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Leveraging deep neural networks to estimate age-specific mortality
from life expectancy at birth

Andrea Nigri1

Susanna Levantesi2

José Manuel Aburto3

Abstract

BACKGROUND
Life expectancy is one of the most informative indicators of population health and de-
velopment. Its stability, which has been observed over time, has made the prediction and
forecasting of life expectancy an appealing area of study. However, predicted or estimated
values of life expectancy do not tell us about age-specific mortality.

OBJECTIVE
Reliable estimates of age-specific mortality are essential in the study of health inequal-
ities, well-being and to calculate other demographic indicators. This task comes with
several difficulties, including a lack of reliable data in many populations. Models that re-
late levels of life expectancy to a full age-specific mortality profile are therefore important
but scarce.

METHODS
We propose a deep neural networks (DNN) model to derive age-specific mortality from
observed or predicted life expectancy by leveraging deep-learning algorithms akin to de-
mography’s indirect estimation techniques.

RESULTS
Out-of-sample validation was used to validate the model, and the predictive performance
of the DNN model was compared with two state-of-the-art models. The DNN model
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provides reliable estimates of age-specific mortality for the United States, Italy, Japan,
and Russia using data from the Human Mortality Database.

CONTRIBUTION
We show how the DNN model could be used to estimate age-specific mortality for coun-
tries without age-specific data using neighbouring information or populations with sim-
ilar mortality dynamics. We take a step forward among demographic methods, offering
a multi-population indirect estimation based on a data driven-approach, that can be fitted
to many populations simultaneously, using DNN optimisation approaches.

1. Introduction

The rise in human longevity over the last two centuries has led to a growing interest in
modelling and predicting death rates and life expectancy at birth (hereafter referred to as
life expectancy). Reliable estimates of age-specific mortality are essential in the study of
health inequalities and well-being between and within countries. This task comes with
several difficulties, including a lack of reliable data or stochastic variation in death counts.
Because of these difficulties in several countries and sub-populations, the regularities
observed in trends of life expectancy have made this indicator appealing to model and
predict. A key advantage of modelling life expectancy at birth, or at any age, is that the
predictive model deals only with a single indicator that summarises the overall level of
mortality over time, instead of modelling multiple time series of death rates for each age
simultaneously.

Approaches that forecast life expectancy consider past trends in this indicator and
its regularities, such as the linear increase of the best practice life expectancy (Oeppen
and Vaupel 2002). Best practice life expectancy refers to the highest sex-specific national
life expectancy observed in a given year. Lee (2006) exploits this regularity and models
the changes in life expectancy as a linear function of the gap with the best practice trend,
allowing countries to exceed the best practice levels. In contrast, Torri and Vaupel (2012)
model life expectancy linearly by including a smooth function that accounts for the gap
with the best practice life expectancy, which is constrained to not allow countries to over-
take the best practice line. Raftery et al. (2013) introduce a Bayesian hierarchical model
to obtain joint probabilistic projections of life expectancy in an international context.
This model is currently used by the United Nations (2019). More recently, Nigri, Lev-
antesi, and Marino (2021) and Levantesi, Nigri, and Piscopo (2022) propose forecasting
life expectancy based on recurrent neural networks. These approaches forecast males and
females independently. Pascariu, Canudas-Romo, and Vaupel (2018) further include the
well-documented female advantage on longevity (Luy 2003) to forecast life expectancy
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for both sexes simultaneously. Although the use of life expectancy as an indicator to
forecast is appealing, estimating age-specific death rates is needed to analyse patterns of
mortality at different ages and to calculate other indicators, such as lifespan inequality,
as well as for estimating insurance pricing and pension liabilities. This has become even
more important with the recent patterns of stalls in longevity improvements, or tempo-
rary reversals, observed in several countries (Nigri, Barbi, and Levantesi 2021), including
the United States and the United Kingdom (Mehta, Abrams, and Myrskylä 2020; Aburto
et al. 2021; Ho and Hendi 2018) but also around the globe in contexts where timely data is
needed and often reported with significant delays, such as Mexico or Venezuela (Aburto
et al. 2016; Garcı́a and Aburto 2019).

Here, we propose a model to derive age-specific mortality from observed or pre-
dicted life expectancies. The model leverages deep-learning algorithms based on neural
networks to uncover age-specific mortality based on past trends. Two approaches to deriv-
ing age-specific mortality from values of life expectancy that are more closely related to
ours, which we describe in depth in the next section, were recently proposed by Ševčı́ková
et al. (2016) and Pascariu et al. (2020). Ševčı́ková et al. (2016) adopts a reverting process
based on the Lee-Carter model, while Pascariu et al. (2020) follow a similar strategy ex-
pressing the logarithm of age-specific deaths as a linear function of the logarithm of life
expectancy.

In this article, we take advantage of deep neural network (DNN) models to derive the
full age-specific mortality profile from values of life expectancy overcoming the linearity
assumption and data requirements from past methods and provide new insights into the
indirect approaches. We also offer a further step ahead by extending our DNN model
to multiple populations (i.e., countries and both sexes). The resulting estimates would
be useful for guiding public health interventions, informing about age-specific mortality
dynamics in contexts with deficient data collection, as well as pension and social security
schemes, which rely on longevity dynamics.

2. Models to derive age-specific mortality from life expectancy

We chose to benchmark our model using two recently proposed indirect models. Ševčı́ková
et al. (2016) and Pascariu et al. (2020) propose two models aimed at deriving age-specific
mortality from values of life expectancy at birth in line with the functional form of the
well known Lee-Carter model (Lee and Carter 1992). Let A = {a0, a1, ..., aω} and
T = {t0, t1, ..., tn} be the set of age and year categories, respectively. The Lee-Carter
model describes the logarithm of the central death rate at age a ∈ A and time t ∈ T ,
log (ma,t), as
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log (ma,t) = αa + βaκt + ϵt,a (1)

where αa captures the log mortality average by age, κt is the level of mortality in year t,
βa is an age pattern of mortality change at age a, and ϵt,a is the error term. The following
constraints on κt and βa avoid identifiability problems with the parameters

∑
t∈T

κt = 0
∑
a∈A

βa = 1.

Lee and Carter (1992) find that κt changes linearly and can be forecasted using a
random walk with drift or other time series methods.

2.1 Ševčı́ková and colleagues’ model

The first method proposed to estimate an age-specific mortality profile from a projected
or forecasted value of life expectancy at birth was developed by Ševčı́ková et al. (2016).
Their method consists of calibrating the parameter that reflects the level of mortality in
the Lee-Carter model (κt) to derive a desired level of life expectancy, similarly to the
ideas proposed by Lee and Miller (2001) and Li, Lee, and Gerland (2013).

Let t ∈ {1, . . . ,T} and τ ∈ {T + 1, . . . Tp} denote the observed and projected time
periods, respectively. Ševčı́ková et al. (2016) estimate the Lee-Carter parameters αa, kt,
and βa using the observed death rates ma,t independently by sex. For a given value of
projected life expectancy at birth e0(τ), the method solves for future kτ based on the
previously estimated parameters α̂a and β̂a using life tables. Finally, the age-specific
log-death rates are derived as follows:

log (m̂a,τ ) = α̂a + β̂ak̂τ .

2.2 Linear-link model

The linear-link model proposed by Pascariu et al. (2020) derives specific death rates at
time t and age a, withma,t as a linear function of the logarithm of life expectancy at birth
(e0,t) and at time t given by
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log (ma,t) = βa log(e0,t) + νak + εa,t (2)

The linear-link model is based on the least squares estimation of the slope βa over
the observation period. βa can be regarded as an age-specific parameter and εa,t can
denote a set of normally distributed errors with mean zero and variance σ2. The model
specification involves a second step to compute the singular value decomposition of the
matrix of regression residuals to obtain the parameter νa. To avoid projecting age-specific
noise, Pascariu et al. (2020) smooth the parameters βa and νa using splines. Finally, pa-
rameter k is optimised to achieve the value of a projected life expectancy. The model can
also be estimated by assuming that deaths follow a Poisson distribution with maximum
likelihood estimation.

3. Data

We use high quality 1×1 life tables from the Human Mortality Data base (HMD 2021)
categorised by sex with a focus on Japan, the United States, Italy, and Russia from 1950
to 2015 to test the accuracy of our model. This set of countries covers a range of longevity
trajectories with Japan having one of the highest life expectancies in the world, the United
States with stagnation and slow improvements in life expectancy, Italy with its late de-
mographic transition and rapid increase in life expectancy, and Russia with the highest
mortality at younger ages and lower life expectancy within the HMD.

4. Method: deep neural networks

Deep-learning techniques, including DNNs, have become important in a wide range of
applications, such as image classification or speech recognition with high predictive accu-
racy, often on par with human performance. Conventional machine-learning techniques
were limited in their ability to process data, requiring careful engineering. DNNs pro-
vide higher flexibility, relying on the paradigm of representation learning, with multiple
levels of representation, obtained by composing nonlinear modules. From the input data,
they build layer by layer, new sets of features, to make optimal predictions of target vari-
ables (for more details see Lecun, Bengio, and Hinton (2015)). Recent contributions of
deep-learning in longevity have been proposed in the field of actuarial science (see, e.g.,
Hainaut (2018), Richman and Wüthrich (2021), Perla et al. (2021), and Scognamiglio
(2022)); however, its applications in demographic research are still scarce.

A DNN is a collection of neurons organised in a sequence of multiple layers, where
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the input is the neuron activation from the previous layer that performs a weighted sum of
the input followed by a nonlinear activation (Montavon, Samek, and Múller 2018). The
neurons then implement complex nonlinear mapping from the input to the output. This
mapping is learned from the data by adapting the weights of each neuron performing
a technique known as error back-propagation (Rumelhart, Hinton, and Williams 1986).
The general idea is that for a given set of training data {(x1, y1) . . . (xn, yn)} sampled
according to an unknown probability distribution P(x,y), we find a function f(·) that
minimises the expected error on a new test set of data:∫

L(y, f(x))P(x,y)dxdy,

where L(y, f(x)) is the loss function that measures the prediction error for a given x
against the actual value y. We propose a model based on DNNs that assigns to life ex-
pectancy at birth at a generic time ti a vector of age-specific death rates with the structure
shown in Figure 1, where the input is the vector of life expectancy at birth over time
t ∈ T , e0 = (e0,t1 , e0,t2 , ..., e0,tn).
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Figure 1: Graphical representation of our DNN model. The input is a vector
of life expectancies over time e0, which passes through the neurons
and all multiple layers. The output in this diagram is a set of
log-death rates at each age that correspond to each value of life
expectancy, trained with observed age-specific data.

For a hidden layer H(k), the specific neural network structure illustrated in Figure 1
is given by the following:

H(k) = f (k)
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where f (k) is the activation function, W(k) is the matrix of weights, H(k−1) is the hidden
layers, and b(k) is the bias used to control the triggering value of the activation function.
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We use the rectified linear unit (ReLU) function given by f(z) = max(z, 0) (Glorot,
Bordes, and Bengio 2011). This function ensures faster learning in networks with many
layers. In the feed-forward architecture, each hidden layer involves the previous one as
shown below:

H(k) = f (k)
(
W(k) H(k−1) + b(k)

)
,

where H(k−1) can be expressed as a function of a vector with life expectancy values as
follows:

H(k−1) = f (k−1)
(
. . . f (1)

(
W(1) e0 + b(1)

)
. . .

)
.

Let M = log(ma,t)a∈A,t∈T be a matrix with death rates, where rows denote age
and columns calendar years. For a standard architecture consisting of three hidden layers
k = 3 (input, hidden and output layer, respectively), the theoretical relationship defining
the matrix of mortality M given the vector of life expectancy at birth e0 is represented
by:

M = f (3)
(
W(3)f (2)

(
W(2)f (1)

(
W(1) e0 + b(1)) + b(2)

)
+ b(3)

)
, (4)

where f (1)
(
W(1) e0+b(1)

)
= H(1) is the first hidden layer that accepts the vector e0 as

input.
The DNN model is based on a training algorithm that involves an unconstrained

optimisation problem aiming to minimise the prediction error. The idea is to adjust the
weights of the network connections to minimise a measure of the difference between the
actual and desired output (M and M̂), respectively, known as the loss function L. We
use the mean square error (MSE) as a loss function given by

L[M, M̂] =
1

|A| · |T |
∑
a,t

[log(ma,t)− log(m̂a,t)]
2

We chose the MSE because it is the benchmark in neural network regression prob-
lems (Lecun, Bengio, and Hinton 2015) and was the best performer compared to other
suitable loss functions with our dataset. To minimise the loss function, we use gradient
descent optimisation. Gradient descent is one of the most popular algorithms used to per-
form optimisation and is the most common way to optimise neural networks. It consists
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of minimising the loss function by updating the weights in the opposite direction of the
gradient (∇L) with respect to the weights. For a generic set of weights w(k)

n,n and the kth

layer, using the chain rule, the gradient is given by

∇L =
∂L[M, M̂]

∂w
(k)
n,n

=
∂L[M, M̂]

∂H
(k)
n

∂H
(k)
n

∂z
(k)
n

∂z
(k)
n

∂w
(k)
n,n

, (5)

where z(k)n = w
(k)
n H

(k−1)
n + b

(k)
n . The gradient encodes the relative importance of each

weight and bias. The algorithm for efficiently computing the gradient in Equation (5) is
known as back-propagation. Back-propagation consists of a recursive algorithm. In the
forward step, the prediction is computed by fixing the weights; subsequently, in the back-
ward step, the weights are adjusted by back-propagating the gradient of the loss function
to reduce the error. As a result of these adjustments, the internal hidden layers, which
are not part of the input or output, are able to represent and capture important features
of age-specific mortality. To update the weights (W̃), the gradient of the loss function is
multiplied by a scalar, η, often called the learning rate, according to the following scheme:

W̃ = W − η∇L
[
M, M̂

]
. (6)

The learning rate η determines the size of the step taken to reach a global or local
minimum. In other words, gradient descent is similar to ‘climbing down a hill’ until a
global or local minimum is reached. For this stage, we implement the root mean square
propagation algorithm proposed by Hinton, Srivastava, and Swersky (2013).

4.1 Implementation

Testing the model accuracy on unseen data is a crucial phase when you parametrise (or
train) the DNN model. Indeed, even traditional machine learning models require the
choice of hyperparameters, which cannot be calibrated directly from the data. In the
DNNs, they usually refer to the choices of model structure, such as the number of neurons,
hidden layers, and epochs, and it is common practice to perform a fine-tuning phase
according to the training error minimisation. This choice depends on the type of data
that remains a heuristic problem in the field of neural networks. Therefore a fundamental
procedure when applying machine- and deep-learning models is to test the performance of
these models on unseen data. To this aim, our model requires an input vector with the time
series of life expectancy at birth and a matrix with the corresponding age-specific death
rates over columns and time periods over rows. Each data series is split into a training-
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validation set with which the network is trained and a test set to check the accuracy of the
model’s prediction. The scheme is presented in Figure 2.

Figure 2: Implementation scheme of the DNN model. The model is trained
and validated with observed age-specific death rates that are
consistent with life expectancy levels from the train and validation
period (green and blue dots). The results from this training phase
are then applied to estimate a full age-specific mortality profile for
a given value of (projected or forecasted) life expectancy (orange
dots).

The process consists of feeding the model the training set and subsequently assess-
ing its accuracy on the validation set. The test set stands for the unobserved time horizon,
on which the model comparison will be performed. In practice, the test set would be
the forecasted or projected life expectancy, for which the age-specific mortality profile
is unknown. Formally, let tτ , with t0 < tτ < ts, be the calendar year that corresponds
to the last realisation in the train-validation set. The values of life expectancy in the
period (t0, tτ ), (e0,t)t∈[t0,tτ ], represent the input for train-validation, while the corre-
sponding output is log(m̂a,t)a∈A,t∈[t0,tτ ]. During the train-validation phase, the neural
network weights are estimated and subsequently used in the test phase concerning the
period [tτ+1, ts], which starts from tτ+1.

The values of life expectancy over a subsequent period, (e0,t)t∈[tτ+1,ts], represent
the input for the test set, while the corresponding output is log(m̂a,t)a∈A,t∈[tτ+1,ts].
Thereby, denoting ψnn as a composition of functions defined on the basis of the DNN
architecture, the model can be described by:

log(m̂a,t) = ψnn

{
(e0,t)

∣∣∣Ŵ}
; ∀a ∈ A; ∀t ∈ [tτ+1, ts] (7)
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where (m̂a,t)a∈A,t∈[tτ+1,ts] is the matrix of death rates in the test set obtained by ψnn

that involves the DNN weights Ŵ estimated during the network training, using the MSE
as a loss function and the ReLU as an activation function. Considering our data, which
we used the 80%–20% splitting rule randomly sampled as the train-validation sets, the
use of the validation set drastically reduces the chances to incur overfitting. In order to
minimise these possibilities, we strengthen the model by introducing two regularisation
techniques, drop out and early stopping, respectively. Early stopping acts on the neural
network epochs. One epoch is defined as one full cycle through the training data by the
network and modifying the weights. The epochs number corresponds to the total number
of times the full training dataset is explored. Early stopping allows stopping training
once the model performance stops improving on the validation dataset. Furthermore,
to prevent the neurons’ co-adaptation and reduce overfitting, the dropout regularisation
technique is often used. Such method consists on randomly removing neurons along with
their incoming and outgoing connections during training. For a detailed description of
the selected hyperparameter, see Table A-3 in the Appendix.

5. Results

To assess the robustness of our method, we performed an out-of-sample test over three
time windows (1950–1980, 1960–1990, and 1970–2000) used as train-validation sets,
and the subsequent years of each time window (1981–1995, 1991–2005, and 2001–2015,
respectively) as test sets. The model was applied to data from Italy, Japan, Russia, and
the United States by sex. We use a six-hidden-layer architecture following the fine-tuning
and compared the results from the DNN model with those obtained in Ševčı́ková et al.
(2016)’s and the linear-link models. To ensure comparability, the results were smoothed
using P-splines (He and Ng 1999).4 We focus on the results pertaining to females during
the period from 2001–2015 in this section; the results related to males in the same years
and in the other study periods for both sexes are reported in the Appendix.

Age-specific mortality estimates

Figure 3 shows age-specific death rates (in log scale) for females in Russia, Japan, Italy,
and the United States. The observed (target) profile is shown with dots and estimated val-
ues from the models using the training period 1970–2000, which correspond to DNN (red
line), linear-link (green line) and Ševčı́ková et al. (2016) (blue line). The three models

4 Unsmoothed results are shown in the additional material. The smoothing step does not affect the models’
accuracy ranking: the root mean square error (RMSE) and mean absolute error (MAE) improvements after the
smoothing are on average 1.55% and 1.57%, respectively.
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capture the general pattern of mortality, with a decreasing trend from birth to around age
15, and increasing linearly from around age 30. For Italy and a recent period in Russia,
the Ševčı́ková et al. (2016) model tends to overestimate mortality at young ages, while
the opposite is true for the linear-link in the case of Japan. The DNN model adequately
captures the mortality patterns. However, the three models fail to accurately capture the
sharp decrease from infancy in the cases of Italy and Russia.

Figure 3: Estimated age-specific female log-mortality rates log(ma,t) for
three models: DNN, linear-link and Ševčı́ková et al. (2016), by
country, for 2005, 2010, and 2014 based on the training period
1970–2000. The black dots are the observed log-mortality rates.

5.1 Age-specific relative differences

We further analyse the accuracy of the models with the relative differences (∆a,t) between
estimates and the observed death rate by age for each model (see Figure 4) defined as

∆a,t =
log(m̂a,t)− log(ma,t)

log(ma,t)
.
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Because the relative difference is calculated from the log-death rates, red hues in-
dicate that the model underestimates mortality, while blue hues indicate overestimation.
Differences with the observed mortality profile are small in general across models and
countries. However, it is observed a systematic underestimation in working-ages (20 to
50) for Russia and the United States from the DNN and linear-link models in the time
window from 2001–2015 (the other two time windows are shown in the Appendix Fig-
ures A-4, A-5, A-6, and A-7). Similarly, there is increased deviation at very old ages for
recent periods from both models. In contrast, the Ševčı́ková et al. (2016) model tends
to overestimate mortality at older ages for all countries, especially for recent periods in
Russia.

Figure 4: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The female test period took place 2001–2015.

Among males (Figure A-1), the DNN and linear-link models tend to underestimate
mortality at working-ages, which is compensated with increased mortality at younger and
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older ages below the age of 90. In contrast, the Ševčı́ková et al. (2016) model, as in the
case for females, tends to overestimate mortality across all countries and is best used to
capture the working-age pattern for Russia and the United States. Notably, deviations
from the observed mortality increase with time across all time windows.

5.2 Mean absolute error and root mean square error

To summarise the performance of the methods and to evaluate their accuracy, we report
the mean absolute error (MAE) and root mean square error (RMSE) on the test sets given
by the following:

MAE :
∑
a

∑
t

| log(ma,t)− log(m̂a,t) |
|A| · |T |

,

RMSE :

√∑
a

∑
t(log(ma,t)− log(m̂a,t)2

|A| · |T |
.

Tables 1 and A-1 summarise the MAE and RMSE for the three models and four
countries over the three time windows that we studied for females and males, respectively.
For females, the DNN is the best performer in most cases, although the linear-link model
showed the lowest MAE for Italy in the earliest and latest periods. The Ševčı́ková et al.
(2016) model exhibited the lowest RMSE for Russia in the period 1991–2005. The results
for males (see Table A-1) show less consistent results. For Italy and the United States, the
DNN model consistently showed the lowest errors, but the Ševčı́ková et al. (2016) model
performed the best for Japanese males.

Among males, for Italy and the United States the DNN model was the best performer
in terms of MAE and RMSE. For Japan, as noted in the age-specific figures, the Ševčı́ková
et al. (2016) model showed the lowest errors. For Russia, it was a mix between the three
models depending on the time window and summary measure. For both sexes, while
the DNN model showed in the majority of cases the lowest departures from age-specific
mortality, the linear-link model performed the best in capturing the life expectancy level.
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Table 1: Out-of-sample test: MAE and RMSE for DNN, linear-link, and
Ševčı́ková et al. (2016) by country and sex. The estimation period
for females took place 1981–1995, 1991–2005, and 2001–2015.

Country Model 1981–1995 1991–2005 2001–2015

MAE RMSE MAE RMSE MAE RMSE

Italy

DNN 0.1672 0.2017 0.1038 0.1418 0.1210 0.1591
linear-link 0.1379 0.2325 0.1561 0.2272 0.1154 0.1818

Ševčı́ková et al. (2016) 0.2421 0.2995 0.2042 0.2598 0.2539 0.3278

Japan

DNN 0.1730 0.2055 0.1182 0.1532 0.1137 0.1436
linear-link 0.4036 0.5473 0.2602 0.3242 0.1664 0.2095

Ševčı́ková et al. (2016) 0.2444 0.2785 0.1906 0.2376 0.1656 0.2014

United States

DNN 0.0572 0.0788 0.0873 0.1119 0.0944 0.1206
linear-link 0.0720 0.1196 0.0949 0.1541 0.1183 0.1683

Ševčı́ková et al. (2016) 0.1291 0.1642 0.1081 0.1524 0.1227 0.1643

Russia (2014)

DNN - - 0.1714 0.2544 0.1670 0.2393
linear-link - - 0.1942 0.2736 0.2266 0.3223

Ševčı́ková et al. (2016) - - 0.1931 0.2510 0.1907 0.2558

6. Multi-population model

In the previous section, we compared the performance of the DNN model with the linear-
link and Ševčı́ková et al. (2016)’s models, which are the closest comparable models avail-
able. However, the DNN model can be used in a more general way in contexts for which
there is an estimate of life expectancy but no available past age-specific mortality. In
such contexts, information from neighbouring countries or from countries with similar
mortality dynamics could be used to estimate an age-specific mortality profile. From this
perspective, the time dimension is lost and not needed. Therefore, the DNN model fills
the gap left by predecessor models by relying only on past data and becomes more akin
to indirect methods or model lifetables.

Here, we present a simple example of how to extend the DNN model for the multi-
population (mp-DNN) case. Consider the case in which the full HMD is used to train a
model and then to predict the age-specific mortality profile of a country’s life expectancy.
We still model the functional relationship between life expectancy at birth and death
rates, as numerical inputs and outputs. To extend the framework to the mp-DNN model
by adding other demographic features, such as country, year, and sex, we use what is
known as embedding layers (Richman (2020); Bengio, Courville, and Vincent (2013)).
Embedding is a tool that allows for the capture of relationships that are otherwise difficult
to capture due to high dimensionality. This is the case when data present many categorical
variables, the one-hot encoding schemes produce high dimensional sparse vectors, which
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often causes calibration difficulties. Embedding allows a low-dimensional representation
learning, mapping categorical variables into a vector space. In the present study, we deal
with the following categorical variables:

c ∈ C = {Italy,..,Russia}; g ∈ G = {Male, Female};
a ∈ A = {0,..,100}; t ∈ T = {1990, ..., 2015}.

Embedding layers map these features into real-valued vectors, where for instance
zC(c) is the new representation of countries. Therefore, i = (c, g, a, t) ∈ I = C × G ×
A× T might be considered the categorical features space.

Once embedding vectors have been defined for each categorical variable, all vari-
ables, categorical and not, are concatenated into a single feature vector: xe0,i = (e0, zI(i)),
which is used as input to the sub-neural network in order to predict the death rates in year
t at age a for country c with gender g related to levels of observed life expectancy at birth.
The network that accepts the input has a very similar structure to the single-population
model. Specifically, a network consisting of two hidden layers with 150 neurons for each
layer is used; also in this case, as in the single population model, we use regularisation
techniques. Details regarding the choice of parameters are provided below in subsection
6.2.

6.1 Multi-population model results

Figures A-2 and 5 show age-specific death rates (in log scale) for females and males
in Russia, Japan, Italy, and the United States, which were estimated by exploiting the
mp-DNN framework trained on the whole HMD. At first glance, the mp-DNN provides
smoothed estimation by nature, due to a wider training sample. The model is able to
describe the general mortality shape and provides a good fit for Italy and Japan and re-
markable accuracy for Russia, which represents a real challenge for the single-population
models, even if it seems to underestimate mortality at old ages. The United States pro-
vides a particular example where mp-DNN constantly underestimates mortality at both
young and older ages.
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Figure 5: Estimated age-specific female log-mortality rates log(ma,t) for the
mp-DNN model by country for 2005, 2010 and 2014 based on the
training period 1970–2000. Black dots are the observed
log-mortality rates.

Figures 6 and A-3 show the accuracy of the mp-DNN model with the relative dif-
ferences (∆a,t) between estimates and the observed death rates by age and time win-
dows. Overall, mp-DNN shows small deviations with the observed mortality profile,
across countries and periods, with the exception of the United States. In this case, the
model provides inconsistent results, showing underestimations that increase over time.
An alternative to treat atypical cases, such as the United States, could be used to train
the model with data from countries with relatively high young mortality rates. For Italy,
the model shows a high sensitivity over time of older ages, in particular for the female
population. For Japan and Russia, as noted in the age-specific figures, the model provides
reliable estimations, notably, deviations from the observed mortality decrease across all
time windows.

Tables 2 and A-2 show the MAE and RMSE for the multi-population model estima-
tion for the four countries over the three study periods for both sexes. We can confirm the
inadequacy of this model to represent the United States mortality dynamics. However,
we provide evidence of good accuracy for Italy and Japan and accurate results in terms
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of errors referring to Russia. We underline that mp-DNN was able to provide reliable
estimates for Russia over the first time window, where other models were not. Indeed,
single population models, in order to estimate parameters, need training data that are not
completely provided for Russia in the reference period 1950–1980. The mp-DNN lever-
ages the multi-population estimated parameters by applying them to the Russia case of
the out-of-sample window (1981–1995).

Figure 6: Relative differences (∆a,t) between estimates and the observed
death rate by age for the mp-DNN model. Red hues indicate that
the model underestimates mortality, while blue hues indicate
overestimation. The female test period took place 2001–2015.
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Table 2: Out-of-sample test: MAE and RMSE for mp-DNN by country and
sex. The estimation period for females took place 1981–1995,
1991–2005, and 2001–2015.

Country Model 1981–1995 1991–2005 2001–2015
MAE RMSE MAE RMSE MAE RMSE

Italy mp-DNN 0.1380 0.1827 0.1024 0.1592 0.1395 0.1897
Japan mp-DNN 0.1707 0.2026 0.09544 0.1215 0.09131 0.1314

United States mp-DNN 0.1462 0.177 0.107 0.1336 0.2397 0.3115
Russia (2014) mp-DNN 0.144 0.1728 0.1124 0.1382 0.1003 0.1265

6.2 Network evaluation

Despite DNN models having substantial advantages over traditional statistical methods
that make them appealing for solving complex demographic tasks, the effect of hyper-
parameters’ choice on accuracy and stability has been often underrated. To facilitate the
adoption of DNNs into longevity analysis tools, we attempt to explore this aspect for
the indirect estimation of death rates. Here, we provide a complete perspective referring
only to the multi-population model since it is being trained simultaneously on the whole
HMD, therefore it is not affected by a single population’s choice.

Taking the stochasticity in the input data as a realisation of an underlying stochastic
process, which arises in all inferential methods, the main source of variability origins is
due to the optimisation procedure. Despite the fact that the instability of the prediction
towards different training setups is a common issue in the field of deep-learning, it might
be problematic to explain in the field of mortality prediction.

Therefore, we study the neural network sensitivity towards parameter changes and
how predictions vary each time the network is trained using different setup choices for
different parts of the networks.

In a large space of combinations, we decided to move to a reasonable subspace, using
the changes highlighted in the Tables 3 and 4 . We carry out these experiments, compar-
ing all possible combinations through the MSE and RMSE of the predictions averaged
over the study countries. Tables 3 and 4 show that the adoption of dropout (set to 10%)
gains better performances in the architecture composed of two layers, for all activation
functions here considered (ReLU, Sigmoid, and Softmax). On the contrary, when we use
one layer, the dropout technique seems to increase the error, especially using the Sigmoid
activation function. This is due to the fact that the number of neurons drops dramatically,
reducing the model’s predictive ability. The most suitable architecture would seem to be
the one with two intermediate layers, such as to better grasp the relationships between
variables. From the tables, we can see how the ReLU activation function outperforms
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the other tested functions, showing a better learning performance in networks with more
complex architecture.

Table 3: Males

Layer Error ReLU Sigmoid Softmax
Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.14 0.14 0.31 0.23 0.28 0.28
RMSE 0.18 0.18 0.40 0.31 0.37 0.35

2 MAE 0.13 0.16 0.15 0.23 0.20 0.44
RMSE 0.17 0.24 0.21 0.32 0.29 0.63

Table 4: Females

Layer Error ReLU Sigmoid Softmax
Drop-out No Drop-out Drop-out No Drop-out Drop-out No Drop-out

1 MAE 0.16 0.15 0.26 0.18 0.31 0.28
RMSE 0.20 0.20 0.32 0.25 0.39 0.35

2 MAE 0.14 0.17 0.16 0.19 0.26 0.53
RMSE 0.18 0.21 0.21 0.25 0.35 0.72

7. Conclusion

We presented a novel method to indirectly estimate a full mortality profile from a level
of life expectancy at birth by leveraging deep neural networks using prior information on
age-specific mortality. When tested with state-of-the-art methodologies, the DNN model
performed the best in many cases with fewer assumptions than previous methods. The
method outlined here is non-parametric and data-driven and does not rely on assump-
tions that may not be completely accurate. Nevertheless, the results show that the three
models tested here perform in a satisfactory way, with the DNN model offering the best
performance in most cases. As shown, the reconstruction of an accurate mortality sur-
face from a given level of demographic summary measure, such as life expectancy, is
challenging. However, we offer a new alternative based on machine-learning algorithms
that complement the existing demographic toolbox. Moreover, the analysis of four coun-
tries with substantially different mortality and three sequential time windows of 30 years
provided robust results. We confirm that the linear-link model, because of its dynamic
constraint and consequential re-parametrisation, assures coherence with respect to input
life expectancy level (providing a negligible error), while for the Ševčı́ková et al. (2016)
and DNN models, deviations were larger.
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A substantial advantage of the DNN model appears in the multiple-population frame-
work. While the Ševčı́ková et al. (2016) and linear-link models were designed to derive
an age-specific mortality profile for a future value of life expectancy based on past data
of a single population, the DNN model could be used to estimate age-specific mortal-
ity for countries where there is no data available using information from countries with
similar mortality dynamics. Therefore, the DNN model fills the gap of the predeces-
sors’ models by relying only on past data and becomes more akin to indirect methods or
model lifetables. We take a step forward among demographic methods, offering a multi-
population indirect estimation based on a data-driven approach, which can be fitted to
many populations simultaneously, using DNN optimisation approaches. While we ap-
ply our methodology to country-specific scenarios, the model could be used to indirectly
estimate mortality profiles for regions or subpopulations with similar mortality profiles.
This characteristic makes our model appealing for countries where present information is
lacking but past data are available from surrounding countries or populations, as we have
shown in the Russian case.

We acknowledge that our model is subject to several limitations, including the choice
of architecture (e.g., the number of hidden layers) and the parameters involved in the
training phase. This remains a heuristic problem for neural network users, as indeed the
choice often depends on the type of data and a preliminary round of fine-tuning, before
the testing, which is highly desired, albeit somewhat time-consuming (Nigri et al. 2019).
This issue is dimmed in the case of multi-populations. Indeed, this framework relies on
a bigger data set, thus more examples during the training phases are required, which has
two implications. On the one hand, the model provides more robustness towards struc-
tural changes; however, some country-specific dynamics may not be captured, as in the
case of the United States. Therefore, we strongly recommend the careful selection of the
countries’ subgroup on which the DNN model will be trained. Finally, although some
studies have attempted to provide a viable alternative (see, e.g., Marino, Levantesi, and
Nigri (2022); Richman (2021)), how the uncertainty in the prediction could be derived
when using deep-learning techniques is still considered a big challenge. Indeed, the re-
sulting DNN estimate is a point estimation that does not provide any information on the
uncertainty given by Ŵ , since DNN suffers from different uncertainty sources that affect
the learning process.

To conclude, here we propose a new approach that provides a valuable alternative
tool to capture irregular mortality trajectories. While machine learning, deep or not, is
not widely used in the field of demography, our method shows that it can be used to
provide robust estimations of age-specific death rates. Due to its nature, our method can
be leveraged in other demographic contexts, (e,g., to derive age-specific fertility profiles
from observed or predicted mean age at childbearing). This may foster new research at
the frontier of demographic studies using innovative, yet simple to implement, techniques
such as the DNN model. This is even more important in the context of rapid population
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ageing and fast mortality decline, but also in contexts where lacking mortality estimates
can provide crucial information for policy planning.
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Appendix

Figure A-1: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The male test period took place between 2001–2015.
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Figure A-2: Estimated age-specific male log-mortality rates log(ma,t) for the
mp-DNN model by country for 2005, 2010 and 2014 based on the
training period from 1970–2000. Black dots are the observed
log-mortality rates.
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Figure A-3: Relative differences (∆a,t) between estimates and the observed
death rate by age for the mp-DNN model. Red hues indicate that
the model underestimates mortality, while blue hues indicate
overestimation. The male test period took place between
2001–2015.
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Table A-1: Out-of-sample test: MAE and RMSE for DNN, linear-link, and
Ševčı́ková et al. (2016) by country and sex. The estimation period
for males took place between 1981–1995, 1991–2005, and
2001–2015.

Country Model 1981–1995 1991–2005 2001–2015

MAE RMSE MAE RMSE MAE RMSE

Italy

DNN 0.1419 0.2203 0.1107 0.1493 0.1194 0.1566
linear-link 0.1840 0.2846 0.1993 0.2780 0.1541 0.2158

Ševčı́ková et al. (2016) 0.1477 0.2596 0.1112 0.1701 0.1274 0.1992

Japan

DNN 0.1049 0.1241 0.0943 0.1264 0.0986 0.1254
linear-link 0.1585 0.2088 0.1014 0.1392 0.1011 0.1480

Ševčı́ková et al. (2016) 0.1042 0.1348 0.0874 0.1205 0.0684 0.0958

United States

DNN 0.0746 0.1088 0.0730 0.0907 0.0955 0.1127
linear-link 0.1020 0.1561 0.1029 0.1437 0.1029 0.1367

Ševčı́ková et al. (2016) 0.07974 0.1218 0.0907 0.1310 0.1085 0.1437

Russia (2014)

DNN - - 0.1989 0.2366 0.1497 0.2412
linear-link - - 0.1739 0.2544 0.1951 0.3067

Ševčı́ková et al. (2016) - - 0.2287 0.2940 0.1515 0.2246

Table A-2: Out-of-sample test: MAE and RMSE for mp-DNN by country and
sex. The estimation period for males took place between 1981–1995,
1991–2005, and 2001–2015.

Country Model 1981–1995 1991–2005 2001–2015

MAE RMSE MAE RMSE MAE RMSE
Italy mp-DNN 0.1276 0.1971 0.0972 0.1659 0.1257 0.1603

Japan mp-DNN 0.117 0.1683 0.0875 0.1232 0.08049 0.1095
United States mp-DNN 0.2093 0.2614 0.1451 0.1805 0.2535 0.3038
Russia (2014) mp-DNN 0.1356 0.1854 0.1849 0.2267 0.08918 0.1216
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Table A-3: Hyperparameter selectioin for single population model by country
and sex. The estimation period took place between 1981–1995,
1991–2005, and 2001–2015.

Country 1981-1995 1992-2005 2001-2015

NEURONS EPOCHS NEURONS EPOCHS NEURONS EPOCHS
Italy Male 150 800 150 800 200 800

Japan Male 350 800 150 800 600 350
United States Male 150 800 250 800 105 300

Russia Male - - 210 800 210 800
Italy Female 250 800 150 400 600 350

Japan Female 200 800 100 450 200 800
United States Female 150 800 80 800 700 600

Russia Female - - 190 800 200 800
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Figure A-4: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The female test period took place between 1991–2005.
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Figure A-5: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The male test period took place between 1991–2005.
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Figure A-6: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The female test period took place between 1981–1995.
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Figure A-7: Relative differences (∆a,t) between estimates and the observed
death rate by age for each model. Red hues indicate that the model
underestimates mortality, while blue hues indicate overestimation.
The male test period took place between 1981–1995.
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