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A B S T R A C T

Floods are recurrent phenomena with significant environmental and socio-economic impacts. The risk of 
flooding increases when land use changes. The objective of this research is to detect land cover changes via 
Sentinel-2 images in the Umia Basin (Galicia, NW Spain) in 2016–2021 and to analyse the associated flood risk. 
This study focuses on how forest use and nature-based solutions (NBS) can reduce the risk and hazard of flooding 
in cities and crops in the high-risk area. A flood simulation was performed with the land use obtained from 
Sentinel-2 (Observed) and three more simulations were performed changing the location of afforestation and 
NBS, i.e. “S-Upstream”, “S-Downstream” and “S-Total”. Finally, the environmental, economic and social impacts 
of the scenarios designed and estimated are analysed and discussed. Land cover change was successfully 
monitored with Sentinel-2 imagery. The catchment area showed noteworthy changes in land use, most notably 
for the category of trees, which covered 6700 ha in 2016 and 10,911 ha in 2021. However riparian vegetation 
decreased by almost 11%. For the flood hazard simulations, an average reduction in peak discharge was obtained 
for all three scenarios (9.3% for S-Up; 8.6% for S-Down and 13% for S-Total). From the economic perspective, all 
three scenarios show a positive net present value for the period studied. However, S-Down is the scenario with 
the lowest benefits (€15,476,487), while S-Up and S-Total show better values at €29,580,643 and €65,158,130 
respectively. However, investment cost is much higher for the S-Total scenario, and upstream actions affect the 
whole catchment, so S-Up is the best decision. This study concludes that the information provided by satellites is 
a large-scale analysis tool for small heterogeneous plots that facilitates the comprehensive analysis of a territory. 
This information can be incorporated into flood analysis models, facilitating simulation through the use of NBS. 
It has been proven that the use of reforestation upstream only is almost as beneficial as reforestation in the entire 
catchment and is economically more viable. This confirms that the methodology used reduces flood hazard, 
despite the territorial complexity, facilitating decision making on the use of NBS.   

1. Introduction

Land use and land cover (LULC) are important because increased
urbanisation, industry and rural abandonment play important roles in 
local climate, hydro-geological conditions, floodplain biogeochemical 

processes and environmental sustainability (Nath et al., 2021). These 
changes consist mainly of logging and destruction of vegetation on forest 
land, e.g. destruction of riparian vegetation (Dewan and Yamaguchi, 
2009). These degradation processes potentially lead to an increase in the 
percentage of impervious surface cover in the area, and thus to changes 
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in hydrodynamic framework and floodplain structures (McGrane, 
2016). In addition, climate change has caused hydrological changes 
around the world, increasing the likelihood of extreme weather events 
such as floods (Rajkhowa and Sarma, 2021). LULC changes and in-
creases in extreme weather events mean that ecosystems are not suffi-
ciently resilient to these natural hazards (Avand et al., 2021). Therefore, 
such events can negatively affect ecosystems and communities, resulting 
in huge socio-economic impacts, destruction of infrastructure and 
environmental disruption (Chowdhuri et al., 2020). 

In this context, the development of flood risk resilience governance 
policies needs to be increased. This will strengthen society’s ability to 
prevent and mitigate flood risk through the implementation of adapta-
tion tools in a changing climate scenario. Land use/land cover maps are 
an excellent tool for monitoring and managing natural resources, and 
can improve the development of strategies for adapting to climate 
change and its various impacts (Thanh Noi and Kappas, 2018). Such 
maps are key documents that provide information for various applica-
tions, such as land use policy development, ecosystem services, urban 
planning, conservation, agricultural monitoring and dynamic LULC 
assessment. Remote sensing is an essential tool for creating such land use 
maps over large areas. The setting up of the Copernicus Programme by 
the European Space Agency (ESA) and the European Union (EU) has 
contributed to the effective monitoring of the Earth’s surface. The most 
significant contribution was the launch of multispectral imaging in-
struments (MSI) capable of recording 13 wide bands via the Sentinel-2 
satellites Sentinel-2A (launched on 23 June 2015) and Sentinel-2B 
(launched on 7 March 2017). One of the essential applications for 
Sentinel-2 data is LULC monitoring (Bruzzone et al., 2017). This has 
become essential for decision making and management to assess the 
status of the Earth’s surface, e.g. identification of tree species (Arasu-
mani et al., 2021), water quality (Viso-Vázquez et al., 2021) and fire risk 
analysis (Novo et al., 2020). 

Hydrological modelling is another tool with great potential in land 
management. Such models include the Hydrological Modelling System 
of the Centre for Hydrological Engineering and the Soil and Water 
Assessment Tool (SWAT) (Arnold et al., 1998), though the best known 
distributed hydrological models are that of the European Hydrological 
System (MIKE-SHE) (Refshaard and Storm, 1995) and the Modular 
Modelling System (MMS) (Leavesley et al., 1996). The Hydrologic 
Modelling System (HEC-HMS), a software app developed by the US 
Army Corps of Engineers Hydrologic Engineering Center (HEC), is a 
numerical, semi-distributed hydrologic model used for event-based and 
continuous runoff simulation (Ford et al., 2002). 

On the practical application of both remote sensing and hydrological 
modelling, there have been many studies on land cover use classification 
which use Sentinel-2 images (Carrasco et al., 2019; Forkuor et al., 2018; 
Malinowski et al., 2020; Qiu et al., 2019; Sánchez-Espinosa and 
Schröder, 2019; Sekertekin et al., 2017; Weigand et al., 2020). The use 
of remote sensing (RS) and geographic information system (GIS) tech-
nologies for flood prediction, preparedness, prevention and risk assess-
ment worldwide is presented as a state-of-the-art methodology (Zhang 
et al., 2019). There are also various studies that analyse flood risks and 
responses through hydrological models (Halwatura and Najim, 2013; 
Kalantari et al., 2015; Mattos et al., 2022). In addition, researchers have 
begun to use the coupled hydrological-hydraulic model for future 
floodplain mapping and for risk assessment in different parts of the 
world (Cowles, 2021). But currently, these two knowledge areas have 
not been combined to advance and improve land management and take 
advantage of potential synergies between them to improve decision- 
making by managers. Adopting hydrological models combined with 
GIS tools in a given area is always a challenge. In fact, the use of HEC- 
HMS is relatively low in Spain, and even more so in Galicia, where 
land use conflicts are high and where plot size is very small and char-
acterised by smallholdings (average plot size is 0.26 ha). In other words, 
the application of RS from satellite images offers the opportunity to 
model responses to precipitation events with instantaneous real data, 

analyse responses in the past and predict future events and their impact. 
In addition, the resolution of these images (10 m) means that changes in 
land use can be detected with a considerable level of detail. Moreover, 
large-scale analysis can be included and the major technical, economic 
and resource efforts entailed by other, conventional methods can be 
avoided. Both tools could be used in the development of specific flood 
hazard management plans, river basin management plans or urban 
plans. These could address the current lack of knowledge on the 
implementation of preventive flood risk mitigation measures, such as 
the application of Nature-based solutions (NBS) (Brillinger et al., 2021). 
NBS are framed as an alternative approach for addressing current soci-
etal challenges that aims to work with nature rather than against it 
(Seddon et al., 2020). Some of these techniques involve the use of green 
infrastructure and natural water retention measures, such as land use 
conversion through afforestation to improve evapotranspiration, infil-
tration and retention of water, land management practices that help 
increase the water holding capacity of soils and the reconnection of 
floodplains or ponds to rivers (Collentine and Futter, 2018). 

The study area proposed in this work is the hydrographic basin of the 
Umia River. This river has a reservoir built in 2000 with the dual 
objective of supplying drinking water to the population of the region and 
preventing repeated floods in the largest town in the area (Caldas de 
Reis). In past decades, the engineering solutions provided to address 
type of problem usually entailed the construction of transversal in-
frastructures that served to control the flow in strong precipitation 
events (Nakamura and Shimatani, 2021). But today, natural solutions 
such as NBS have been shown to complement or even successfully 
replace them (Vojinovic et al., 2021). In this way, the initial hypothesis 
is that the strategic application of NBS can reduce the risk of flooding in 
this study area and improve on the results of the solutions provided in 
past decades. Accordingly, based on a comprehensive land management 
approach, the study 1) analyses the potential of Sentinel-2 images for 
estimating LULC the changes in the very small plots on the Umia River 
basin (Galicia, northwest Spain) from 2016 to 2021; 2) analyses the 
impacts of those changes for flood hazard in cities and crops located in 
the high-risk area; 3) simulates possible scenarios of changes via affor-
estation and NBS to reduce the risk of this natural hazard; and 4) ana-
lyses and discusses the possible environmental, economic and social 
impacts of various scenarios. The innovation proposed in this study is 
the comprehensive management of river basins based on the use of 
satellites as large-scale analysis tools for defining, analysing and moni-
toring LULC changes. In addition, the potential impacts of those changes 
on the basin are considered and different scenarios are designed with the 
aim of reducing potential risks and quantifying their social, economic 
and environmental impacts. All this will help land management decision 
makers to do their job by providing better data, information and tools. 
Currently, these issues have been addressed separately, i.e. the different 
configurations and links have not been integrated into the same analysis. 
That is why this study represents an advance in the use and combination 
of different disciplines and tools for better water governance. 

2. Materials and methods 

2.1. Study area 

The Umia Basin is in Pontevedra, in the southwest of Galicia, Spain 
(Fig. 1). The Umia River, which forms the central axis of this basin, has 
an area of 44,590 ha and flows for a total of 70 km with an average flow- 
rate of 16.3 m3/s. The predominant climate in the study area is oceanic, 
with an average annual rainfall of 143.72 L/m2 and an average tem-
perature of 13.6 ◦C, in 2021. Accordingly, the period with the highest 
flow rates is between December and May, with the lowest being in 
August. 

Like many other rivers in Europe, the Umia ecosystem has been 
affected by human activities such as land use change, agriculture, 
plantations and pastures. The Spanish Land Use Information System 

C. Acuña-Alonso et al.                                                                                                                                                                                                                         



Ecological Informatics 71 (2022) 101777

3

(SIOSE) (Gobierno de España, 2016) indicates that the basin’s current 
distribution is 35% broad-leaved forest, 24.8% complex cultivation 
patterns, 15.6% moors and heathland, 10% coniferous forest and 15% 
other land uses. Major problems in the study area also include land 
abandonment, whose impact on the forestry sector increases the risk of 
forest fires, and issues such as the selection of fast-growing forest species 
and high population dispersion. In the agricultural sector, on the other 
hand, the size of farms is limited due to the characteristic smallholdings 
of this territory, leading to intensification of land use. This has also led to 
serious environmental problems such as the elimination of riparian 
vegetation, increases in pollutants in water as well as an increase in the 
risk of flooding. The study area characteristically floods each winter, 
when the rivers that make up the basin tend to overflow at least once, 
and there are major economic and social impacts due to the flooding of 
agricultural land, commercial premises and homes, damage to infra-
structure and occasional accidents (Xunta de Galicia, 2015). 

Augas de Galicia, the devolved regional body in charge of flood risk 
analysis, has analysed the risk of flooding in the area over time, high-
lighting serious flooding that has led to the cutting of roads and the 
isolation of populated areas. Other historical events recorded that 
highlight the high risk of flooding in the area are the collapse of a bridge 
in the municipality of Bayón (in 1875), a death in the municipality of 
Portas (1978) and flooding of multiple homes and businesses (2009, 
2010, 2011) (Xunta de Galicia: Augas de Galicia, 2021). Between 2005 
and 2017, records show 1010 accidents caused by floods in the munic-
ipality of Vilagarcía de Arousa and 199 in the municipality of Caldas de 
Reis. The total financial losses in the area due to flooding have not been 

estimated, but Augas de Galicia is in the process of implementing a 
project proposing measures worth €232,607, plus projects detailing the 
flooding of the area to the tune of €945,000. All this highlights the need 
to obtain answers and information on flood risks in the study area, to 
assess the qualities of the area and the real potential for reducing the risk 
of flooding on the river. 

2.2. Land use classification 

2.2.1. Satellite images 
The data used in this study are from Sentinel-2 images taken in 2015, 

2016 and 2021. There are two Sentinel-2 satellites: Sentinel-2A 
launched in 2015 and Sentinel-2B in 2017. Both have a 10-day revisit 
cycle (Drusch et al., 2012). The multispectral imagery (MSI) onboard 
took images at 13 different spectral bands, with a spatial resolution 
varying from 10 m to 60 m. These images are all freely downloadable 
from the ESA website (Copernicus Open Access Hub, 2021). They pro-
vide very good spectral information and are suitable for land cover 
dynamics (Grinand et al., 2013). The images were collected on the same 
or similar dates, so those for the different years show the same land 
surface areas. 

Images were downloaded from the Copernicus Open Access Hub 
repository at Level 1C (L1C) with the top of atmosphere (TOA) values 
and Level 2A (L2A) already corrected to bottom of the atmosphere 
(BOA) values with Sen2Cor. The image from 2016 is a sentinel Level-1 
Product and the one from 2021 year is Level 2A. Not all Sentinel-2 im-
ages are atmospherically corrected so TOA reflectance of Sentinel-2 

Fig. 1. (a) Location of Umia Basin and the subbasins in Pontevedra province; (b) location of study area on the Spain map. (c) Geology map of Umia Basin. The map 
coordinate system is EPSG:25829 ETRS89/UTM zone 29 N. 
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images from Level 1C were used in this study. The Level-1C Sentinel-2 
images were converted to the physical measure of TOA correction using 
the Dark Object Subtraction (DOS) method (Chavez, 1988), which is an 
image-based technique. DOS methods assume that non-zero signal 
values over supposedly zero-value dark shaded pixels are atmospheric 
scattering signals. The DOS1 method used in this study is available in the 
Semi-Automatic Classification Plug-in (SCP) version within QGIS soft-
ware (Moran et al., 1992). The method is fully automatic and requires no 
additional input settings. One of the main objectives of this methodology 
is to obtain a cloud-free classification due to the influence of cloud cover 
and summer rainfall. This paper uses a cloud cover percentage of <2%. 
In addition, the bands used in the classification were resampled to 10 m 
pixel size with the corresponding calibration and atmospheric correc-
tion, the 20 m bands of the imagery were resampled to 10 m in order to 
harmonize all band data and ensure that the classification of images was 
adjusted to this resolution. 

2.2.2. Image classification 
One image from every season was selected, and the image classifi-

cation and precision were determined (Table 1). In cases where a given 
month had multiple images the criterion of cloud cover percentage was 
selected. The highest precision obtained is for summer season images, as 
shown in the results. The images selected for classification were 
collected on 8th august 2016 and on 17th august 2021. This same 
methodology was used with an image from 25th July 2015 (necessary 
for the calibration and validation of the flood model), but hardly any 
differences were found with the 2016 image. 

Performing area change dynamics is a multi-step process (Holland 
et al., 2006), in which all steps add value to the accuracy of the results. 
Broadly, the methodology proposed consists of three major stages: pre- 
processing; image classification and accuracy assessment. 

Pre-processing focuses mainly on the consideration of spectral, 
radiometric and spatial aspects of the images, as these treatments 
contribute greatly to the quality of the expected results (Butt et al., 2015). 
First, the spectral bands were combined for each date to form multi- 
spectral images. Second, a radiometric correction of the images was 
carried out, as this was pre-processing to improve the spectral value of a 
satellite image taken by a sensor. Atmospheric corrections for remote 
sensing data were mainly made based on image statistics, empirical 
methods, tools and the radiative transfer model. The pre-processed multi- 
spectral Sentinel images were input into the SCP in QGIS for classification. 

Next, training areas are set up. Accurate training plot data are 
essential for supervised classification. The basis for delineating training 
area polygons was the most representative coverage of land cover, and 
the classes were set via photointerpretation via a combination of 
Sentinel-2 images with different colour compositions. Orthophoto im-
ages available from the National Aerial Orthophoto Programme (PNOA) 
(Ministerio de Transporte Movilidad y Agenda Urbana, 2021). obtained 
during a photogrammetric flight in 2017, were used for photointerpre-
tation. The PNOA images were used for training and verification, and 
field trips for validation were made in 2021. In addition, Google Street 
View was used to supplement the reference data. The polygons for each 
class were distributed homogeneously, avoiding statistical dependence, 
resulting in a total of 263 polygons encompassing a total of 44,556 

pixels, corresponding to 0.73% of the basin. Four macro classes were set 
up and ten classes (Table 2) were selected to depict the land cover and 
land changes in the Umia Basin. They were distributed across all six sub- 
basins (division for subsequent hydrological analysis). 

Images were then classified out via Random Forest (RF). This is a 
specific machine learning technique based on the iterative, random 
creation of decision trees. First, the input features and classes were 
defined. RF calculates several random decision trees based on (1) the 
number of training samples and (2) the number of trees. The more trees 
there are, the more accurate the model is, but the longer the calculation 
time is. RF creates several decision trees randomly using the Gini coef-
ficient to split them. A model based on the decision trees is thus created 
and used to classify all the pixels. A pixel is classified according to the 
majority vote of the decision trees. The number of training samples was 
5000 and the number of trees was 500. 

The next step was accuracy assessment, which is necessary to assess 
the reliability of the results. The Error of Commission (EC), Error of 
Omission (EO), Producer Accuracy (PA) and User Accuracy (UA) were 
computed based on an error matrix resulting from accuracy assessment. 
EO is linked to the classified results and is supplemented by PA. They refer 
to items that are left out of their correct class in the classification. EC 
represents classified values that were predicted to be in a particular class 
but do not belong to that class. It is supplemented by UA. In this study an 
advance accuracy assessment using the SCP (Semi-Automatic Classifica-
tion Plug-in) functions for the RF classifier was performed. Using the land 
cover classification map generated, the next analytical step was to run a 
post-processing tool to obtain the reports from each classifier, which 
provide the pixel sum and area coverage of each land cover class. Accu-
racy assessment requires these parameters to calculate the total number of 
training samples required for the image classified using Eq. 1. 

N =

(
∑c

i=1

(WiSi)

S0

)2

(1) 

where Wiis the area of the mapped portion of class i, Si is the standard 
deviation of stratum i, S0 is the expected standard deviation of overall 
accuracy and c is the total number of classes. 

Finally, post-classification or change detection were carried out. 
Change detection is relevant in image analysis because it enables gains 
or losses in the land classes identified to be determined (Valdivieso-Ros 
et al., 2021). To determine the extent and trends of land cover changes in 
the Umia basin, post-classification change detection was employed. This 
involved the use of images from 2016 and 2021 to check for changes in 
the interim period. The surface areas of changes, including the transition 
matrix and class statics, were calculated. 

Table 1 
The available Sentinel-2 images for this study.  

Season Image data Sensor Precision 

Summer 08/08/2016 S2A_MSI_L1C 77.86 
17/08/2021 S2B_MSI_2A 83.18 

Autumn 15/11/2015 S2A_MSI_L1C 66.94 
18/11/2021 S2B_MSI_2A 59.48 

Winter 14/03/2016 S2A_MSI_L1C 78.18 
15/03/2021 S2A_MSI_2A 65.42 

Spring 20/05/2016 S2A_MSI_L1C 53.38 
19/05/2021 S2B_MSI_2A 84.96  

Table 2 
Descriptions of land use and land cover types defined in the study area.  

Macro classes Classes Code Description 

Rural Agriculture 1 Agriculture land typically land devoted 
to agriculture. 

Bare ground 2 Land with vegetative cover loss. 
Vineyard 9 Land with plantation of grapevines 

used in winemaking. 
Garden 4 A piece of ground adjoining a house, in 

which grass, flowers, and shrubs may 
be grown. 

Forest Riparian 
vegetation 

5 Vegetation along the riverbanks, which 
has been influenced by the dynamic 
water table. 

Scrub 7 Area of land covered with short trees 
and bushes (h < 4 m) 

Trees 8 Area of land covered with trees 
(h > 4 m) 

Anthropogenic Road 6 A wide way paved 
Buildings 3 Structures with a roof and walls, 

houses, and factories. 
Water Water 10 Rivers, reservoirs, and wetlands.  
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2.3. Model simulations 

This study runs and analyses different simulations based on a hy-
drological model of the Umia River Basin. Those simulations are 
calculated from a hydrological model obtained with HEC-HMS software 
(V.4.9.0), calibrated and validated with data from 2014 to 2016 which 
enables inputs (i.e. hydrographs) to be obtained for the hydrological 
model of the simulations proposed. To obtain the hydrological model of 
the study area, a digital terrain model was obtained from the National 
Centre for Geographic Information, specifically from the National Aerial 
Orthophotography Programme (PNOA) (National Geographic Institute 
of Spain, 2021)(Spanish National Geographic Institute, 2021). The land 
uses taken for calibration and validation were obtained from Sentinel-2 
data according to the methodology described above. Precipitation and 
evaporation data were obtained from Meteogalicia (Xunta de Galicia, 
2021), from a total of 6 atmospheric stations (Appendix A.1), with the 
weighted average precipitation of each station being calculated using 
the Thiessen polygon method. Flow data were obtained from the website 
of the Ministry for Ecological Transition (2020) from two monitoring 
stations in the study area, one downstream and one upstream (Appendix 
A.2). The hydrological model was calibrated by comparing the simu-
lated and previously observed values for each of the eight biggest 
rainfall events in 2014 and 2015 (Appendix A.3). The model was cali-
brated using two different methods, but on the same dates, to check 
which one gave better results. The two methods used were the Soil 
Conservation Service (SCS) Curve Number Method and the Clark 
Method. Other parameters were calculated: The time of concentration 
was added to the data for the corresponding sub-basin (hours), while the 
lag time was added to the data for each corresponding reach (minutes). 
Finally, a check was performed on the robustness of the model drawn up 
to confirm that the results obtained were reasonable and consistent with 
expectations (Razi et al., 2010)(Razi et al., 2010). The sampling strategy 
chosen required 6 HEC-HMS model runs for each type of calibration and 
6 for validation. This enabled us to economise on analysis time while 
still obtaining optimal calibration and validation results. Some authors 
suggest that calibration across the entire available dataset may be 
preferable for parameter identification (S. K. Singh and Bárdossy, 2012), 
but most published work still advocates the split-sample strategy 
(Arsenault et al., 2018; Gaborit et al., 2015), hence the event-driven 
approach. The HEC-HMS model was calibrated and validated using 
the calibration and validation strategy of calibrating the model param-
eters per sub-basin from upstream to downstream, as per Zhang et al. 
(2022). The confirmation check was performed on the four biggest 
rainfall events of 2016 (Appendix A.3.).The calibration process using the 
SCS curve number method gives a result of R2 = 0.96, while the Clark 
method gives R2 = 0.98. Both these figures are very high. In the vali-
dation check for the SCS curve number method R2 = 0.95, while in that 
for the Clark Method R2 = 0.99. The “coefficient of performance of error 
series A" (CPA) and CPA’ were calculated for model validation (Table 
A.4.). Different studies suggested this common method for the assess-
ment of time series agreement by examining the sum of squared dif-
ferences (Babel et al., 2004; Najim et al., 2006). The results indicate that 
the HEC-HMS model is well optimised in this study and that the HEC- 
HMS model is generally reliable and robust for flood simulation in this 
study area. 

For the simulations the infiltration capacity was quantified in a 
parameter derived by the Soil Conservation Service (SCS) called CN. 
This parameter determines the runoff over an area based on soil type, 
soil cover and the hydrological group of the soil (Cronshey, 1986). The 
figure calculated for sub-basin 1 is 80.1, for sub-basin 2 it is 78.5, for 
sub-basin 3 it is 77.3, for sub-basin 4 it is 74.0, for sub-basin 5 it is 76.1 
and for sub-basin 6 it is 81.0. To better assess the possible effects of using 
NBS, four hypothetical scenarios were chosen. These scenarios were 
based on changing the land use from agriculture to forestry. According 
to Perpiña Castillo et al. (2020), Galicia has one of with the highest 
percentages of abandoned agricultural land of any region in Spain, with 

an estimated figure of around 44%. Therefore, a change of 44% of the 
agricultural area to forestry was simulated, prioritising the less perme-
able soils. The hydrographs simulated in HEC-HMS were carried out for 
three events that caused flooding in the Umia Basin. Event 1 took place 
from 22/02/2021 to 26/02/2021, event 2 from 04/12/2021 to 11/12/ 
2021 and event 3 from 02/01/2022 to 15/01/2022. 

In addition, the scenarios designed envisage different situations. The 
first corresponds to current status (Observed), i.e. the current land use 
scenario, in which the hydrological models represent land use changes 
in 2021. The remaining scenarios reflect the decision to reduce flood 
hazard by implementing NBS and by afforestation. The afforestation of 
the head of the basin was therefore simulated in the upstream affores-
tation scenario (S-Up). In this scenario afforestation was designed for 
sub-basins 6 and 5, increasing their forest area from 3475.790 ha to 
7342.49 ha and from 2235.10 ha to 3194.86 ha respectively. Next 
afforestation in the lower part of the basin was simulated in the down-
stream afforestation scenario (S-Down), where afforestation in the hy-
drological model in sub-basins 4 and 3 increased their areas by 
904.59 ha and 1525.65 ha respectively. The last scenario (S-Total) 
assessed afforestation throughout the basin, analysing the optimal status 
in the whole basin. Specifically, the land use changes described in 
simulations S-Up and S-Down were used, plus changes in sub-basins 2 
and 1, where forest area was increased by 44.09% and 75.28% respec-
tively. In addition to these simulations, events were calculated with land 
uses from the 2016 classification (S-2016). The Flow Chart of the 
methodology described here can be seen in Fig. 2, and a table summa-
rising information sources can be found in Appendix A.5. 

2.4. Environmental, economic and social analysis 

To assess the environmental, social and economic costs and benefits 
of each simulation in the basin, an analysis was carried out to assess the 
cost of afforestation and the benefits that the use of these NBS could 
bring. These simulations were carried out via cost-benefit analysis 
(CBA), which seeks to analyse the extent to which project benefits 
(values of use and non-use) exceed costs (in this case, the cost of in-
vestment and maintenance). The main assessment criterion is thus 
economic efficiency. First, all costs and benefits must be selected and 
expressed in monetary values. This monetisation is critical for analysis, 
particularly when environmental effects are studied. Secondly, the net 
present value (NPV) of the project must be calculated. The NPVs of the 
different afforestation scenarios here were calculated by using a dis-
count rate of 4% and a series of future costs (negative values) and 
ecosystem service benefits (positive values). Assuming “n” is the number 
of cash flows in the list of values (eq. 2): 

NPV =
∑n

i=1

valuesi

(1 + rate)
i (2) 

Where, “valuesi
” is the net cash inflow-outflows during a single period 

and “i, “is the discount rate or return that could be earned in alternative 
investments. 

To assess the overall environmental benefits provided by the use of 
these NBS, this analysis relies on previous studies (e.g. Dittrich et al., 
2019; Johnen et al., 2020) which seek to assess ecosystem services (ES). 
Due to the limitations of the study reported here, whose main objective 
is not to assess environmental benefits but rather how land use and NBS 
affect flood risk, ES are assessed using benefit transfers. Thus, the results 
of existing studies are transferred in order to determine the monetary 
value for the present area. It is necessary to obtain similar background 
conditions; in this case the study focuses on using study values from 
temperate European forests. 

2.4.1. Environmental and social benefits 
Dittrich et al. (2019) and Johnen et al. (2020) use an estimated value 

of €281.05/ha/year to assess biodiversity. In this way, the biodiversity 
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services of use and non-use are quantified, and double counting is 
avoided. This includes use values and “non-use values such as existence 
value (the benefit people get from the mere knowledge that wildlife 
exists even if they never see it) and bequest value (the benefit people get 
from knowing that wildlife will be protected and conserved for the 
benefit of future generations)”. The impact of the afforestation area has 
also been assessed via carbon sequestration, based on the database 
developed by Bernal et al. (2018) for different types of forest restoration 

actions worldwide and the consequent carbon sequestration rates 
(IUCN, 2018). The afforestation area for each scenario was multiplied by 
the relevant carbon price of €15.41/tCO2 (OECD, 2016), and by the 
carbon sequestration rates per hectare in tonnes (based on the removal 
rate database for Spain and Galicia with the restoration type “Pine”), 
which was 7.7 CO2/ha/year. This corresponds to the average value from 
the time of reforestation up to 20 years of tree life. The CO2 uptake value 
increases as trees grow during and decreases when the stand stabilises. 

Fig. 2. Flow diagram followed in the methodology in the Umia River Basin.  
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The use of NBS, and in particular afforestation, could have a positive 
effect on surface and groundwater quality (Duffy et al., 2020). Broad-
meadow and Nisbet (2004) explain this on the grounds that by obtaining 
a more balanced hydrological regime, from the reduction of maximum 
and minimum flows, the extent of flooding is reduced and groundwater 
recharge is controlled to a greater extent. This would reduce the amount 
of nutrients and sediment that reach the river, reservoir or aquifer. There 
is also the filtering capacity provided by reforestation in the riparian 
areas from which they originate, which reduces the risk of flooding. 
Müller et al. (2019) conduct a systematic review that quantifies these 
benefits of reforestation in relation to surface and groundwater quality. 
In their study they find a wide range from USD25 to 2227/ha/year, with 
most values being between USD25/ha/year and USD211/ha/year. The 
low values for providing clean drinking water may be influenced by the 
generally large amount of clean water available, which results in a low 
willingness to pay. However, water quality is a growing issue because it 
is assumed that this number will tend to rise. Therefore, in this esti-
mation the highest value is selected and converted to euros, resulting in 
a figure of €187/ha. 

2.4.2. Cost of NBS implementation 
Afforestation costs were calculated based on the expanded forest 

area in each simulation. To that end, agricultural land was converted to 
forest land use. First, the price of the area to be afforested must be 
determined. Seeking to curtail the abandonment of rural land in Galicia, 
the administration permits abandoned land to become part of the 
“Banco de Tierras” (Land Bank) (Ley 11/2021, 2021). These plots can be 
rented, thus facilitating their use for measures to mitigate climate 
change, fight fires or, in this case, mitigate the risk of flooding. The 
Xunta de Galicia (the public administration with authority over land 
management in Galicia) makes the land available to the public at a price. 
In this case study, the rental price per hectare is €105/ha/year (Agader, 
2020). This figure was multiplied by 20 (years) for the surface area 
reforested in each sub-basin. The costs of deforestation also need to be 
quantified. These were obtained from the average figures based on the 
regulations set by the administration. A value of €2526.45/ha was ob-
tained for actions covering land preparation. It is estimated that 3 
mechanised pruning operations are required at a cost of €474.76/ha 
each. 

The benefits include improvements in water quality, CO2 seques-
tration capacity, the value of biodiversity (both use and non-use) and 
recreational value. All necessary costs are factored in, from obtaining 
the plots, preliminary actions, soil preparation, the price of plants and 
other forestry actions. The analysis was drawn up for 20 years, due to the 
type of plantation selected. 

3. Results and discussion 

3.1. classification of land use 

The Umia Basin was classed under four macro-classes that included 
the ten classes considered here for a period of 5 years (2016 and 2021), 
as shown in Fig. 3. Given the hydrological characteristics of the basin, 
the biggest area in 2016 (Fig. 3a) was Riparian Vegetation, which 
covered 10,886.53 ha (24.43% of the entire basin). The rivers of the 
Galicia-Costa Hydrological Demarcation, to which the Umia River be-
longs, extend over more than 14,700 km (Augas de Galicia, 2015) and 
their drainage network has a highly branched dendritic distribution, 
typical of the terrain. The surface of the Umia River basin thus comprises 
one main channel and several tributaries, which in turn have several 
tributaries of their own. As a result a large percentage of the area is 
occupied by riparian vegetation associated with these rivers and 
streams. The smallest area is that occupied by water, which comprises 
0.91% of the basin. In 2021 (Fig. 3b) there was a slight improvement in 
some classes. The areas that occupy most land were tree zones, which 
covered 10,911 ha (24.49% of the basin), while riparian vegetation 

covered 9721.68 ha (21.82%). As in 2016, the area that occupied least 
territory was Water, but the coverage was 0.15% greater in 2021. The 
first case may be due to differences between hydrological years, i.e. 
2016 was a drier year and with less depth of water in the water bodies 
than in 2021 (Xunta de Galicia, 2021), when more water was available. 

An analysis of the sub-basins shows similar results for 2016 (Fig. 2c) 
and 2021 (Fig. 3d): 53% of the surface area of sub-basin 1 is given over 
to the Rural macro-class, 44.58% of sub-basin 2 was Forest in 2016 and 
48.87% in 2021, while 45.66% was classed as Rural in 2016 and 41.48% 
in 2021. These are the areas closest to the coast, so their land covers are 
typically mosaics of housing, agriculture, gardens, etc.. In sub-basins 3, 
4, 5 and 6 the most representative land cover classes are Forest, which 
accounts for around 60%, with an increase of between 4 and 8% from 
2016 to 2021. Forest uses, especially those associated with afforestation, 
become more characteristic of this territory as we move away from the 
coast. Galicia has just over 2 million hectares of forest, of which 70% is 
woodland and 30% scattered trees (Dirección General de Medio Natural 
y Política Forestal, 2011). The management systems of these forests are 
currently based on the logging of conifers (39.15%) and hardwoods 
(60.85%), especially Pinus pinaster (47.64%) and Pinus radiata (44.86%) 
in the first case and Eucalyptus spp. (95.2%) for hardwoods (Ministerio 
para la Transición Ecológica y el Reto Demográfico, 2020). 

Once the classifications by classes and their distribution have been 
analysed, a common approach for accuracy assessment involves 
computing an error matrix from independent ground survey observa-
tions or from visual interpretation of high-resolution images to quantify 
class-specific accuracies and overall map accuracy. According to the 
2016 error matrix classified under the RF method (Table 3), the class 
that covered most land based in the pixel count was Trees (10,244 
pixels). By contrast Garden use covered the least land in pixel counts 
with a total of 997. The overall precision obtained was 77.86%. with 
Riparian Vegetation and Scrub being the classes most often mis-
classified, with an EC value of 0.73. The error matrices for the 2021 
classification (Tables 4 and 4.1) show an overall precision of 83.18%, 
with Riparian Vegetation as the most misclassified class, with an EC 
value of 0.79. Water was the most successfully classified class in both 
years, with the lowest EO value, followed by Garden. The accuracy of 
the method depends on several factors such as the number of training 
samples, the number of land cover classes, the type of terrain and the 
pre-processing techniques applied to images (Phiri et al., 2020). Taking 
into account the complexity of comparing results in terms of accuracy 
with similar research using RF as a classifier, a pixel-based classification 
method and four classes in general, the accuracy level obtained ranges 
between 65 and 95% (Denize et al., 2018; Fragoso-Campón et al., 2018; 
Immitzer et al., 2016; Khaliq et al., 2018; Steinhausen et al., 2018; Vuolo 
et al., 2018), which is similar to that of 77–83% found in the present 
research. The main difference is the greater number of classes used, i.e. 
10. (See Table 3.1.) 

Comparing 2016 and 2021, the area covered by Agriculture 
increased, with the Vineyard class accounting for 24.81% (1492.87 ha) 
of the total (Table 5). After field checks, it has been proven that this is 
due to recently established vineyards. Therefore, with no foliage, with 
the posts installed and the land ploughed, the classification method used 
assumes that this is agricultural land. This contrasts with the financial 
grants from the regional government (Xunta de Galicia). For example, it 
is estimated that the vineyard area in Rías Baixas (the Designated Origin 
for vineyards in this area) increased by 50 ha in 2019 and 130 ha in 2021 
(Xunta de Galicia, 2022). Therefore, in recent years vine growing has 
been intensifying and areas that were abandoned are being recovered. 
Vineyard, Riparian Vegetation and Agriculture classes misclassed as 
Bare Ground account for 21.78% (762.4 ha), 18.66% (653.33 ha) and 
17.77% (622.03 ha) respectively of the total. In the first case, this may 
be due to the absence of foliage and to ploughed soil for new plantations. 
In the second case it may be due to the replacement of this vegetation by 
vineyards. And in the case of agriculture, there may be changes in sea-
sonal crops that show a different spectral image. 
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Acquiring large-scale training data to train the RF classifier in the 
classification of complex regions with a great many categories is a 
laborious task that requires hours of processing. Thus, in the present 
study we assumed that training samples should represent approximately 
0.25% of the total study area used by the RF classifier for large-scale 
classification (Colditz, 2015; Deng and Wu, 2013; Du et al., 2015). 
Once these errors in classification have been identified, it is useful to 
carry out work with more training areas that include this category of 
“new vineyard”, since its spectral signature after 5 years of growth is 
totally different from what it looks like in the year of planting. Consid-
ering the study area and the strong influence of the wine sector in it, this 
is an issue that can be improved in future studies. 

In satellite image analysis, the number of images used differs widely, 
from two images per season (Carrasco et al., 2019) or two images per 
month (Malinowski et al., 2020) to 150 images per season (Nguyen et al., 
2020) or two images per land cover classification (Mohamed and El-Raey, 
2019). The literature reviewed concludes that with 2–5 images per year the 
success rate exceeds 70%. In addition, large-scale image processing re-
quires long computation times and high storage capacity. In this study, two 
images per year were selected, including the seasons in which the greatest 
variations take place in the vegetation, and specifically cloud-free (<2%). 

Finally, the type of land ownership in the study area must be high-
lighted: it is characterised by smallholdings. According to the land 
register (Ministerio de Hacienda y Función Publica, 2022), the 

Fig. 3. Land use classification maps of Umia Basin (a) 2016-year; (b) 2021 year; (c) Detail of subbasin 5, 2016-year; (d) Detail of subbasin 5, 2021 year.  

Table 3 
Error matrix land use pixel count 2016 year.   

Reference 

Classified 1 2 3 4 5 6 7 8 9 10 Total 

1 978 192 16 33 27 13 3 131 412 1 1806 
2 122 1095 97 5 21 1 56 1601 182 0 3180 
3 23 56 3419 2 0 158 16 0 2 8 3684 
4 140 28 21 307 1 27 3 8 264 0 799 
5 258 6 1 1 708 35 27 1497 98 64 2695 
6 0 0 70 5 4 1640 7 3 1 53 1783 
7 70 38 0 3 58 1 802 1824 212 17 3025 
8 138 72 0 0 86 15 182 4877 26 27 5423 
9 137 127 5 12 36 8 10 156 2324 6 2821 
10 0 0 20 0 56 166 26 147 1 7067 7483 
Total 1866 1614 3649 368 997 2064 1132 10,244 3522 7243 32,699  
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perimeters of the plots add up to more than 1.3 million kilometres. Plots 
registered as rural land in Galicia have an average area of just 0.26 ha, 
and that figure drops to 0.17 ha in the study area. Galicia is also char-
acterised by a widely dispersed population living in rural areas. This 
makes for mosaics that combine houses, farms, agricultural warehouses 
and small plots that range from seasonal crops of vegetables to fruit 
plantations, vineyards and forest. Classifying land uses under these 

conditions was a real challenge, and one that makes the results obtained 
even more significant. 

3.2. Simulations 

The hydrographs simulated in HEC-HMS were drawn up for three 
events that caused flooding in the Umia Basin (Fig. 4). Event 1 reached a 
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Fig. 4. Hydrographs obtained for three events from the model output considering the different scenarios, S-2016 (Events in the year 2021 simulated with 2016 land 
uses), “Observed” (“Current land use-Observed”), S-Up (“Forestation upstream”), and S-Down (“Forestation downstream”) and S-Total (“Forestation everywhere”). 
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flow rate of 237.3 m3/s with the LULC resulting from the classification. 
However, this maximum flow was reduced for simulations S-Up 
(216.3 m3/s), S-Down (217.8 m3/s) and S-Total (207.6 m3/s). This was 
also the case for events 2 and 3, where the maximum flow rates observed 
for these classifications were 113.00 (Event 2) and 109.9 (Event 3). The 
maximum flow rate for event 2 is that of S-Down (100.5m3/s), followed 
by S-Up (99.5m3/s), with S-Total (94.6) having the lowest figure. This 
coincides with the results for event 3, where S-Down gave a figure of 
102.6m3/s, followed by Observed (102.1m3/s) and S-Down (98.8m3/s). 
In all events the S-2016 simulation gives a higher peak flow rate than the 
actual observed value for the current land use in 2021. This may be due 
to the increase in forest area as discussed above. Statistical significance 
was analysed in comparisons of observed and simulated models, and 
from one simulated model to another. For all cases in each event the 
statistical significance is p > 0.05, so the null hypothesis is rejected. On 
the other hand, peak flow rate (m3/s) was reduced by 8.9% (S-Up), 8.2% 
(S-Down) and 12.6% (S-Total) for the first event. Event 2 showed the 
greatest improvement, with reductions in peak flow rate of 11.9% (S- 
Up), 11.1% (S-Down) and 16.3% (S-Total), compared to reductions of 
7.1% (S-Up), 6.6% (S-Down) and 10.1% (S-Total) for the third event. 
Apart from the substantial reduction in flow rate, a delay in it is also 
observed. 

In event 1 (the event with the highest precipitation) the peak flow 
rate was delayed from 25 February at 12:00 to 24 February at 23:00, for 
example, but such delays were observed in all the simulations studied. 
This is very important for events of this type, especially in critical areas 
such as the reservoir in the study area, where this information could help 
manage the regulation of the reservoir outlet flow based on the expected 
flow and the expected time period. In fact, in the simulations where the 
upstream basins (S-Up and S-Total) were reforested, the maximum flow 
rate into the reservoir was reduced by 6.5%. Therefore, it could have a 
positive influence on the management of this infrastructure to reduce 
risks downstream or be proactive and ensure there is storage capacity for 
the expected flow. This reduction coincides with the statement in (Paleo, 
2010) that the A Baxe reservoir is a paradigmatic example: it was 
designed by the administration to laminate the frequent floods in Caldas 
de Reis and also to produce electricity in addition to supplying drinking 
water to the communities in the area. However, this reservoir has shown 
little ability to laminate floods downstream, reducing but not elimi-
nating the risk and causing the proliferation of Microcystis (Viso-Vázquez 
et al., 2021), which has caused a serious health problem due to the 
presence of toxins in the water (Acuña-Alonso et al., 2020). This is why 
the reservoir is under debate: not only has it not fulfilled the purpose for 
which it was built, but it also generates major problems for the popu-
lation. This is in line with the study by Schoener (2022), where ponds 
are found have a minimal impact on transmission losses, highlighting 
that the impact is greatest in the lower part of the stream and decreases 
upstream. 

The delay in the hydrographic basins thanks to the different land 
covers that intercept, capture and infiltrate rainwater and thus reduce 
surface runoff benefits society in terms of reducing the flood hazard 
(Brody et al., 2014) and increasing groundwater availability and re-
serves. In addition, it brings environmental benefits by reducing surface 
erosion and slowing the decrease in soil quality (Keesstra et al., 2018). 
However such afforestation has a limited effect (Danáčová et al., 2020), 
as also contrasted by Ellis et al. (2021). Experts also emphasise its 
important buffering effect, in contrast to the highly intensive agricul-
tural and livestock use in the area (Álvarez et al., 2017). The effects of 
reforestation used as NBS also depend on the forest species used, given 
their differences in uptake (Zabret and Šraj, 2015). 76% of the study 
area falls into soil hydrological group type C (slow infiltration, 
36–13 mm/h), 10% into type D (very slow infiltration, <13 mm/h) and 
only 14% into type A (fast infiltration >76 mm/h), which also influences 
the effective capacity of the NBS selected. This adds to the difficulty of 
solving the serious flooding problem in the Umia River Basin. 

The greatest improvement is that found for simulation S-Total 

“Reforestation everywhere”, where increasing the forest area in the 
whole catchment obviously modifies the roughness coefficient and re-
duces the flow there. The next best result is simulation S-Up, where 
reforestation was carried out upstream. This result is supported by other 
studies, where it is highlighted that improving water retention areas and 
upstream land use adaptations can be useful in reducing the frequency of 
floods in small catchments (Hooijer et al., 2004). Simulation S-Down, 
gives the poorest results, perhaps due to the importance of the upstream 
reduction, or to other parameters such as soil permeability or land use 
and the fact that the anthropogenic area (13.74% in sub-basin 3 and 
12.86% in sub-basin 4) is larger than in upstream sub-basins 6 (8.83%) 
and 5 (9.83%). It may also be due to a combination of all these factors. 
This shows that for effective flood hazard management, actions must be 
designed for the areas where they have the most effects, i.e. headwaters 
or areas far from the river mouth in order to intercept as much water as 
possible and delay run-off. For flood regulation, there is a spatial link 
between downstream and upstream. The results of the simulations when 
NBS is applied upstream or downstream match those of Johnen et al. 
(2020), but it should be noted the different characteristics and layout of 
the type of plots in our study area, with highly heterogeneous land uses 
and very small plot sizes, means that comparison with other studies 
gives not highly significant findings. In the study by Klingner (2014), for 
example, 77% of the catchment is converted from cropland to forestry 
use with very good results, but such a high land use change seems un-
realistic. As for where NBS should be applied, the headwaters and up-
stream areas comprising the supply zones are considered the best flood 
regulation area for a catchment (Syrbe and Walz, 2012). Actions at the 
river mouth do not significantly reduce hazards, though containment 
measures should focus there once an event occurs. Discharge capacity 
should also be increased (Vanneuville et al., 2016). This poses a chal-
lenge for the management of the territory (Hartmann et al., 2019), since 
reducing the risk of flooding impacts owners who do not suffer the 
consequences of that flooding. In addition, catchments with more 
diverse characteristics, including topography, soils and land use, such as 
the one studied here, are considered produce more complex results than 
more homogenous catchments (Knebl et al., 2005). The improved land 
cover data from the classification carried out, which will also enable 
information to be continually updated, improves on the information 
provided by other sources such as the Spanish Land Cover Information 
System (SIOSE), which takes a long time to update. 

The nature of floods and the increasing need to study them in relation 
to climate change and land use change means that our study has 
numerous applications in research, operations and policy. The result of 
this study is a complete hydrological model for the Umia River Basin 
plus a comprehensive land use classification adapted to the character-
istics of the study area. The model can be used for other relevant 
flooding issues in the region, and the methodology can be replicated in 
other areas. Other issues that could be included in future models include 
real-time rainfall and further simulations such as changes of use from 
anthropogenic to forestry. The study reported here has been adapted to 
land cover in the form of abandoned agricultural land, and thus provides 
a pragmatic model, as opposed to studies where all agricultural land is 
converted to forestry (Johnen et al., 2020). Another possibility would be 
simulations that consider increases and improvements in the riparian 
vegetation of the study area, given that the retention and filtering ca-
pacity of such vegetation is broadly proven. Food security is also of 
increasing concern: it could lead to a need to change land use from 
forestry to agriculture, thereby increasing NC (Singh et al., 2022). These 
simulations together with permeability maps can provide valuable in-
formation for decision-making and land-use planning. This information 
could indicate where land-use changes would be most appropriate. 
Other changes, such as increases in built-up areas, would increase sur-
face runoff and thus lead to a small increase in peak discharge (Kabeja 
et al., 2020) which would be hard to modify once implemented. This 
highlights the importance of knowing permeability levels, land uses and 
regulatory status in order to optimise the development of environmental 
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governance in the study area. The methodology proposed here is key to 
achieving these purposes, combining the use of GIS tools (in a critical 
study area) and hydrological models accessible to the administration. An 
additional parameter that could affect the efficiency of these models, as 
highlighted by Knebl et al. (2005), is the use of CN. The use of CN in this 
study is derived from physical measurements, but it is an empirical 
parameter and could therefore be a limitation in these models. Other 
approaches, such as that of Green and Ampt (1911), whose use a 
physical methodological approach, could improve these models. 

3.3. General discussion: economic and social repercussions 

The possible environmental, economic and social impacts of the 
various scenarios were analysed and discussed. Environmental benefits 
such as biodiversity enhancement, water quality improvement and CO2 
sequestration, social benefits such as recreation and the cost of the NBS 
in each simulation were assessed. The total costs depend directly on the 
number of hectares, so the S-Down scenario is the one with the lowest 
total cost at €15,476,487.05, followed by the S-Up scenario at 
€29,580,643.24 and finally the S-Total, in which the whole basin is 
assumed to be reforested, at €65,158,130.15. Consequently, the NPVs 
obtained were €14.647.785,94 for S-Up, €7.663.669,36 for S-Down and 
€32.265.097,66 for S-Total. All three scenarios show a positive NPV for 
the period studied, so they are all economically sustainable. Johnen 
et al. (2020) find negative values in scenarios where the area to be 
reforested is larger. This is due to the high cost of land acquisition. In our 
case the regulations allow for the lease of abandoned land for the pur-
pose of implementing measures to prioritise resilience to climate 
change. In addition, it is interesting to note the economic benefits of 
implementing any of these scenarios in terms of water quality in the 
basin. This is especially so for NBS in the upstream sub-basins (5 and 6), 
as there is a reservoir in sub-basin 4 with serious eutrophication prob-
lems caused by high levels of pollutants derived from land use (Acuña- 
Alonso et al., 2022). 

The CBA thus shows that the benefits obtained from the simulations 
studied based on the use of NBS outweigh the costs. The areas of land 
classed as reforested in the simulations are the least permeable and most 
erosion-vulnerable soils. Cupać et al. (2020) highlight that measures on 
such land bring more financial benefit than cost, which would 
encourage their financing. Taking all these implications into account, 
the most favourable scenarios would be S-Up and S-Total. Furthermore, 
considering the flow-rates studied in the events that caused flooding 
(Fig. 3) in the study area, these are also the scenarios with the greatest 
hazard reduction. It is also interesting to note the value of the invest-
ment required, which is much higher in S-Total than in S-Up, as it in-
volves the whole basin. Flood hazard management must focus on 
reducing flood risk but also on improving environmental, societal and 
economic benefits (Vanneuville et al., 2016). Le Coent et al. (2021) 
analyse three studies comparing the use of NBS and grey structures, and 
find that in all cases the cost is lower for the use of NBS. In fact, for the 
same level of damage avoided, NBS solutions are between 15% and 63% 
less expensive than grey solutions. Furthermore, for the cost of infra-
structure to be positive it must incorporate all the direct and indirect 
benefits brought to the ecosystem, not just the reduction in flow-rate. In 
a context of limited public resources, financial valuation can help to 
identify the right solution for addressing water risks, and the analysis of 
NBS, grey or even hybrid structures can help identify the most appro-
priate strategy for each case (Raška et al., 2022). 

There is a need for coordinated management policies. For example, 
the results of this study where part of the riverside vegetation is replaced 
by agriculture, mostly vineyards, stand out. This is covered by current 
regulations, under which prior authorisation to cultivate is not required 
in areas subject to easement (5 m from the river bank) but it is necessary 
to forest these areas (Ministerio de Obras Públicas y Urbanismo, 1986). 
Attention is also focused on the Forestry Act of Galicia (Act 7/2012, 
2012), under which changes from forestry to agriculture are allowed 

under certain conditions to increase the viability of agricultural hold-
ings. Thus, farming interests and detriment to forestry are linked. 
However the opposite situation holds if a change from agricultural use to 
forestry is desired: only rural land classed as being for agricultural use 
but in a state of abandonment and assigned to a farming land bank 
(minimum 2 years) is permitted, and then only with prior notification of 
the forestry management body and when 1) it is adjacent to forest lands; 
and 2) enclaves of up to 5 ha of woodland are formed. In both cases lush 
deciduous trees must be used. The latter case has recently been modified 
by the Act on the Recovery of Farm Land in Galicia (Act 11/2021, 2021), 
but was in force until May 2021. Therefore, the regional forestry, 
farming and water public domain regulations have not helped to reduce 
flood risks, because they encourage changes from forestry to farmland 
and hinder the afforestation of the territory, especially riparian areas. 
This highlights the need for multidisciplinary legislation with a 
comprehensive approach. 

Finally, it should be noted that the challenge in reducing flood risk 
and hazard lies in a comprehensive management of the territory, with 
land uses planned according to the host capacity of each area. It is 
important for proper planning to include simulations of future scenarios 
to improve decision-making by managers and enabling them to antici-
pate potential future risks, especially in climate change scenarios. In this 
case, information from satellite images, geographic information systems 
and flood risk simulation make up a combination that provides a useful 
tool for decision making, starting with better, more detailed, more 
precise, current data. 

4. Conclusions 

Land cover change in the Umia Basin, made up of very small, het-
erogeneous plots averaging just 0.47 ha each, was successfully mapped 
with Sentinel-2 images with an OA of 77% and 83%. This is the first case 
study on this type of characteristic smallholdings. The basin underwent 
noticeable changes in land use over the 5-year period. The use classes of 
Agriculture, Road, Trees and Water all increased on 2016. By contrast, 
26.15% of land classed as Riparian Vegetation changed to scrub during 
the study period. Future research needs to consider including “New 
Vineyards” as a new training class, as the absence of foliage in recently 
established vineyards resulted in their being misclassified as agricultural 
land. Stand-out features include the large number of plots and different 
species, changes in cutting, ages and vegetation on the same plots. This 
methodology is thus considered as useful for this type of plots (0.26 ha 
on average). This classification was useful to simulate the flood hazard 
in the study area. These two tools are very useful but had not been 
combined until now. For the three precipitation events in 2016 that 
caused flooding in the study area, different NBS actions were simulated 
based on the reforestation of specific areas and were compared with the 
actual situation. The resulting hydrograph estimated peak discharges of 
237.3 m3/s (Event 1), 113.00 m3/s (Event 2) and 109.9 m3/s (Event 3). 
For the simulations carried out there is a reduction of 8.9% in the case of 
afforestation in headwater areas, 8.6% in actions throughout the basin 
and 13.0% for afforestation downstream. This percentage of reduction 
can be seen as a success given the low filtering capacity of the soil in the 
area, where 86% of the land is classed as slow or very slow filtering. 
Remote sensing from satellite images offers an opportunity to model 
responses to precipitation events. This makes for progress in and 
improvement of land management. All three scenarios show positive 
NPVs for the period studied, so they are all economically sustainable. 
There is a need for measures to increase water retention throughout the 
basin and to facilitate discharge at the mouth. These measures are re-
ported to have social, economic and environmental benefits, which are 
quantified to value NBS as a sustainable tool that improves territorial 
planning. All this is done via a comprehensive approach supported by 
new, coordinated, multi-sectoral policies. 
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Hartmann, T., Slavíková, L., McCarthy, S., 2019. Nature-based solutions in flood risk 
management. In: Nature-based flood risk management on private land. Springer, 
Cham, pp. 3–8. 

Holland, D.A., Boyd, D.S., Marshall, P., 2006. Updating topographic mapping in Great 
Britain using imagery from high-resolution satellite sensors. ISPRS J. Photogramm. 
Remote Sens. 60 (3), 212–223. https://doi.org/10.1016/j.isprsjprs.2006.02.002. 

Hooijer, A., Klijn, F., Pedroli, G.B.M., Van Os, A.G., 2004. Towards sustainable flood risk 
management in the Rhine and Meuse river basins: synopsis of the findings of IRMA- 
SPONGE. River Res. Appl. 20 (3), 343–357. https://doi.org/10.1002/rra.781. 

Immitzer, M., Vuolo, F., Atzberger, C., 2016. First experience with sentinel-2 data for 
crop and tree species classifications in Central Europe. Remote Sens. 8 (3) https:// 
doi.org/10.3390/rs8030166. 

IUCN, 2018. Global Emissions and Removals Databases. Https://Infoflr.Org/What-Flr/ 
Global-Emissions-and-Removals-Databases.  
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