
Research Article Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1095

Point spread function of the polarized light field
microscope
Mai Thi Tran1,* AND Rudolf Oldenbourg2,3

1VinUniversity, Hanoi, Vietnam
2Marine Biological Laboratory,WoodsHole, Massachusetts 02543, USA
3e-mail: rudolfo@mbl.edu
*Corresponding author: mai.tt@vinuni.edu.vn

Received 10 March 2022; revised 3 May 2022; accepted 3 May 2022; posted 9 May 2022; published 26 May 2022

We examined the point spread function of the polarized light field microscope and established a computational
framework to solve the forward problem in polarized light field imaging, for the purpose of furthering its use as a
quantitative tool for measuring three-dimensional maps of the birefringence of transparent objects. We recorded
experimental polarized light field images of small calcite crystals and of larger birefringent objects and compared
our experimental results to numerical simulations based on polarized light ray tracing. We find good agreement
between all our experiments and simulations, which leads us to propose polarized light ray tracing as one solution
to the forward problem for the complex, nonlinear imaging mode of the polarized light field microscope. Solutions
to the ill-posed inverse problem might be found in analytical methods and/or deep learning approaches that are
based on training data generated by the forward solution presented here. © 2022 Optica Publishing Group under the

terms of theOptica Open Access Publishing Agreement
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1. INTRODUCTION

In microscopy, the experimental point spread function is rep-
resented by a series of images of a small point source as it moves
in and out of focus. The in-focus image represents the tightest
intensity spot the microscope optics can generate of a point
source, while the out-of-focus images represent the intensity dis-
tribution that becomes more and more blurred the further the
point emitter is moved out of focus. The point spread function is
a sensitive indicator of the resolution and imaging properties of
a microscope lens system [1,2].

The point spread function of the polarized light microscope
is a function not only of the position of an anisotropic point
object but also of the orientation of its polarizability tensor. In a
previous study using the LC-PolScope for recording polarized
light images of small calcite crystals, we illustrated the relation-
ship between the observed in- and out-of-focus images and the
orientation of the optic axis of the subresolution crystals [3].
The study also highlighted the need for combining observations
not only of different positions of the crystals but also along dif-
ferent viewing directions to establish the complete point spread
function.

With this need in mind, we developed the scanned-aperture
LC-PolScope, which introduced a configurable mask in
the aperture plane of the condenser optics of an otherwise
unchanged LC-PolScope setup [4]. Using this setup, we
recorded PolScope images of a weakly birefringent, spheri-
cally symmetric biological object called aster, that features dense

arrays of a biopolymer (microtubules) that radiate out from a
common center. By employing five different configurations of
the aperture mask, we recorded PolScope aster images that each
was produced with a different tilt angle of the chief ray of the
illumination cone with respect to the microscope axis. We also
developed reconstruction algorithms that combined the images
obtained along different illumination directions to reveal the
local 3D optic axis orientation in this biological Koosh ball.

A similar experimental approach with a configurable mask in
the illumination optics, and brand-new algorithms for recon-
structing the 3D permittivity tensor of thick phase objects,
including birefringent specimens, was recently implemented by
the Group of Shalin Mehta at the CZI Biohub [5].

A somewhat different approach to generating images along
different viewing directions became possible by the introduc-
tion of the light field microscope by Marc Levoy at Stanford
University [6]. Instead of using a configurable aperture mask,
the light field camera includes an array of microlenses that
project small conoscopic views of the object scene onto the
camera sensor. The only change necessary to convert a regular
light microscope into a light field microscope is exchanging
the regular camera with a light field camera that is a combina-
tion of a microlens array and a 2D light sensor. The microlens
array is placed in the intermediate image plane of the micro-
scope, followed by the sensor in the focal plane of the
microlenses. Hence, the light sensor captures an array of images
of the objective lens’s back aperture, each one specific to the
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location of the microlens in the image plane. In microscopy, the
image of the back focal plane of the objective lens is called the
conoscopic image, while the image in the intermediate image
plane of the microscope is called the orthoscopic image. A light
field image is a combination of both, i.e., conoscopic images on
a regular grid sampling the image/object plane.

Intrigued by the possibility of combining orthoscopic and
conoscopic views, two imaging modes well established in tra-
ditional polarized light microscopy, we explored the use of a
light field camera in an LC-PolScope setup, creating the light
field LC-PolScope [7]. As a first application, we analyzed a
thin, polycrystalline calcite film and were able to determine the
azimuth and inclination angle of the optic axis orientation of
each crystalline region in the sample, all at once, establishing
polarized light field microscopy as a versatile, simultaneous
combination of orthoscopic and conoscopic imaging. This was
possible, because the sample was a thin film and imaging rays
passed only once through a single crystalline region. For thicker,
more complex samples, it proved difficult to ascertain algo-
rithms that can reconstruct thick objects whose birefringence
and optic axis orientation varies in 3D, which is typical for most
biological and fabricated materials. While difficult, it seems not
impossible, especially when we allow for some approximations
and simplifying assumptions, and take advantage of the rise of
deep learning, including its role in finding solutions to inverse
problems in imaging [8].

While with the current paper we do not present a solution
to the inverse problem in polarized light imaging, we present a
forward solution that accurately predicts polarized light field
images of simple objects based on a ray tracing model. We
recorded experimental point spread functions using the light
field LC-PolScope to image small (∼1 µm diameter) calcite
crystals and compare the results to simulated point spread func-
tions based on polarized light ray tracing that implements the
Jones calculus for rays that traverse a rasterized object space.
By establishing a forward model for polarized light field imag-
ing, we are presenting a critical piece to solving the puzzle of
finding solutions to the ill-posed, nonlinear inverse problem in
polarized light microscopy.

Following next is the Methods section, where we briefly
review the experimental setup, which was described before [7,9].
We also present the newly developed polarized light ray tracing
method for light field imaging, implemented and available
online as a Mathematica Notebook (Mathematica by Wolfram
Research, Chicago, IL) as we show in Code 1, Ref. [10]. In
addition to the executable code, the notebook features exten-
sive text and graphics entries with additional explanations and
clarifications that can be examined using the Wolfram Player,
which is freely available from the Wolfram Research website.
In the Results section, we present experimentally recorded and
simulated light field images of both, small calcite crystals and of
larger dome-like calcite structures and compare their similarities
and differences. In the Discussion section, we address questions
about our assumptions, including the neglect of diffraction
effects and the assumption of straight ray paths through object
space, to make the simulation code tractable.

2. METHODS

A. Light Field LC-PolScope

The principles of the LC-PolScope were described elsewhere
[11]. The optical setup used for the current study was assembled
around a Nikon Eclipse Ti inverted stand, enhanced by a uni-
versal, liquid-crystal-based polarizer from Meadowlark Optics
Inc. (Frederick, CO, USA), and a light field camera. Figure 1
shows a schematic of the setup assembled on an upright stand.
The light field camera is composed of a microlens array and
a conventional 2D CCD or CMOS sensor. The specs of the
sensor and microlens array were adapted to the magnification
and numerical aperture (NA) of the microscope optics. We
used a microlens array (RPC Photonics, Rochester, NY) with a
pitch of 100 µm and a focal length of 2.5 mm. A 1:1 relay lens
made of two AF Nikkor objective lenses ( f = 50 mm, f /1.4,
mounted nose to nose, from Nikon, Melville, NY) projected
the microlens focal plane onto a CMOS camera (Hamamatsu
Photonics Flash4 C13440). The sample was illuminated with a
direct current-stabilized 100 W tungsten halogen lamp through
a band-pass interference filter (544/24 nm, Semrock Inc,
Rochester, NY), a variable LC-polarizer, and an oil immersion
condenser lens whose aperture diaphragm was set to 1.2 NA.
The sample illuminated by transmitted light was imaged with
a Nikon 60×/1.4 NA PlanApo oil immersion objective. The
objective lens was followed by a fixed polarization analyzer for
left circularly polarized light.

The variable LC polarizer (also called universal compensator)
is an optically bonded assembly of two liquid crystal variable
retarders and a linear polarizer, which was placed in the illumina-
tion path of the microscope. Several predetermined polarization
settings can be registered in the controller of the universal polar-
izer and are used to sequentially acquire five raw images with
the light field camera. We call the five raw images together with
two computed images of retardance and orientation values a
PolStack. For image acquisition and analysis, we used plug-
ins designed for Micro-Manager (Micro-Manager.org) and
available on the OpenPolScope.org website.

The standard processing algorithms for images recorded with
an LC-PolScope setup generate maps of retardance and slow axis
orientation values measured for every pixel of a light field image.
Both the retardance and slow axis orientation of a given pixel
and its associated ray represent the polarization optical prop-
erties encountered during the passage of the ray through the
optical setup, including the specimen and the lenses and other
optical components located between the universal polarizer
and the circular analyzer. Fortunately, LC-PolScope algorithms
include the ability to remove the contributions of polarization
distortions induced by stress in glass or other optical effects in
microscope components other than the specimen itself [11,12].
This background correction is based on acquiring a so-called
Background PolStack that represents the instrument only and
is typically recorded by imaging a clear area within the micro-
scope slide and coverslip assembly that also holds the specimen
structures of interest.

The ability to remove the effect of polarization aberrations
induced by the instrument will be important in setting up the
polarized light ray tracing method described next.

https://doi.org/10.6084/m9.figshare.19695319
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Fig. 1. Schematic of the light field LC-PolScope. The top row of
panels A through E show the raw light field LC-PolScope images of
a small calcite crystal that is in focus and centered on a 3-by-3 array
of microlenses [same crystal as in Figs. 2(A) and 2(B)]. Panel (F) in
the lower right corner shows the measured retardance as a grayscale
map and slow axis orientations indicated by short red lines for every
pixel. The images in panels (A) through (E) show the acquired intensity
behind each microlens, where each panel was recorded using a different
setting of the variable LC-Polarizer. Panel (A) was recorded with the
LC-Polarizer set for right circularly polarized light, which is blocked
by the left circular analyzer, rendering the image mostly dark, except
for the center microlens that projects the light that passed through
the crystal. For panels (B) through (E), the LC-Polarizer was set to
generate elliptically polarized light with different orientations of the
elliptic axes. Elliptically polarized light partially passes the circular
analyzer and reveals the circular aperture disk projected behind each
microlens. In light field images, we do not show a scale bar, because the
dimensions are ambiguous, since image details represent two different
conjugate planes in the microscope: the positions of the microlenses
represent distances in object space, which is sampled on a 1.7 µm
square grid, while the 16 by 16 pixels within a square represent the
objective’s back focal plane, which represents angular coordinates of
the rays that path through object space.

B. Polarized Light Ray Tracing

Light field imaging lends itself to be modeled by ray tracing, as
the four-dimensional light field image identifies a large but finite
set of individual rays that pass through a specific location and
direction in object space, as outlined in Marc Levoy’s original
article [6]. Obviously, this approach neglects diffraction, and it
also seems to suffer from a variation in resolution depending on
the distance of the reconstructed region from the nominal focus
plane in object space [13]. Nevertheless, our success demon-
strated in this paper of recording and simulating polarized light
field images of birefringent objects between 1 and 100 µm
diameter supports our goal of establishing a first forward model
for this complex imaging mode.

In addition to limiting ourselves to ray optics, we also
make the following assumptions and simplifications: (1) the
heterogeneous object material is transparent and only exhibits
birefringence as optical anisotropy; (2) variations of the average

refractive index in the object are small; and (3) the object of
interest is embedded in a medium that nearly matches its average
refractive index. Taken together, these assumptions and sim-
plifications justify the approximation that polarized light rays
traverse object space in straight lines and maintain their overall
intensity and degree of polarization while changing their polari-
zation state due to the birefringent voxels in simulated objects.
The latter assumption that the degree of polarization does not
change by the interaction of light with the object allows us to use
the Jones calculus for simulating the changes in polarization as
the light passes through the object.

The simulation code is available as a Mathematica Notebook
and is an open-source companion piece to this article (Code 1,
Ref. [10]). The Notebook is extensively annotated, including
text and graphics entries that describe the simulation framework
and the mapping between camera pixels and their associated
light rays. A ray is uniquely identified by its propagation direc-
tion rayDir and a location (x , y , z) in object space. Here we
briefly summarize the mathematical expressions used to calcu-
late the retardance and azimuth accumulated by a given ray as it
passes through the birefringent object.

Objects are described by a rasterized volume whose cubic
voxels (side length typically ∼0.5 µm) can each possess a uni-
axial birefringence1n, which can be positive, negative, or zero.
The description of the birefringence of a voxel also includes the
optic axis direction given by a unit vector −→oa in object space
coordinates. Individual voxels are identified by indices (i, j , k)
that describe the voxel’s position along the three coordinate
axes that span object space. For identifying the voxels that a ray
with a given position and direction will intersect on its path
through object space, we took the algorithms first proposed by
Siddon [14] and implemented them in Mathematica code. For
a given ray, the algorithms identify the (i, j , k) indices of the
voxels that are sequentially traversed by the ray and the ray’s
intersection lengths for each voxel. We represent the linear list of
voxel indices (i, j , k) and intersection lengths l by a single index
v that identifies the birefringence value1nv , optic axis direction
−→oa v , and intersection length lv for each voxel v traversed in
sequence by the light ray.

With those definitions, we are almost ready to write the
expressions for the retardance and azimuth of the slow axis,
accumulated over the ray’s path through object space. However,
to compute a retardance Jones matrix, we still need to define two
directions that span the plane perpendicular to the propagation
direction of the ray. Every Jones matrix associated with a ray
is defined in the plane perpendicular to the ray direction. To
use a coordinate system that is common to all rays, regardless
of their propagation direction in object space, we choose the
laboratory frame of reference where all rays propagate parallel
to the x axis after they have been reoriented by the microscope
objective lens. This reorientation is described by a rotation
matrix that takes a vector along the ray direction in object space
and rotates it parallel to the x axis. We then apply the inverse of
this rotation matrix to unit vectors that are parallel to the y and
z axis to define the vectors that span the plane perpendicular
to the ray direction and call the rotated vectors r a y y and r a yz.
With this notation, rayDir is equivalent to r a y x . This will also
allow us to compare our simulation results to our experimental
measurements, which are taken using polarization components,

https://doi.org/10.6084/m9.figshare.19695319
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such as polarizers and retarders, whose optical axes are aligned
with the laboratory frame of reference.

To calculate the retardance retv that is associated lv with a
single birefringent voxel v and a ray with direction rayDir, we
take the square of the scalar product between the voxel’s optic
axis oav and rayDir, and multiply the result with the voxel’s
birefringence 1nv and with the ray’s intersection length lv
[7,15]:

retv =1nv

(
1−

∣∣∣−→oa v ·
−−−→
rayDir

∣∣∣2) lv
2π

λ
. (1)

The expression (1− |−→oa v ·
−−−→
rayDir|

2
) is equal to sin2α, where

α is the angle between the ray direction and the optic axis, and
the factor 2π/λ converts the retardance from a length (typically
in nanometers) to radians, whereλ is the wavelength of the light.

The slow axis orientation or azimuth azimv that is associated
with retardance retv refers to an angle in the plane spanned by
−→r ay y and −→r ay z and is measured from the −→r ay y axis. azimv is
given by the scalar products between the optic axis−→oa v and unit
vectors−→r ay y and−→r ay z:

azimv = tan−1

(
−→oa v ·
−→r ay y

−→oa v ·
−→r ay z

)
. (2)

With expressions for azimv and retv , we are now ready to
define the retardance Jones matrix r e t J Mv , associated with
voxel v and ray direction r ay Dir [16]:

r e t J Mv =

[
cos
( retv

2

)
− i cos(2azimv) sin

( retv
2

)
−i sin(2azimv) sin

( retv
2

)
−i sin(2azimv) sin

( retv
2

)
cos
( retv

2

)
+ i cos(2azimv) sin

( retv
2

) ] . (3)

For the simulations presented here, a ray sequentially passes
through typically 10 to 100 voxels, some of which will not be
birefringent (1nv = 0), and others will carry some birefrin-
gence. To generate the Jones matrix rayJM of the accumulated
retardance and final azimuth value for a given ray, we form the
product of the individual Jones matrices of the voxels that are
traversed in a linear sequence given by the index v that increases
from 1 to N:

rayJM=
N∏
v=1

r e t J Mv . (4)

N is the total number of voxels traversed and, as stated earlier,
can vary between 10 and 100, depending on the size of the object
and the ray direction. As is well known for the Jones calculus,
the order in which the ray traverses the individual birefringent
voxels is important because the Jones matrices generally do not
commute in a product of matrices.

The text and graphics in the Mathematica Notebook give
further details about the simulation code and the generation of
a simulated light field image that is composed of a rectangular
array of small aperture images. Individual aperture images are
composed of 172 pixels, arranged in disk shape, and each pixel
value is the result of applying expressions for either recovering
the retardance or the azimuth value from rayJM that is associated
with that pixel. An illustration of the circular aperture disk of

retardance values and slow axis orientations generated behind a
single microlens is seen in the middle panel (z= 0) of Fig. 3(B).

As already alluded to, the experimental maps of specimen
retardance and slow axis orientation are background corrected
and represent data associated with the specimen only. Hence, for
generating ray tracing results that can be compared to the exper-
imental data, we only consider the ray paths that extend between
an entrance and exit plane, between which the simulated object
is located in object space and that are typically less than 100 µm
apart.

3. RESULTS

A. Experimental and Simulated Point Spread
Functions

Calcite is a uniaxial, negatively birefringent crystal of cal-
cium carbonate (CaCO3). Small single crystals (diameters
down to 1 µm and smaller) were prepared as precipitate by
mixing, in approximately stoichiometric amounts, satu-
rated aqueous solutions of sodium bicarbonate and calcium
chloride (see [3]). A small amount of solution with precipi-
tate was transferred to a microscope cover glass. Unreacted
amounts of the original compounds were rinsed away with
purified water. Crystals that adhered to the cover glass were
allowed to dry and were embedded in Permount, which
is a clear resin that has a refractive index of 1.52, match-
ing the refractive index of the cover glass and microscope
slide (all reagents and supply items from Fisher Scientific).

We recorded experimental point spread functions using the
LC-PolScope equipped with a 60×/1.4 NA apochromat oil
immersion objective lens and an oil immersion condenser lens,
whose numerical aperture was stopped down to 1.2. Figure 2
shows two experimental and one simulated set of retardance
images representing three focus series of the same 1-µm-sized
calcite crystal. Images in the top row [Fig. 2(A)] were recorded
using a regular camera (no microlens array) whose sensor was
placed directly in the image plane of the microscope. The in-
focus image at z= 0 barely resolves the diamond shape of the
crystal that seems to have one of the typical calcite cleavage
forms, a rhombohedron. The optic axis direction bisects the
obtuse angle of the diamond shape and is tilted by 45◦ to the
microscope axis (see, e.g., [3]). The tilt in the optic axis direc-
tion is apparent in the second focus series [Fig. 2(B)], which
was recorded with the light field camera. When the crystal is at
z= 0, all the light that has passed through the crystal is collected
by a single microlens that projects the conoscopic image onto
the camera sensor. The edge of the conoscopic image corre-
sponds to a numerical aperture of 1.2, which, in object space, is
associated with a tilt angle of 52◦ to the microscope axis. Hence,
rays that are parallel to the optic axis of the crystal are still within
the recorded aperture and can be recognized by the near zero
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Fig. 2. Focus series (−3 µm ≤ z ≤ +3 µm, z= 0 in-focus object plane) of retardance images of a small calcite crystal embedded in immersion
oil (n = 1.52) and recorded with the LC-PolScope equipped with a 60×/1.4 NA oil immersion objective and matching condenser optics, whose aper-
ture was reduced to 1.2 NA. Row (A) shows the crystal in a focus series using a regular camera in the microscope’s image plane. Row (B) shows the
same crystal with the microlens array in the image plane and the camera in the focal plane of the microlenses (light field camera). Row (C) shows
simulated retardance images of a birefringent ball object of similar size (diameter 1 µm), birefringence (−0.172), optic axis orientation (45◦ tilt to
microscope axis), and focus positions as the experimental crystal. The retardance calibration bar and 1 µm scale bar in row (A) and z= 0 apply to all
retardance images. Row (D) is a series of schematics showing the crystal positions in object space along the microscope axis (z axis) relative to the
microlens array, shown in blue as projected into object space by the microscope objective lens. As explained in the caption to Fig. 1, we do not show
scale bars in light field images.

retardance recorded in the black spot near the 9 o’clock position
in the central aperture of the light field image at z= 0. The
schematic in Fig. 2(D) illustrates this relationship. For z posi-
tions other than 0, tilted rays are collected by lenses other than
the one centered on the crystal. The schematic also illustrates the
geometric relationship between light field patterns for crystal
positions below (z< 0) and above (z> 0) the nominal focus
plane.

For z< 0, tilted rays that interacted with the crystal are col-
lected near the aperture edge that is farthest from the central
microlens, while for z> 0, the tilted rays are collected near the
edge that is closest to the central microlens.

We also note the stark difference in retardance levels mea-
sured in out-of-focus images when using the conventional
camera [Fig. 2(A)] versus the light field camera [Fig. 2(B)].
In conventional images, the crystal retardance measured for
z= 3 µm, for example, becomes spread over many pixels, each
registering only a small retardance value that becomes too small
to be measured and is drowned by image noise. In the light field
image, however, the retardance carried by rays is only shared
between a few pixels, even for out-of-focus crystal positions,

and retardance values remain measurable even for quite far
out-of-focus positions.

All these features in the experimental images are well repro-
duced in the simulated light field images shown in Fig. 2(C),
which were computed using specifications and parameters that
closely match the experimental ones (for further details, please
see text entries in the companion Mathematica Notebook.)

In Fig. 3(A), retardance light field images of another small
calcite crystal are shown, whose optic axis orientation is nearly
parallel to the microscope axis. The crystal was found in the
same preparation as the one in Fig. 2 and likely had a columnar
shape, another common crystal habit of calcite. The light field
panels include red lines indicating the slow axis orientations
measured together with the retardance of each pixel. For the in-
focus image (z= 0), the lines are oriented tangentially around
the central dark region, because calcite is negatively birefringent,
orienting the high refractive index axis perpendicular to the
optic axis projection for each ray. Again, the complementarity of
the retardance patterns for crystal positions below and above the
nominal focus plane can be readily observed. This complemen-
tarity also extends to the patterns of orientation lines observed
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Fig. 3. Focus series of light field retardance images of a small columnar calcite crystal in which the crystal’s optic axis is nearly parallel to the micro-
scope axis. Red lines indicate the slow axis orientation for every other pixel. Row (A) shows experimental images of a columnar crystal that we found
in the same preparation as the rhombohedron crystal in Fig. 2. Row (B) shows simulated retardance images of a birefringent cylinder of similar size
(diameter 1 µm, length 1.2 µm). In both rows, the out-of-focus images are contrast enhanced by a factor of 2 for better visibility of the orientation
lines.

behind microlenses surrounding the central microlens. For both
positions (z < 0 and z > 0), though, the slow axis orientations
remain tangential to the center of the projected aperture disk
behind a given microlens.

All these features observed in the experimental images of
row (A) are well reproduced in the simulated images of row (B)
in Fig. 3. While further details of the simulation conditions are
described in the companion Mathematica Notebook, we stress
that the detailed light field patterns of the simulation depend
only on a few adjustable parameters for the sample object, such
as the size and position of the simulated crystal, the two orien-
tation angles specifying the solid angle of its optic axis, and its
birefringence. Because of the small size of the crystal (diam-
eter ∼1 µm) relative to the projected microlenses (diameter
1.73 µm), the simulation is insensitive to the exact shape of the
crystal.

B. Light Field Images of a Juvenile Clamshell

For objects larger than 1 µm, size and shape matter. To further
explore the validity of our ray tracing method, we compare
experimental results and simulations for a larger birefringent
object. Recently, we published polarized light field images of
juvenile clamshells, which represent simple dome-shaped
objects that are moderately birefringent and whose optic axis
orientations vary systematically across the shell surface [9]. We
have reexamined a set of images from that study and set up a
simulation of a dome-like object of similar size and shape.

Figure 4 summarizes the experimental and ray tracing results
as light field images of a 100-µm-wide juvenile clam shell and
its simulation as a calcite dome. The structures are embedded in

a medium (oil) whose refractive index of 1.52 closely matches
their average refractive index.

After examining the light field images of the experimental
clamshell [Fig. 4(A)] and the corresponding simulated images
[Fig. 4(B)], it is apparent that the simulated dome is not fully
representative of the clamshell, which has irregularities, and
one side is flattened where the hinge of the bivalve will develop.
Nevertheless, the prominent features of the experimental light
field images are reproduced by the simulation.

Top regions of the shell and dome, both show aperture retar-
dance images that are typical for a negatively birefringent sheet,
whose optic axis is parallel to the microscope axis. As we move
closer to the outer edge of the shell/dome, the optic axis becomes
more inclined, and the dark spot in the aperture image moves
away from the aperture center in a systematic fashion that is well
reproduced in the simulated images.

The magnitude of retardance in an aperture image near the
top of the shell is reproduced in the simulation by assuming a
thickness of ∼0.5 µm for the calcite dome. As the microlens
position moves closer to the edge of the shell, the dark spot
moves away from the center, and higher retardance values
appear on the side opposite the dark spot. The measured
increase, however, cannot be explained by a rotation of the optic
axis alone. The simulated aperture images near the edge of the
dome become more like the experimental ones if we account for
an increase in the thickness of the dome and by extension of the
shell.

The two enlarged microlens arrays on the left side in Fig. 4(B)
illustrate another finding that is related to the above point.
Both the experimental and simulated aperture images near the
edge show a sudden decrease of the measured retardance where
we would have expected a continued increase in retardance.
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Fig. 4. Light field retardance images of a juvenile clamshell [row (A)] and of a simulated calcite dome [row (C)] that were recorded/simulated with
the object in three different focus positions (images in (C) only show the top left quarter of the full light field image of the simulated calcite dome).
Row (B) shows enlarged arrays of 2-by-4 microlenses, picked from corresponding regions of the experimental and simulated images, as indicated by
white frames in images of rows (A) and (C). The red lines in (B) show the slow axis orientations for points in the aperture images of each microlens.
The graph on the left side of (B) plots the retardance and slow axis orientation along a vertical aperture strip, indicated by the white frame in the
second image from the left. The graph shows an inflection of the retardance and a jump by 90◦ in the orientation, which is a measurement artifact that
is expected if retardance values increase beyond half a wavelength (see text). Row (D) shows a cross section of the simulated dome whose thickness
slightly increases from∼0.5 µm at the top to∼1 µm near the bottom. The voxel size for the simulation is 0.57 µm. The field of view in (A) is about
100µm square, while in (B) it is about 50µm square, both in object space dimensions.

In addition, in pixels with an unexpected decrease in retardance,
the slow axis orientation flips from horizontal (azimuth 0◦) to
vertical (azimuth 90◦). Both these observations are illustrated
in the graph of Fig. 4(B). The observation of both phenom-
ena together, sudden drop in retardance near half-wavelength
values together with a flip by 90◦ of the slow axis orientation
support the explanation that draws on so-called phase wrap-
ping between the orthogonally polarized rays that interfere to
generate the observed polarization. While a full explanation
would be too lengthy here, we refer the reader to the website
OpenPolScope.org for a more complete description of the phe-
nomenon. Suffice it to say that for the simulation, (a) the Jones
calculus, in general, reproduces this experimentally observed
phenomenon, and (b) in the specific case of the clamshell, the
measured retardance near the top region and near the edge can
be made compatible only by allowing the shell thickness to
increase from the top to the edge of the shell/dome by a factor of
about 2.

4. DISCUSSION

We found that the simulated light field images of a small,
birefringent sphere are remarkably close to the experimental
retardance images of a small calcite crystal (crystal diameter <
microlens diameter). All the distinct features of the retardance
light field images are reproduced, including the distribution
of retardance and the associated slow axis orientation among
several microlenses as the crystal/sphere is moved in and out of
focus. And yet, there are also distinct differences between the
experimental and simulated light field images that are due in
part to the assumptions and simplifications we have introduced
when establishing the ray tracing model.

Among the more impactful simplifications is the neglect of
diffraction that occurs on stops and apertures of the imaging
optics, including the diffraction on the aperture stop of the
microscope objective lens. The diffraction on the aperture stop
leads to the broadening of the image of a point source to the
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well-known Airy pattern, whose central maximum is broadened
to 1.22 λ

NA in object space units, with NA the numerical aperture
of the objective lens. In our experiments and simulations, the
central Airy disk that is projected onto the microlens array when
the point source is in the nominal focus plane, has a diameter
of 60× 1.22 λ

NA = 15 µm compared to the 100 µm square
microlens diameter. The size of the calcite crystal image and its
simulated counterpart is 60 µm, and broadening by diffraction
is expected to be a minor effect. Another possible contribution
might come from the diffraction on the square aperture of the
microlenses and is detected on the light sensor, which is in the
focal plane of the lenslets. Together, we expect the diffraction
effects to account for the additional blur of measured retardance
values observed in the experimental versus simulated images. To
properly account for all the diffraction effects, it will be neces-
sary to expand the simulation presented here with approaches
that include wave optical effects. For fluorescence light field
microscopy, this was done by Broxton et al . and by Quicke et al .,
with the latter expanding the first treatment to allow for dipole
emitters and high NA objective lenses [13,17].

Another approximation we have used is the assumption that
light rays traverse object space in straight lines. This is based on
two observations: (1) the refractive index in object space varies
by less than 10% between object and surrounding medium,
and (2) the objects themselves are small and/or thin, so that
the interaction length of rays with the object is of the order
of a few micrometers. These observations seem to be related
to the applicability of the Born or Rytov approximation in
diffraction tomography, for example [18]. In a recent paper, Yeh
et al. described the use of the Born approximation in developing
solutions to the inverse problem in polarized light imaging with
oblique illumination [19]. In conjunction with ray tracing,
it is interesting to note that the Born approximation cannot
reproduce refraction of a beam of light traversing a dielectric
interface [20]. Hence, it seems that the assumption of a straight
ray path through object space has a similar range of validity as
the Born approximation. Therefore, our assumption of straight
ray paths seem well justified for most materials and biological
cells and tissues whose interaction with light can be described
with sufficient accuracy by the Born approximation.

We developed the ray tracing model for generating polarized
light field images of simulated objects with two purposes in
mind: (1) the program is used to generate light field images of
objects that are configured as close as possible to real objects that
were observed in our experiments; (2) the program can also be
used to compute polarized light field images of any conceivable
object shape and configuration for generating a multitude of
simulated pairs of light field images and their ground truth 3D
objects. Such pairs can then be used to train suitably configured
computational neural networks that can generate 3D object
models that closely resemble their ground truths but whose
pairs were not part of the training set. When we say, “suitably
configured computational neural networks,” we envision future
research into how such networks are optimally configured to
provide a fast and efficient solution to the inverse problem of
polarized light field microscopy.

To reach our goal of establishing accurate training sets for
machine learning and/or analytic approaches to solving the
inverse problem in polarized light field imaging, we plan to

incorporate diffraction effects into the ray tracing model, and
we will explore the use of a three-by-three polarization ray
tracing matrix, P, in our model. As a generalized version of the
two-by-two Jones matrix, the P-matrix is designed to simplify
polarization ray tracing in 3D [21,22]. While we expect com-
putational efficiencies with this approach, we do not expect the
results to change between the approach described here and an
approach that makes use of the P-matrix.

Finally, we would like to note that the simulation framework
presented here can easily be extended to other anisotropies, such
as linear and circular dichroism, for which specific Jones matrix
representations exist.

5. CONCLUSION

Polarized light field microscopy has the potential to measure, for
the first time, the three-dimensional orientations and positions
of birefringent structures in biological and fabricated materials
in a fast and comprehensive way. Birefringence is a sensitive
indicator of structural anisotropy, which can reveal some of the
mechanical and dynamic properties of materials and functions
in biological cells and tissues. With the current study, we aim
to contribute to a computational framework for solving the
ill-posed and nonlinear inverse problem in polarized light field
microscopy and, more generally, multiview polarized light
imaging.

To this end, we presented experimental point spread func-
tions of the Light Field LC-PolScope and compared them
to simulated point spread functions based on a ray tracing
model. The method itself and further explanations, including
results, are published in a Mathematica Notebook that is an
open-source companion piece to this paper.
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