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Abstract: Supercapacitors have been recognized as one of the more promising energy storage devices,
with great potential use in portable electronics and hybrid vehicles. In this study, a composite
made of clusters of iron oxide (Fe3O4-γFe2O3) nanoparticles and reduced graphene oxide (rGO) has
been developed through a simple one-step solvothermal synthesis method for a high-performance
supercapacitor electrode. Electrochemical assessment via cyclic voltammetry, galvanostatic charge–
discharge experiments, and electrochemical impedance spectroscopy (EIS) revealed that the Fe3O4-
γFe2O3/rGO nanocomposite showed much higher specific capacitance than either rGO or bare
clusters of Fe3O4-γFe2O3 nanoparticles. In particular, specific capacitance values of 100 F g−1,
250 F g−1, and 528 F g−1 were obtained for the clusters of iron oxide nanoparticles, rGO, and the
hybrid nanostructure, respectively. The enhancement of the electrochemical performance of the
composite material may be attributed to the synergistic interaction between the layers of graphene
oxide and the clusters of iron oxide nanoparticles. The intimate contact between the two phases
eliminates the interface, thus enabling facile electron transport, which is key to attaining high
specific capacitance and, consequently, enhanced charge–discharge time. Performance evaluation in
consecutive cycles has demonstrated that the composite material retains 110% of its initial capacitance
after 3000 cycles, making it a promising candidate for supercapacitors.

Keywords: clusters of iron oxide nanoparticles; hybrid nanocomposite; reduced graphene oxide; supercapacitors

1. Introduction

Supercapacitors have attracted considerable attention as energy storage devices for
various applications, such as portable electronics, pulse power technologies, and hybrid
vehicles, owing to their unique properties in terms of high power density, fast charge–
discharge capability, excellent cycling stability, reduced weight and size, easy operation,
and higher energy efficiency over batteries and fuel cells [1–4]. Supercapacitors have been
classified into two categories, i.e., electrical double-layer capacitors (EDLCs) and pseudo-
capacitors. The first class of electrochemical supercapacitors supply electrical energy via
the accumulation of charge at the electrode/electrolyte interface, whilst the pseudocapaci-
tors can supply energy through charge transfer redox reactions occurring at the electrode
surface [5–7]. The latter class, in which the electrode is mostly based on transition metal
oxides, exhibits better capacitive behavior [8]. Among the various metal oxides, iron-based
oxides and hydroxides, e.g., single oxides (Fe2O3, Fe3O4, FeOOH, etc.) and binary metal
oxides (MFe2O4 (M = Ni, Co, Sn, Mn, Cu), etc.) have attracted increasing attention due
to the multiple oxidation states of iron, their rich redox chemistry, their low toxicity, and
their abundance on Earth, which make them suitable for commercial applications [9–11].
In particular, Fe2O3- and Fe3O4-based nanostructured materials for supercapacitors have
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been widely investigated [9]. The applicability of bare Fe2O3 is limited as its poor elec-
trical conductivity (10−14 S cm−1) and insufficient ionic diffusion rate result in a specific
capacitance still far below the high theoretical expected value [12,13]. To overcome these
issues, several approaches, including the construction of Fe2O3 composite electrodes us-
ing conductive supports [14,15], oxygen vacancy-induced Fe2O3 electrodes [13,16], or the
fabrication of Fe2O3-Fe3O4 hybrid metal oxide composites, have been reported [17,18].
The relatively good electrical conductivity of Fe3O4 (102–103 S cm−1) was explored in
combination with the poorly conductive Fe2O3 phase by Chen et al. [19], who reported a
α-Fe2O3/Fe3O4 heterostructured nanoparticle, and by Tang et al. [17], who fabricated hier-
archical Fe2O3@Fe3O4 core–shell nanorod arrays, in which Fe3O4 was used as a conductive
support. The synergistic effect between Fe2O3 and Fe3O4 phases results in an electrochemi-
cal performance superior to that exhibited by the individual components. However, despite
their initial promising capacitive behavior, they generally undergo deactivation upon use
in consecutive cycles [20,21]. This poor capacitive performance and bad cycling stability
are mainly due to the agglomeration of Fe3O4 during the charging/discharging process,
which results in a low surface area and structural pulverization.

An effective strategy to prevent the agglomeration of the Fe3O4 materials is to inte-
grate them with highly conductive carbon-based materials. For instance, Fe3O4 electrodes
incorporating activated carbon [22,23], acetylene black [9], graphene [24,25], graphite [26],
and carbon nanotubes [11,27] have been reported as efficient materials for supercapacitors,
in which the carbon-based component can work as a conductive channel for electron diffu-
sion. In comparison to carbon nanotubes and activated carbon, graphene-based materials
possess enhanced mechanical properties, higher electrical conductivity, and a larger surface
area [9], which makes them suitable candidates for supercapacitor applications. Compos-
ites based on magnetite (Fe3O4) nanoparticles in combination with rGO [28], N-doped
graphene [29] or graphene sheets [30] have been extensively reported, but the number of
studies approaching the introduction of clusters of iron oxide nanoparticles decorating the
graphene sheets is relatively scarce [31].

In this study, we report the synthesis of a composite based on clusters of iron oxide
nanoparticles and rGO through a simple one-step solvothermal synthesis, and its elec-
trochemical behavior, using the clusters of iron oxide nanoparticles and/or the rGO as
reference materials. The synthesized samples have been fully characterized, and their
performance has been evaluated by cyclic voltammetry, galvanostatic charge–discharge
experiments, electrochemical impedance spectroscopy (EIS), and long-term cyclic stability.

2. Materials and Methods
2.1. Chemicals

Iron (III) chloride hexahydrate (>99%), sodium acetate (>99%), poly(ethylene glycol)
(MW 6000, PEG 6000), graphene oxide (GO) powder (flakes), ethanol (synthesis grade),
5 wt. % NafionTM perfluorinated resin solution, potassium hydroxide (>85%), sodium
acrylate (97%), diethylene glycol (DEG, >99%), and ethylene glycol (EG, >99%) were
purchased from Sigma-Aldrich (Madrid, Spain), and were used as received.

2.2. Materials Synthesis

The synthesis of clusters of iron oxide nanoparticles was conducted via the solvother-
mal method using a previously reported synthetic protocol [32]. Typically, 2.5 mmol
(0.678 g) of iron(III) chloride hexahydrate were dissolved in 20 mL of ethylene glycol, and
mechanically stirred to the formation of a clear solution, followed by the addition of sodium
acetate (1.8 g) and polyethylene glycol (PEG 6000) (8.5 wt. %). The mixture was stirred
vigorously for 30 min and then sealed in a stainless steel autoclave (100 mL). The autoclave
was heated up to 185 ◦C (heating rate = 5 ◦C min−1) and kept at this temperature for 8 h
under stirring (1500 rpm). Finally, the mixture was allowed to cool down to room tempera-
ture and the black powder was collected using a magnet. The resulting nanostructure was
washed several times with Milli-Q water, and dried at 60 ◦C overnight.
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Reduced graphene oxide–iron oxide (Fe3O4-γFe2O3/rGO) hybrid nanocomposites
were synthesized following a previously reported method with some modifications [33].
Briefly, 0.05 g of GO sheets were dispersed in 20 mL of an EG:DEG mixture (EG:DEG = 1:19 vol.%)
under ultrasonication. Subsequently, 1 g of sodium acrylate, 0.678 g of iron chloride
hexahydrate, and 1.8 g of sodium acetate were added into the suspension, followed by
the addition of 1.7 g (8.5 wt. %) of PEG. The resulting mixture was vigorously stirred
until a homogeneous dispersion was obtained followed by the solvothermal treatment
in a stainless steel autoclave using the same conditions as described for the preparation
of clusters of iron oxide nanoparticles. In this case, sodium acrylate acts as a stabilizer
preventing the aggregation and sodium acetate assists in the reduction of FeCl3 to Fe3O4
by altering the alkalinity [33]. The as-prepared composite was collected using a magnet
and washed several times with ethanol and water, and then dried at 60 ◦C overnight.
A control sample (Fe3O4-γFe2O3/rGO-C) was prepared using 0.015 g of GO sheets and
following the same experimental procedure. Similarly, pure rGO was synthesized and used
as a reference.

2.3. Materials Characterization

X-ray diffraction (XRD) patterns were collected using a Siemens D-5000 powder X-ray
diffractometer operated in Bragg Brentano geometry using Ni-filtered Cu Kα radiation
(λ = 0.1541 nm). Data were recorded in the 2θ range 10–80◦ with an angular step size
of 0.026◦ and a counting time of 1 s per step. The collected data were refined using the
Le Bail method by means of the software Rietica [34,35]. Raman spectra were collected
from powder samples onto a glass slide as substrate, with a Renishaw in Via Reflex
Raman microscope (Renishaw, Gloucestershire, UK). Experiments were conducted at room
temperature using 532 and 633 nm excitation wavelengths. Field emission scanning electron
microscopy (FESEM) was conducted on a JEOL JSM-6700 F. Samples for transmission
electron microscopy (TEM) studies were prepared by dropping a diluted suspension of
the samples onto ultra-thin carbon-coated copper grids. Imaging was performed on a
JEOL JEM 1010 instrument operated at 100 kV and equipped with a CCD camera (JEOL,
Tokyo, Japan).

2.4. Electrochemical Tests

The electrochemical measurements were conducted in a standard three-electrode cell
configuration using a PalmSens4® potentiostat. The electrochemical cell was filled with
25 mL of a 3 M KOH solution prepared with Milli-Q water. A Pt wire spiral and a Ag/AgCl
(3.0 M KCl) were used as the counter and reference electrode, respectively. The working
electrodes were prepared as described elsewhere [36]. In total, 0.3 mg of the sample was
dispersed in 24 µL of ethanol and then 6 µL of the prepared solution was drop-cast onto a
carbon gas diffusion layer (1 cm × 1 cm; Sigracet 39BB) four times followed by the addition
of 3 µL of 5 wt. % perfluorinated NafionTM resin solution, which acts as a binder. Cyclic
voltammetries, galvanostatic charge–discharge scanning experiments at different scan rates,
and cyclic stability tests at a 50 mV s−1 scan rate (3000 cycles) were conducted in the −0.1
to +0.35 V potential window. Electrochemical impedance spectroscopy (EIS) data were
obtained at the respective open circuit potential, from 50 kHz down to 0.1 Hz, taking
10 frequencies per decade, with ±5 mV sinusoidal voltage excitation.

3. Results and Discussion
3.1. Sample Characterization

The clusters herein studied were obtained through a solvothermal method. The
formation mechanism proceeds via a two-stage growth process, with nucleation of the
primary nanocrystals followed by uniform aggregation into larger secondary structures [37],
whose size is primarily determined by the polyethylene glycol concentration in the reaction
medium. Figure 1 and Figure S1 (see Supplementary Materials) include the TEM and
SEM images of these clusters of iron oxide nanoparticles and of the iron oxide/reduced
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graphene oxide hybrid. TEM micrographs confirm the formation of iron oxide nanoparticles
grouped in clusters of controlled size as corroborated by the size distribution analysis,
which evidenced the formation of the clusters with an average diameter of 70 ± 19 nm
(Gaussian fit, inset in Figure 1b). Complementarily, SEM images reveal the formation of the
individual clusters of iron oxide nanoparticles in between the rGO layers.
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Figure 1. TEM micrographs of the (a) rGO sheets and (b) clusters of Fe3O4-γFe2O3 nanoparticles.
Panels (c,d) correspond to SEM images of the Fe3O4-γFe2O3/rGO hybrid.

The XRD results of the samples are compiled in Figure 2a. The diffractogram of rGO
displays a broad peak at 2θ = 25◦ that corresponds to the (002) plane. Clusters of Fe3O4-
γFe2O3 nanoparticles are composed of crystallites of small sizes whose crystalline structure
corresponds to either magnetite (Fe3O4), maghemite (γ-Fe2O3), or a mixture of them, as
both iron oxides present the same spinel structure (on which Fe3+ or Fe2+ cations or Fe3+

cations and vacancies are arranged, respectively). Similarly, these diffraction peaks along
with the broad band between 20◦ and 30◦ associated with rGO are detected in the hybrid
structure. Indeed, the intensity of the latter is quite low, which might be due to its highly
disordered structure because of oxidation and the low content. In order to shed light on
the nature of the iron oxide species in the samples, we completed the structural analysis
using Raman spectroscopy (Figure 2b). This technique enables us to register the different
vibrations of the crystalline lattice due to different cationic arrangements [38,39], and can
therefore differentiate the two magnetic iron oxide phases. The Raman spectrum of the
clusters of Fe3O4/γ-Fe2O3 nanoparticles displays four main bands, which can be associated
to the A1g vibration mode of the magnetite (at 668 cm−1) and three broad bands centered
at 350 cm−1, 500 cm−1, and 700 cm−1, corresponding to the T2g, Eg, and A1g modes of
maghemite, respectively [40–42]. Other characteristic features of the synthesized material,
such as the black coloration of the powders and their strong interaction with external
magnetic fields, were also observed. In the case of the rGO-based hybrids, the Raman
spectrum displays the two characteristic bands of rGO, i.e., D and G at 1348 cm−1 and
1594 cm−1, respectively, along with the characteristic intensity band ca. 680 cm−1 associated
with the A1g modes of the Fe3O4 (668 cm−1) and γ-Fe2O3 (700 cm−1) magnetic phases.
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3.2. Electrochemical Measurements

The electrochemical performance of the samples was investigated by cyclic voltam-
metry, galvanostatic charge–discharge scanning experiments at different scan rates, and
electrochemical impedance spectroscopy. Figure 3 shows the cyclic voltammetries obtained
from −0.1 V to +0.35 V in 3 M KOH at different scan rates ranging from 2 mV s−1 to
50 mV s−1. The specific capacitance (Cs) (F g−1) is calculated from the cyclic voltammetry
curves using Equation (1) [36], in which ∆I corresponds to the difference in the peak
oxidation and reduction currents in amperes (A), m is the mass loading in grams (g), and υ
is the scan rate, in V s−1.

Cs =
∆I
mυ

(1)

The values obtained for a scan rate of 2 mV s−1 scan rate were 100 F g−1, 250 F g−1,
and 528 F g−1 for the clusters of Fe3O4-γFe2O3 nanoparticles, the rGO sheets, and the
Fe3O4-γFe2O3/rGO hybrid structure, respectively (Figure 3). Chen et al. reported a specific
capacitance of 262.1 F g−1 for Fe3O4/rGO composites at the same scan rate and using 1 M
Na2SO3 as the electrolyte [43], and Qi et al. reported a value of 350.6 F g−1 for Fe3O4/rGO
composites at a scan rate of 1 mV s−1 and using 6 M KOH as the electrolyte [44]. On
the other hand, Sheng et al. reported a graphene/Fe3O4 nanocomposite that exhibits a
specific capacitance of 268 F·g−1 at 2 mV·s−1 using 1 M Na2SO4 as the electrolyte [25],
and the fabrication of magnetite (Fe3O4)-decorated carbon nanotubes with a specific ca-
pacitance of 145.4 F g−1 at 2 mV·s−1 using 0.5 M Na2SO4 as electrolyte was reported by
Nawwar et al. [11]. Additional data are included in Table S1 for comparative purposes.
The energy density is 14.85 W h kg−1 at a power density of 1116.5 W kg−1, which is in line
with previously reported results [15,45]. The clusters of iron oxide nanoparticles show the
lowest specific capacitance of the three materials under study, which could be ascribed
to the low conductivity of the iron oxide phases and/or poor electrolyte access to the
surface of the particles. These aspects are improved in the case of rGO sheets, as it can
be seen from the comparison of this material with the clusters of iron oxide nanoparticles.
In the case of the hybrid structure, in which the clusters of iron oxide nanoparticles are
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interlayered in between the conductive rGO sheets, the specific surface area is expected to
increase, thus increasing the electrolyte permeation through the rGO layers [31]. Figure 3d
summarizes the specific capacitance values as a function of the scan rate. For a uniformly
accessible surface, the capacitance should not depend on the scan rate, since the variations
in the scan rates should result in equal magnitude variations of the difference in the peak
oxidation and reduction currents given in Equation (1) [46]. However, the data presented
in Figure 3d point to an unevenly accessible surface. The specific capacitance decreases
exponentially with the increase in the scan rate, which points towards a decrease in the
active surface. This can arise from the fact that, while at lower scan rates the electric field is
able to penetrate the whole electrode structure, for higher scan rates only the outer part of
the electrode material participates in the charging/discharging process [47].
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Figure 3. Cyclic voltammetries of (a) clusters of Fe3O4/γ-Fe2O3 nanoparticles, (b) rGO sheets and
(c) rGO-Fe3O4/γ-Fe2O3 nanocomposite material at different scan rates. (d) Specific capacitance as
a function of the scan rate for the three materials under study. Experimental conditions: 3 M KOH
solution, room temperature.

To confirm this hypothesis, EIS measurements were carried out on three selected sys-
tems: bare clusters of Fe3O4-γFe2O3 nanoparticles, the control sample Fe3O4-γFe2O3/rGO-
C, and the Fe3O4-γFe2O3/rGO nanocomposite material. Figure 4 includes representative
EIS Nyquist plots obtained for the systems tested, as well as the equivalent circuit employed
for the data modeling. The Nyquist impedance plot of Fe3O4/γ-Fe2O3 clearly shows two
domains in the low-frequency region, a capacitive arc section between 10 and 1 Hz, and a
straight line with a 45◦ slope at the lowest frequencies. Moreover, the inset in Figure 4a,
which corresponds to the high-frequency limit, clearly shows a depleted capacitive arc
starting at about a 45◦ slope. This shape is characteristic of porous electrodes with de
Levie type impedance behavior [48]. Figure 4b compiles the Nyquist impedance plot of the
Fe3O4-γFe2O3/rGO hybrid material. Although the shape of the diagram is very different
from that of the clusters of iron oxide nanoparticles, the same conclusions can be extracted
if overlapping in the time constants in the high and medium frequency ranges is consid-
ered. The depletion of the high capacitive arc remains close to 45◦. The porous structure
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for Fe3O4-based systems was described first for magnetite scales in heat exchangers [49],
and later applied to other systems such as particulate zinc-rich coatings [50], conversion
coatings for Li-ion batteries [51], or aged passive layers in concrete [52].
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The low-frequency feature, i.e., the 45◦ tilt in the Nyquist plot of Figure 4a, is char-
acteristic of a planar diffusion. The nanostructured electrodes behave in this way as flat
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electrodes due to the overlapping of the concentration profiles [53]. A relevant parameter
for this research is the effect of rGO on the electrical conductivity of the nanostructured
layer of particles. The EIS data can provide such information via a suitable electrical
equivalent circuit that accounts for the physical phenomena above discussed.

Figure 4c includes a scheme of the electrical equivalent circuit employed to model the
experimental EIS data. Rm accounts for the resistivity (electronic conduction) of the solid
phase, i.e., the clusters of iron oxide nanoparticles or the nanocomposite material, and Rs
corresponds to the resistivity (ionic conduction) associated with the electrolyte filling the
layer pores. Z1 and Z2 account for the interfacial impedances at the pore wall and bottom,
respectively, and Zd accounts for the impedance associated with ionic diffusion to and from
the electrode in the conditions of the quiescent solution employed.

The impedance functions Z1, Z2, and Zd are defined as follows:

Z1(ω) =
R1

1 + jωR1C1
(applies to Fe3O4-γFe2O3 and γFe2O3/rGO-C) (2)

Z1(ω) = R1

(
1 + (jωR1C1)

−α1
)
(applies to Fe3O4-γFe2O3/rGO) (3)

Z2(ω) =
R2

1 + (jωR2C2)
α2

(4)

Zd(ω) = Rd

√
jωτd

tan h
√

jωτd
(5)

in which R1 and R2 correspond to the charge transfer resistances at the pore wall and
bottom, respectively; C1 and C2 are the corresponding parallel double layer capacitances;
Rd represents the diffusion resistance; τd is the time constant; j =

√
−1, and ω = 2πf, in

which f represents the frequency. α2 accounts for the Cole–Cole-type dispersion of the R2C2
time constant, which is associated to heterogeneities at the pores bottom. The R1C1 time
constant in Equation (3) requires α1 to improve the fitting.

Equations (2) and (3) illustrate the remarkable difference between the clusters of
iron oxide nanoparticles and the nanocomposite material. The former shows conductive
behavior (Equation (2)), possibly ascribed to the redox transformation between Fe3O4
and γFe2O3 (2Fe3O4 + 2OH− ↔ 3γFe2O3 + H2O + 2e−) [54]. In contrast, the hybrid
exhibits blocking interfacial behavior (Equation (3)). The diffusion impedance defined in
Equation (5) probably relates to the flow of OH− species involved in the redox process and
is not present in the hybrid structure, which is consistent with the blocking character of the
pore walls that hinder the ionic flow.

The selected electrical equivalent model is able to reproduce accurately the experimen-
tal data, as shown in Figure 4a,b, which enables an in-depth analysis of the EIS spectra.
The parameters compiled in Table 1 show that the only relevant difference between the
bare Fe3O4-γFe2O3 nanostructure and Fe3O4-γFe2O3/rGO-C seems to be, as expected, the
electronic conductivity of the materials, which increases by more than two orders of magni-
tude upon the introduction of rGO (Rm decreases from 11,200 to 23 Ω cm). This increase is
accompanied by minor changes in the porosity of the pore network, as Rs increased only
from 16 to 24 kΩ cm. The active surface increased by one order of magnitude, as indicated
by the change in C1 from 7.1 to 63.1 mF cm−3. Concerning the low-frequency part of the
spectra, the diffusion process from the electrolyte to the solid material, or vice versa, seems
to slow down in the presence of rGO (τd increases from 0.23 to 17.7 s and Rd from 38.9 to
247.4 Ω cm2). This could be ascribed to the increased diffusion length due to the faster
charge transfer associated with the higher active surface and higher conductivity of the
Fe3O4-γFe2O3/rGO-C. Considering the thickness of the diffusion layer (δ), as δ =

√
τD

and diffusivity D = 10 −5 cm2 s−1, this parameter increases from 15 to 130 µm due to the
presence of rGO.
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Table 1. Fitting parameter values obtained for the three systems investigated using the equivalent
circuit depicted in Figure 4c. The thickness L of the nanostructured systems was fixed at 3.5 µm.
R0 corresponds to the resistance of the electrolyte outside the sample, i.e., between the reference
electrode and the surface of the sample, which depends on the position of the reference electrode
with respect to the sample.

R0/Ω
cm2

Rm/kΩ
cm Rs/kΩ cm R1/Ω cm3 C1/mF

cm−3 α2
R2/kΩ

cm2
C2/mF

cm2 α2
Rd/Ω
cm2 τd/s

Fe3O4-Fe2O3 0.2 11.2 16 1.1 7.1 - 20.8 9.3 0.639 38.9 0.23
Fe3O4-Fe2O3/rGO-C 1.8 0.023 24 1.6 63.1 - 20.6 15.0 0.657 247.4 17.7

Fe3O4-Fe2O3/rGO 0.1 5.5 6.2 7 × 10−3 56 × 103 0.905 0.2 2 × 10−3 0.846 - -

In the case of the composite material, although the Nyquist impedance plot is dif-
ferent from that of either the clusters of iron oxide nanoparticles or the control sample
Fe3O4-γFe2O3/rGO-C, the electrical equivalent model is very similar, indicating an anal-
ogous structure of the composite layer. The latter exhibits a higher C1 value associated
to its blocking interfacial behavior. It also displays lower Rs and higher Rm values. In
addition, the pores bottom is well differentiated from the pores wall, as typical double
layer capacitance values in conducting interfaces, i.e., in the µF cm−2 range, are obtained
for C2. It is also noticeable that the impedance spectra do not change significantly after
cycling (data not shown), especially for the Fe3O4-γFe2O3/rGO hybrid nanocomposite,
which is consistent with the performance upon prolonged cycling, as we will discuss later.
It is important to note that the model applied in this study to interpret the impedance data
(a transmission line model compatible with the material’s porous nature) is, to the best of
our knowledge, new in the field, and presents a number of advantages: (i) it allows for
accessing the resistivity of the active material (via Rm) and its porosity (via Rs); (ii) the
kinetic information comes from R1 and R2, differentiating between charge transfer at the
pore walls and at the pore bottom, respectively; and (iii) Rd accounts for the ionic flux from
or towards the solution.

The capacitive performance was also studied by galvanostatic charging–discharging
at different current densities in the potential window from −0.1 to 0.35 V (Figure 5). As
observed from Figure 5, the time for charging and discharging decreases as the current
density increases. At higher current densities, the accessibility to the electrode porosity
decreases because ions from the electrolyte do not have enough time to reach the pores
bottom [55]. The charging–discharging time for the Fe3O4-γFe2O3/rGO nanocomposite
material is much higher than that observed for both the clusters of iron oxide nanoparticles
and rGO electrodes, which is in line with the higher capacitance value of the hybrid
structure. As discussed above, the intimate interaction between the rGO substrate and
the clusters of Fe3O4-γFe2O3 nanoparticles blocks the interface and enables facile electron
transport, which is key to high specific capacitance and, consequently, a high charge–
discharge time [28].

The long-term cycling stability of the Fe3O4-γFe2O3/rGO nanocomposite material
was investigated for up to 3000 cycles on cyclic voltammetry at a scan rate of 50 mV s−1

in the potential window from −0.1 V to +0.35 V. The current evolution and coulombic
efficiency as a function of the cycle number are summarized in Figure 6. It can be seen that
the current (and hence the capacitance) increases with cycling. That increase is better visu-
alized in the capacitance retention plot, which reaches 110% after 3000 cycles (Figure 6b).
The growth of the clusters of iron oxide nanoparticles in between the rGO sheets avoids the
aggregation of the oxidic phase, which, along with the improved dispersion of the clusters
of Fe3O4-γFe2O3 nanoparticles owing to their interaction with the rGO substrate, results
in the observed performance enhancement. Moreover, the large contact area between
the active material and the electrolyte increases the efficiency of charge transport, thus
also contributing to the capacitance improvement [56,57]. Although additional studies
are needed in order to confirm these hypotheses, the obtained results highlight the poten-
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tial of the fabricated hybrid nanocomposite to be employed as an electrode material for
supercapacitor applications.
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4. Conclusions

In this work, a composite material containing clusters of Fe3O4-γFe2O3 nanoparti-
cles and reduced graphene oxide was developed through a simple one-step solvothermal
synthesis method as a potential candidate for supercapacitors. The electrochemical study
revealed that this hybrid structure, in which the clusters of iron oxide nanoparticles are
interlayered in between the conductive rGO sheets, possesses much higher specific capac-
itance than the individual elements, used as reference. Specifically, 100 F g−1, 250 F g−1,
and 528 F g−1 were obtained for the clusters of iron oxide nanoparticles, the rGO itself,
and the composite material, respectively, at a scan rate of 2 mV s−1 using 3 M KOH as the
electrolyte. In the case of the hybrid structure, the electrolyte permeation through the rGO
layers increases, and consequently, so too does the capacitance. A state-of-the-art model
was used to interpret the EIS measurements, enabling us to understand the reasons for the
improved behavior, which was ascribed to the fact that the intimate interaction between
the rGO substrate and the clusters of Fe3O4-γFe2O3 nanoparticles blocks the interface and
enables facile electron transport. The evaluation of the performance of the nanocomposite
material in subsequent cycles revealed that the current (and hence the capacitance) in-
creases with the number of cycles, reaching 110% capacitance retention after 3000 cycles.
The interaction of the clusters of iron oxide nanoparticles with the rGO substrate ensures a
homogeneous dispersion of the oxidic phase embedded in between the rGO sheets, thus
resulting in the observed capacitance enhancement. Although more detailed studies are
needed in order to confirm these premises, the obtained insights pave the way towards the
design of improved supercapacitors with superior performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152695/s1, Figure S1: TEM images of higher resolution
of clusters of iron oxide nanoparticles, permitting to appreciate their aggregated nature; Table S1:
Comparison of the performance of the Fe3O4-γFe2O3/rGO composite with state-of-the-art materials.
References [11,15,17,25,43,44,58–60] are cited in the supplementary materials.
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