least 20 ms. The reason for not executing the estimator af-

ter shorter time periods is filtering out short-term spikes that

may perturb the measure. The first step performed by the es-

timator in BFQ is computing the disk rate during the service

of the just deactivated application. This quantity, which we

can denote as Rmeas, is computed by dividing the number

of sectors transferred, by the time for which the application

has been active. After that, Rmeas is compared with Rest. If

Rest < Rmeas, then Rest ← Rmeas.

Unfortunately, our experiments with heterogeneous disks

showed that this estimator is not robust. First, because of

Zone Bit Recording (ZBR), sectors are read at higher rates in

the outer zones of a rotational disk. For example, depending

on the zone, the peak rate of the MAXTOR STM332061

in Table 1 ranges from 55 to about 90 MB/s. Since the

estimator stores in Rest the maximum rate observed, ZBR

may easily let the estimator converge to a value that is

appropriate only for a small part of the disk. Second, Rest

may jump (and remain equal) even to a much higher value

than the maximum disk peak rate, because of an important,

and difficult to predict, source of spikes: hits in the disk-drive

cache, which may let sectors be transferred in practice at bus

rate.

To smooth the spikes caused by the disk-drive cache and

try to converge to the actual average peak rate over the disk

surface, we have changed the estimator as follows. First, now

Rest may be updated also if the just-deactivated application,

despite not being detected as random, has not been able to

consume all of its budget within the maximum time slice

Tmax. This fact is an indication that Bmax is too large. Since

Bmax = Tmax ∗Rest, Rest is probably too large as well and

should be reduced.

Second, to filter the spikes in Rmeas, a discrete low-pass

filter is now used to update Rest instead of just keeping the

highest rate sampled. The rationale is that the average peak

rate of a disk is a relatively stable quantity, hence a low-pass

filter should converge more or less quickly to the right value.

The new estimator is then:

i f (a p p l i c s e r v i c e t i m e >= 20 ms)
i f (R e s t < R meas or

(not a p p l i c i s r a n d o m and not b u d g e t e x h a u s t e d))
R e s t = (7 / 8) ∗ R e s t + (1 / 8) ∗ R meas ;

The 7/8 value for α, obtained after some tuning, did allow

the estimator to effectively smooth oscillations and converge

to the actual peak rate with all the disks in our experiments.

4.3 Adjusting budgets for high throughput

As already said, BFQ uses a feedback-loop algorithm to

compute application budgets. This algorithm is basically a

set of three rules, one for each of the possible reasons why

an application is deactivated. In our experiments on aggre-

gate throughput, these rules turned out to be quite slow to

converge to large budgets with demanding workloads, as,

e.g., if many applications switch to a sequential, disk-bound

request pattern after being non-disk-bound for a while. On

the opposite side, BFQ assigns the maximum possible bud-

get Bmax to a just-created application. This allows a high

throughput to be achieved immediately if the application is

sequential and disk-bound. But it also increases the worst-

case latency experienced by the first requests issued by the

application (§3.2), which is detrimental for an interactive or

soft-real time application.

To tackle these throughput and latency problems, on one

hand we changed the initial budget value to Bmax/2. On the

other hand, we re-tuned the rules, adopting a multiplicative

increase/linear decrease scheme. This scheme trades latency

for throughput more than before, and tends to assign high

budgets quickly to an application that is or becomes disk-

bound. The description of both the new and the original rules

follows.

No more backlog. In this case, the budget was larger

than the number of sectors requested by the application,

hence to reduce latency the old rule was simply to set the

next budget to the number of sectors actually consumed by

the application. In this respect, suppose that some of the

requests issued by the application are still outstanding, i.e.,

dispatched to the disk device but not yet completed. If (part

of) these requests are also synchronous, then the application

may have not yet issued its next request just because it is

still waiting for their completion. The new rule considers

also this sub-case, where the actual needs of the application

are still unknown. In particular: if there are still outstanding

requests, the new rule does not provide for the budget to be

decreased, on the contrary the budget is doubled proactively,

in the hope that: 1) a larger value will fit the actual needs

of the application, and 2) the application is sequential and

a higher throughput will be achieved. If instead there is

no outstanding request, the budget is decreased linearly, by

a small fraction of the maximum budget Bmax (currently

1/8). This is the only case where the budget is decreased.

Budget timeout. In this case, increasing the budget

would provide the following benefits: 1) it would give the

chance to boost the throughput if the application is basically

sequential, even if the application has not succeeded in using

the disk at full speed (because, e.g., it has performed I/O on

a zone of the disk slower than the estimated average peak

rate), 2) if this is a random application, increasing its budget

would help serving it less frequently, as random applications

are also (over)charged the full budget on a budget timeout.

The original rule did set the budget to the maximum value

Bmax, to let all applications experiencing budget timeouts

receive the same share of the disk time. In our experiments

we verified that this sudden jump to Bmax did not provide

sensible practical benefits, rather it increased the latency of

applications performing sporadic and short I/O. The new,

better performing rule is to only double the budget.

Budget exhaustion. The application has still backlog,

as otherwise it would have fallen into the no-more-backlog

case. Moreover, the application did not cause either a disk-

idling timeout or a budget timeout. As a conclusion, it is

sequential and disk-bound: the best candidate to boost the

disk throughput if assigned a large budget. The original rule

incremented the budget by a fixed quantity, whereas the new

rule is more aggressive, and multiplies the budget by four.

4.4 More fairness towards temporarily random and

slightly slow applications

We found, experimentally, the following three situations to

occur frequently. First, if too little time has elapsed since a

sequential application has started doing I/O, then the positive

effect on the throughput of its sequential accesses may not

have yet prevailed on the throughput loss occurred while

moving the disk head onto the first sector requested by the

application. Second, some applications generate really few,

yet very far, random requests at the beginning of a new disk-

bound phase, after which they start doing sequential I/O.

Third, due to ZBR, an application may be deemed slow when

it is performing I/O on the slowest zones of the disk. BFQ

considers these applications harmful for the throughput, and

hence adopts the following heuristic towards them: to reduce

the disk utilization of these applications, BFQ (over)charges

them with a full budget, and/or disables disk idling for them.

We found that this heuristic of BFQ causes throughput loss

and worse responsiveness. None of these countermeasures is

taken by BFQ+ in any of the above three situations.

4.5 Write throttling

One of the sources of high I/O latencies and low throughput

under Linux, and probably under any operating system, is

the tendency of write requests to starve read ones. The rea-

son is the following. Disk devices usually signal the comple-

tion of write requests just after receiving them. In fact, they

store these requests in the internal cache, and then silently

flush them to the actual medium. This usually causes possi-

ble subsequent read requests to starve. The problem is fur-

ther exacerbated by the fact that, on several file systems,

some read operations may trigger write requests as well

(e.g., access-time updating).

To keep low the ratio between the number of write re-

quests and the number of read requests served, we just added

a write (over)charge coefficient: for each sector written, the

budget of the active application is decremented by this coef-

ficient instead of one. As shown by our experimental results,

a coefficient equal to ten proved effective in guaranteeing

high throughput and low latency.

5. Related work

We can broadly group the schedulers aimed at providing

a predictable disk service as follows: 1) real-time sched-

ulers [5–8]; 2) proportional-share timestamp-based sched-

ulers [9–12]; and 3) proportional-share round-robin sched-

ulers [13, 14]. Unfortunately, real-time and timestamp-based

proportional-share research schedulers may suffer from low

throughput and degradation of the service guarantees with

mainstream applications, as shown in detail in [1]. In brief,

the service guarantees of these schedulers hold if the arrival

time of every request of any application is independent of the

completion time of the previous request issued by the same

application. The problem is that this property just does not

hold for most applications on a real system.

As for round-robin schedulers, we can use the production-

quality CFQ disk scheduler as a reference to describe the

main properties of the schedulers in this class. Differently

from BFQ+, CFQ grants disk access to each application for

a fixed time slice (as BFQ basically does only for random

applications, §3.3). Slices are scheduled in a round-robin

fashion and disk idling is performed as in BFQ+. Unfor-

tunately, disk-time fairness may suffer from unfairness in

throughput distribution. Suppose that two applications both

issue, e.g., sequential requests, but for different zones of the

disk. Due to ZBR, during the same time slice an applica-

tion may have a higher/lower number of sectors served than

the other. Another important fact is that under a round-robin

scheduler any application may experience, independently

from its weight, O(N) worst-case delay in request comple-

tion time with respect to an ideal perfectly fair system. This

delay is much higher than the one of BFQ+ (§3.1). Finally,

also CFQ exports a low latency configuration parameter:

when enabled, CFQ tries to reduce the latency of interactive

applications in a similar vein as BFQ+.

It is worth mentioning also schedulers aimed only at

achieving a high disk throughput [4, 15]. They provide ba-

sically no latency guarantee, as they may not serve an ap-

plication for a long time if, e.g., a sequential access is being

performed in parallel (they may however perform well under

symmetric workloads [16]). For space limitations we can-

not describe also scheduling frameworks, we discuss them in

this technical report [3]. The issues related to internal queue-

ing are instead described in the next subsection.

5.1 Disk-drive internal queueing

If multiple disk-bound applications are competing for the

disk, but are issuing only synchronous requests, and if the

operating-system disk scheduler performs disk idling for

synchronous requests, then a new request is dispatched to

the disk only after the previous one has been completed. As a

result, a disk-drive internal scheduler cannot do its job (fetch

multiple requests and reorder them). Both CFQ and BFQ+

address this issue by disabling disk idling altogether when

internal queueing is enabled.

As also shown by our experimental results, NCQ provides

little or no advantage with all but purely random workloads,

for which it actually achieves a definite throughput boost.

On the other hand, our results show that the price paid for

this benefit is loss of throughput distribution and latency

guarantees, with any of the schedulers considered, at such

an extent to make the system unusable. The causes of this

problem are two-fold. The first is just that, once prefetched

a request, an internal scheduler may postpone the service

of the request as long as it deems serving other requests

more appropriate to boost the throughput. The second, more

subtle cause has been pointed out in [1], and regards a high-

weight application issuing synchronous requests. Such an

application, say A, may have at most one pending request at

a time, as it can issue the next request only after the previous

one has been completed (we rule out readahead, which does

not change the essence of this problem). Hence the backlog

of A empties each time this request is dispatched. If the

disk is not idled and other applications are backlogged, any

scheduler would of course serve another application. As a

consequence, the application A would not obtain the high

share of the disk throughput (or disk time) it should receive.

6. Benchmark suite and experimental results

In this section we show the results of our performance com-

parison among BFQ, BFQ+, CFQ and FIFO on rotational

disks, with and without NCQ. We consider FIFO only in

our experiments with NCQ, because FIFO is commonly

considered the best option to get a high throughput with

NCQ. Under Linux the FIFO discipline is implemented by

the NOOP scheduler. In the next subsection we show the

software and hardware configurations on which the experi-

ments have been run, and discuss the choice of the subset

of our results that we report in this paper. The experiments

themselves are then reported in the following subsections.

These experiments concern aggregate throughput, respon-

siveness and latency for soft real-time applications. Espe-

cially, the last index is measured through a video-playing

benchmark. For each experiment we highlight which heuris-

tics contributed to the good performance of BFQ+. To this

purpose, we use the following abbreviations for each of the

heuristics reported in §4.1–4.5: H-low-latency, H-peak-rate,

H-throughput, H-fairness and H-write-throt.

To perform the experiments reported in the following sub-

sections we prepared a suite of benchmarks that mimic, or

are actually made of, real-world I/O tasks. The suite is avail-

able here [2]. We describe each benchmark at the beginning

of each subsection. Actually, the suite contains more bench-

marks than those described in this paper. A complete de-

scription of the suite and of the motivations for which we

have defined an ad hoc new suite instead of using an exist-

ing one can be found in [3]. That document also contains our

results with code-development applications, not reported in

this paper for space limitations. All the results and statistics

omitted in this paper and in [3] can instead be found in [2].

In addition, the benchmark suite contains the general script

that we used for executing the experiments reported in this

paper (all these experiments can then be repeated easily).

6.1 Test bed and selected results

To verify the robustness of BFQ+ across different hardware

and software configurations, we ran the benchmark suite

under Linux kernel releases ranging from 2.6.32 to 3.1, and

on the three systems with a single rotational disk shown in

Table 1. On each system, the suite was run twice: once with a

standard configuration, i.e., with all the default services and

background processes running, with the purpose of getting

results close to the actual user experience; and once with an

essential configuration, i.e., after removing all background

processes, with the goal of removing as much as possible

any source of perturbations not related to the benchmarks.

For both schedulers, we used the default values of their

configuration parameters. In particular, for BFQ+ and BFQ,

the maximum time slice Tmax was equal to 125 ms (§3.2).

For CFQ, the time slice was equal to 100 ms and low latency

was enabled, whereas, for BFQ+ the benchmarks have been

run with low latency both enabled and disabled (§4.1). Un-

less otherwise stated, for BFQ+ we report our results with

low latency enabled, and highlight interesting differences

with the other case only when relevant.

The relative performance of BFQ+ with respect to BFQ

and CFQ was essentially the same under any of the ker-

nels, on any of the systems and independently of whether

a standard or essential configuration was used. Besides, for

each system and kernel release we collected a relatively large

number of statistics, hence, for brevity, for the experiments

without NCQ and apart from the video-playing benchmark,

we report our results only for the 2.6.34 kernel on the third

system. We chose this system because its disk speed and

software configuration are closer to an average desktop sys-

tem with respect to the other two. As for video playing, we

report our results on the first system instead. Since this sys-

tem is the one with the slowest disk, it allows us to show

more accurately the performance degradation of BFQ+ with

respect to BFQ and CFQ.

Regarding NCQ, as shown in Table 1 we had only one

system with this feature, and we report here our results under

the 2.6.34 kernel on that system. As previously stated, with

NCQ we ran the benchmarks also with NOOP. In the next

subsection we show the actual throughput gains achieved

with NCQ, while in §6.3 we show the unbearable increase

of the latency of interactive applications NCQ causes on

a loaded disk. The latency becomes so high to make the

system unusable. Accordingly, playing a video is of course

just unfeasible. For this reason, we report our results only

without NCQ for the video-playback benchmark.

As for the statistics, each benchmark is run ten times and,

for each quantity of interest, several aggregated statistics are

computed. Especially, for each run and for each quantity,

the following values are computed over the samples taken

during the run: minimum, maximum, average, standard de-

viation and 95% confidence interval. The same five statis-

tics are then computed across the averages obtained from

each run. We did not find any relevant outlier, hence, for

brevity and ease of presentation, we report here only aver-

ages across multiple runs (i.e., averages of the averages com-

puted in each run). Finally, hereafter we call just traces the

information we collected by tracing block-level events (disk

request creation, enqueueing, dequeueing, completion and

so on) through the Linux ftrace facility during experiments.

6.2 Aggregate Throughput

In this benchmark we measure the aggregate disk throughput

under four different workloads. Each of these workloads is

generated by a given set of file readers or writers starting and

executing in parallel, with each file reader/writer exclusively

reading/writing from/to a private file. File reads/writes are

synchronous/asynchronous and issued back-to-back (greed-

ily). These are the four sets, and the abbreviations we will

use to refer to them in the rest of this section: ten sequen-

tial readers, 10r-seq; ten random readers, 10r-rand; five se-

quential readers plus five sequential writers, 5r5w-seq; five

random readers plus five random writers, 5r5w-rand. We

denote as sequential, or random, a reader/writer that greed-

ily reads/writes the file sequentially or at random positions.

Each file to read is 5 GB long, or grows up to that size in

case of writers.

In the more sterile environment used in [1], each file

was stored in a distinct disk partition. In this benchmark

we put instead all the files in the same partition, in order

to get a more realistic scenario. With this configuration, the

used filesystems cannot guarantee each file to lie in a single,

distinct zone of the disk. Hence even sequential readers may

issue a certain fraction of random requests. In addition to the

high number of processes that are started and executed in

parallel, this lets the workloads in this benchmark be quite

demanding for BFQ+ and its budget-assignment rules.

We ran a long and a short version of the benchmark, dif-

fering only in terms of duration: respectively, two minutes

and 15 seconds. The purpose of the first version is to as-

sess the steady-state aggregate throughput achievable with

each scheduler (after removing the samples taken during

the first 20 seconds), whereas the second version highlights

how quickly each scheduler reaches a high throughput when

many applications are started in parallel.

6.2.1 Results without NCQ

As shown in Fig. 2, in the long benchmark both BFQ+ and

BFQ achieve an about 24% higher throughput than CFQ

with sequential workloads (10r-seq and 5r5w-seq), and are

close to the disk peak rate with only sequential readers. As

we verified through traces, this good result of BFQ+ and

BFQ is mainly due to the fact that the budget-assignment

rules let the budgets grow to the maximum allowed value

Bmax (BFQ actually assigns Bmax even to the initial bud-

gets of the readers and the writers, §4.3). This enables BFQ+

and BFQ to profit by the sequential pattern of each reader

for a relatively long time before switching to the next one. In

Disk, size, read peak rate NCQ-capable File System CPU Distribution

MAXTOR 6L080L0, 82 GB, 55 MB/s NO ext3 Athlon 64 3200+ Slackware 13.0

MAXTOR 7L250S0, 250 GB, 61 MB/s YES ext3 Pentium 4 3.2GHz Ubuntu 9.04

MAXTOR STM332061, 320 GB, 89 MB/s NO ext4 Athlon 64 3200+ Ubuntu 10.04

Table 1: Hardware and software configurations used in the experiments.

 0

 20

 40

 60

 80

 100

10r-seq 5r5w-seq 10r-rand 5r5w-rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Workload

81.9

73.4

0.9 0.9

82.4

77.2

0.6 0.7

66.1

62.4

0.6 0.8

Disk read peak rate

BFQ+

BFQ

CFQ

Figure 2: Aggregate throughput achieved, in the long benchmark,

by BFQ+, BFQ and CFQ on the third system (without NCQ).

contrast, CFQ switches between processes slightly more fre-

quently, also because its time slice is slightly shorter than the

one of BFQ+/BFQ (100 ms against 125). Increasing the time

slice would have most certainly improved the performance

of CFQ in terms of throughput, but it would have further

worsened its latency results (shown in the following subsec-

tions). Finally, BFQ+ achieves a slightly higher throughput

than BFQ with 5r5w-seq, mainly because of H-write-throt

and the fact that sequential writes are slower than sequential

reads.

As for random workloads, with any of the schedulers

the disk throughput unavoidably falls down to a negligible

fraction of the peak rate. The performance of BFQ+ with

10r-rand is however comparable to CFQ, because BFQ+

falls back to a time-slice scheme in case of random work-

loads (§3.3). The loss of throughput for 5r5w-rand is instead

mainly due to the fact that CFQ happens to privilege writes

more than BFQ+ for that workload. And random writes yield

a slightly higher throughput than random reads, as could be

seen in our complete results. Finally, BFQ achieves a higher

throughput than the other two schedulers with both work-

loads, because it does not throttle writes at all (there is a

small percentage of writes, due to metadata updates, also

with 10r-rand). Unfortunately, the little advantage enjoyed

in this case is paid with a more important performance degra-

dation in any of the following benchmarks.

As for the short benchmark, BFQ achieves the same ag-

gregate throughput as in Fig. 2 immediately after reader-

s/writers are started. In fact, BFQ assigns them the maxi-

mum possible budget Bmax from the beginning. Though as-

signing only Bmax/2 as initial budget, BFQ+ reaches how-

ever the maximum budget, and hence the highest aggregate

throughput, within 1−2 seconds, thanks to the effectiveness

of H-throughput and H-fairness. CFQ is a little bit slower,

and its average aggregate throughput over the first 15 sec-

onds is 59.6 MB/s.

6.2.2 Results with NCQ

The results for the long benchmark with NCQ enabled (on

the second system, Table 1) are shown in Fig. 3. BFQ+, BFQ

and CFQ have a similar performance with the sequential

workloads. This is due to the fact that these schedulers dis-

able disk idling with NCQ, and hence delegate de facto most

of the scheduling decisions to it. In more detail, the perfor-

mance of CFQ is moderately worse than BFQ+ and BFQ.

As can be verified through traces, it happens because CFQ

switches slightly more frequently between processes. This

fact causes CFQ to suffer from a more pronounced through-

put loss with the random workloads.

As for NOOP (the Linux FIFO disk scheduler), it achieves

worse performance than BFQ+ and CFQ with 10r-seq be-

cause it passes requests to the disk device in the same order

as it receives them, thus the disk device is more likely to be

fed with requests from different processes, and hence driven

to perform more seeks. The performance of NOOP improves

with 5r5w-seq, because of the presence of the write requests.

In this respect, as can be seen in our complete results, which

show also write statistics, NCQ provides a higher perfor-

mance gain with writes. And—differently from BFQ+, BFQ

and CFQ—NOOP does not relegate write requests to a sep-

arate single queue that must share the disk throughput with

multiple other queues (writes are system-wide and are all in-

serted in a single queue by BFQ+, BFQ and CFQ). Finally,

NOOP provides a 50% performance boost with 5r5w-rand

with respect to BFQ+, because NCQ is even more effec-

tive with random write requests. The gist of these results is

however that, with NCQ, the service order is actually almost

completely out of the control of the schedulers. For this rea-

son the short-benchmark results are quite pointless and for

brevity we do not report them here.

6.3 Responsiveness

We measure the start-up time of three common applications

of increasing size while one of the four workloads used

in §6.2 is being served. According to how H-low-latency

works, under BFQ+ this quantity is also a measure of the

 0

 10

 20

 30

 40

 50

 60

10r-seq 5r5w-seq 10r-rand 5r5w-rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Workload

48.3

46.0

1.2 1.3

46.1

44.3

1.2 1.2

41.7 42

.7 .7

37.6

44.3

1.2 1.8

Disk read peak rate

BFQ+

BFQ

CFQ

NOOP

Figure 3: Aggregate throughput achieved, in the long benchmark,

by BFQ+, BFQ, CFQ and NOOP (FIFO) on the second system with

NCQ.

worst-case latency that may be experienced by an interactive

application every time it performs some I/O. To get worst-

case start-up times we drop caches before invoking each

application. The applications are, in increasing size order:

bash, the Bourne Again shell, xterm, the standard terminal

emulator for the X Window System, and konsole, the ter-

minal emulator for the K Desktop Environment. These ap-

plications allow their start-up time to be easily computed.

For bash, we just let it execute the exit built-in command

and measure the total execution time. For xterm and kon-

sole, we measure the time elapsed since their invocation till

when they contact the graphical server to have their window

rendered. For each run, the application at hand is executed

ten times, flushing the cache before each invocation of the

application, and with a one-second pause between consecu-

tive invocations. This is the benchmark where the synergy of

the heuristics reported in this paper can be best appreciated.

6.3.1 Results without NCQ

Fig. 4(a) shows the bash start-up times: under BFQ+ they are

up to eight-time lower than under CFQ and BFQ, and quite

close to the ones obtained invoking the application on an

idle disk. To see how these lower latencies are paid in terms

of aggregate throughput, we measured also the latter quan-

tity during the benchmark. As shown in Fig. 4(b), for three

out of four workloads, BFQ+ achieves a higher throughput

than CFQ too. This lower latency/higher throughput result is

due to bothH-low-latency, and the more accurate scheduling

policy of BFQ+ (shared with BFQ). Especially, this policy

allows BFQ+ to get low latencies for small-size interactive

applications even while assigning high budgets to the read-

ers. As a further proof of this fact, consider that the bash

start-up time under BFQ+ with low latency disabled was al-

ready below 0.55 seconds with any of the workloads (full

results in [2]). As can be verified through the traces, without

H-fairness, BFQ+ could not have achieved such a good re-

sult. In fact, BFQ achieves a latency only slightly better than

CFQ (Fig. 4(a)) exactly because it lacks this heuristic. The

performance of BFQ is even worse than CFQ with 5r5w-seq

and 5r5w-rand, because BFQ also lacks W-write-throt.

 0

 0.5

 1

 1.5

 2

10r-seq 5r5w-seq 10r-rand 5r5w-rand

C
o

m
m

a
n

d
 s

ta
rt

u
p

 t
im

e
 [

s
]

Workload

1.42

1.24

0.76

0.91

0.18 0.18
0.21 0.21

1.56

1.01

0.73

0.81

Startup time on idle disk

BFQ+

BFQ

CFQ

(a) bash start-up time.

 0

 20

 40

 60

 80

 100

10r-seq 5r5w-seq 10r-rand 5r5w-rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Workload

75.6

72.4

0.7 1.4

72.1

75.3

0.7 0.9

59.1

49.5

0.6 1.4

Disk read peak rate

BFQ+

BFQ

CFQ

(b) Aggregate throughput.

Figure 4: bash start-up times and aggregate throughput during the

benchmark (third system without NCQ).

Considering again the throughput, the pattern generated

to load an application is usually a mix of sequential and

random requests. BFQ+ of course favors this pattern more

than CFQ and BFQ with respect to the requests issued

by the background workloads. This fact negatively affects

the throughput under BFQ+ in case of throughput-friendly

workloads as, e.g., 10r-seq. The throughput achieved by

BFQ+ is however still much higher than that achieved by

CFQ, because the percentage of disk time devoted to bash is

very low during the benchmark, about 0.20 seconds against

a one-second pause between invocations, and because the

budget-assignment rules of BFQ+ let the sequential read-

ers get high budgets. As we are about to see, things change

when the size of the application increases. Finally, BFQ al-

ways achieves a high throughput because it devotes a small

percentage of the disk time to bash, and assigns high budgets

to readers and writers.

For brevity we do not report our results with xterm, as

these results sit between the ones with bash and the ones

with konsole. Consider then konsole, the largest application

of the three. As shown in Fig. 5(a), the latency drop is ev-

ident: up to nine times lower start-up time than with CFQ

and BFQ. With any workload, BFQ+ is again close to the

start-up time achievable on an idle disk. This optimal result

is a consequence of the sum of the benefits of the heuristics

described in this paper. In particular, adding H-peak-rate,

H-throughput, H-fairness and H-write-throt alone would let

BFQ achieve a start-up time around 20 seconds also with

10r-seq and 10r-rand. And it is only thanks to the con-

junction of these heuristics and H-low-latency that BFQ+

succeeds in achieving the low application start-up times re-

ported in Fig. 5(a).

 0

 5

 10

 15

 20

 25

 30

10r-seq 5r5w-seq 10r-rand 5r5w-rand

C
o

m
m

a
n

d
 s

ta
rt

u
p

 t
im

e
 [

s
]

Workload

26.9

13.4

25.6

11.8

2.88 2.59 2.87 2.82

26.03

14.18

22.36

13.03

Startup time on idle disk

BFQ+

BFQ

CFQ

(a) konsole start-up time.

 0

 20

 40

 60

 80

 100

10r-seq 5r5w-seq 10r-rand 5r5w-rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t

[M
B

/s
]

Workload

75.9

67.2

1.3
2.6

48

71

5.5 5.8

58 57

1.5 2.0

Disk read peak rate

BFQ+

BFQ

CFQ

(b) Aggregate throughput.

Figure 5: konsole start-up times and aggregate throughput during

the benchmark (third system without NCQ).

This low latency is paid with a 20%/36% loss of aggre-

gate throughput with respect to CFQ/BFQ in case of 10r-seq,

as can be seen in Fig. 5(b). It happens because CFQ and BFQ

of course favor less than BFQ+ the more-random requests

that must be served for loading konsole. Differently from

bash, with konsole a significant percentage of time is spent

loading the application during the benchmark. On the oppo-

site end, from the full results it could be seen that, though

the konsole-loading pattern is partially random, favoring it

leads however to: 1) a slightly higher throughput than favor-

ing sequential writes, and 2) a definitely higher throughput

than favoring purely random read or write requests. For this

bash start-up konsole start-up

range [sec] range [sec]

BFQ+ 0.27 - 0.32 10.7 - 196
BFQ 0.51 - 0.74 30.9 - 188
CFQ 1.05 - 7.44 14.7 - 2940

NOOP 6.19 - 10.8 1.55 - 408

Table 2: Ranges of start-up times achieved by BFQ+, BFQ, CFQ

and NOOP (FIFO) over the four workloads, on the second system

with NCQ enabled.

reason BFQ+ achieves a higher throughput than CFQ and

BFQ with the other three workloads.

6.3.2 Results with NCQ

With NCQ the results confirm the expected severe degrada-

tion of the service guarantees. The variation of the start-up

times as a function of the different workloads is so large that

they are impossible to clearly represent on charts with lin-

ear scale as the ones used so far. Hence we summarize these

results in Table 2. For each scheduler and application we

report the minimum and maximum (average) start-up times

achieved against the four workloads.

As can be seen, BFQ+ still achieves reasonable start-

up times for bash, whereas konsole is now unusable (xterm

is unusable too). The performance of BFQ+ and BFQ is

however better than that of CFQ and NOOP (FIFO), with

CFQ taking up to 49 minutes to start konsole. There is the

outlier of the 1.55 seconds taken by NOOP, precisely with

5r5w-seq, which we did not investigate further. In general,

whereas NOOP does not make any special effort to provide

low-latency guarantees, the other three schedulers cannot

really be blamed for this bad performance. NCQ basically

amplifies, in a non-linear way, the latency that would be

guaranteed by each of these schedulers without it, because

of the two problems discussed in §5. Finally, the results in

terms of aggregate throughput match the ones reported in

§6.2, hence we do not repeat them.

6.4 Video playback

As already discussed, the litmus test for H-low-latency is

how this heuristic degrades the latency for non-interactive

applications. And soft real-time applications, such as video

players, are clearly among the most sensitive ones to the

degradation of the guarantees. In this benchmark we count

the total number of frames dropped while: 1) a 30-second,

medium-resolution, demanding movie clip is being played

with the mplayer video player, 2) the bash command is being

invoked with cold caches every 3 seconds (3 seconds is the

upper bound to the worst-case start-up time of bash with

CFQ in this benchmark), and 3) one of the workloads used

in §6.2 is being served. bash starts to be repeatedly invoked

only after 10 seconds since mplayer started, so as to make

sure that the latter is not taking advantage of any weight

 0

 2

 4

 6

 8

 10

10r-seq 5r5w-seq 10r-rand 5r5w-rand

E
s
ti
m

a
te

d
 f

ra
m

e
-d

ro
p

 r
a

te
 [

%
]

Workload

1.5

2.0

1.4

1.9

3.4

3.8

4.8

2.8

3.7

2.4

2.9

1.8

BFQ+

BFQ

CFQ

Figure 6: Average frame-drop rate, while the bash application is

repeatedly invoked and one the four workloads is served.

raising. In contrast, because of its short start-up time, each

execution of bash enjoys the maximum weight raising and

hence causes the maximum possible perturbation.

To show the consequences of the number of frames

dropped through a more clear quantity, we computed a con-

servative estimate of the average frame-drop rate during the

last 20 seconds of the playback (the most perturbed ones),

assuming a playback rate of 27 frames per second. In this

respect, it would have been even more interesting to conduct

the reverse analysis, i.e., given a well-established frame-drop

rate for a high-quality playback, find the most perturbing

background workloads for which that threshold is met. To

perform such an analysis, we should have taken many vari-

ables into account, because the level of perturbation caused

by a background workload may depend on many parame-

ters, such as number of readers, number of writers, size of

the other applications started during the playback, and fre-

quency at which these applications are started. We did not

consider this more complex analysis for lack of space.

Turning back to the actual benchmark we have run, as al-

ready said in §6.1, we report here our results on the first sys-

tem (without NCQ), as this system is the one with the slow-

est disk. As shown in Fig. 6, the price paid on this system

for the low latency guaranteed by BFQ+ to interactive ap-

plications is a frame-drop rate not higher than 1.6 times that

of CFQ. Note that BFQ exhibits its worse performance with

5r5w-seq and 5r5w-rand, mainly because with these work-

loads it devotes a quite high percentage of the disk time to

the write requests. On the contrary, thanks to H-write-throt,

the relative performance of BFQ+ with respect to CFQ does

not get worse under these workloads.

7. Conclusions

In this paper we have described a set of simple heuristics

added to the BFQ disk scheduler. We have validated the ef-

fectiveness of these heuristics by defining and running, on

several heterogeneous systems with single rotational disks,

a benchmark suite that mimics real-world tasks. We are cur-

rently investigating the issues related to RAIDs and SSDs,

together with possible solutions to preserve guarantees also

with NCQ. In this respect, we have already devised some

improvements for BFQ+ (and integrated them in its last re-

leases [2]). These improvements will be the focus of follow-

up work.

References

[1] F. Checconi and P. Valente, “High Throughput Disk Schedul-

ing with Deterministic Guarantees on Bandwidth Distribution”,

IEEE Transactions on Computers, vol. 59, no. 9, May 2010.

[2] [Online]. Available: http://algo.ing.unimo.it/people/

paolo/disk_sched

[3] [Online]. Available: http://algo.ing.unimo.it/people/

paolo/disk_sched/BFQ-v1-tr.pdf

[4] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk

Scheduling Framework to Overcome Deceptive Idleness in Syn-

chronous I/O,” in 18th ACM SOSP, Oct. 2001.

[5] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia

I/O system,” in Proc. of MULTIMEDIA ’93, 1993.

[6] L. Reuther and M. Pohlack, “Rotational-position-aware real-

time Disk Scheduling Using a Dynamic Active Subset (DAS),”

in Proc. of RTSS ’03, 2003.

[7] A. Molano, K. Juvva, and R. Rajkumar, “Real-time Filesys-

tems. Guaranteeing Timing Constraints for Disk Accesses in RT-

Mach,” Proc. of RTSS ’97. , Dec 1997.

[8] A. Povzner et al. “Efficient guaranteed disk request scheduling

with fahrrad,”SIGOPS Oper. Syst. Rev., 42, 4, April 2008.

[9] L. Rizzo and P. Valente, “Hybrid: Achieving Deterministic

Fairness and High Throughput in Disk Scheduling,” in Proc. of

CCCT’04, 2004.

[10] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-

schatz, “Disk Scheduling with Quality of Service Guarantees,”

in Proc. of ICMCS ’99., 1999.

[11] A. Gulati, A. Merchant, and P. J. Varman, “pclock: an Arrival

Curve Based Approach for QoS Guarantees in Shared Storage

Systems,” SIGMETRICS Perform. Eval. Rev., vol. 35, no. 1,

2007.

[12] W. Jin, J. S. Chase, and J. Kaur, “Interposed Proportional

Sharing for a Storage Service Utility,” in Proc. of SIGMETRICS

’04/Performance ’04, 2004.

[13] A. Gulati, A. Merchant, M. Uysal, and P. J. Varman, “Effi-

cient and adaptive proportional share I/O scheduling,” Hewlett-

Packard, Tech. Rep., November 2007.

[14] [Online]. Available: http://mirror.linux.org.au/pub/

linux.conf.au/2007/video/talks/123.pdf

[15] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling

algorithms for modern disk drives,” in SIGMETRICS ’94, 1994.

[16] R. Geist, J.R. Steele, and J. Westall, ”Enhancing Webserver

Performance Through the Use of a Drop-in, Statically Optimal,

Disk Scheduler”, Proc. 31st Ann. Int. Conf. of the Computer

Measurement Group (CMG 2005), December 2005.

