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Abstract

Identification of critical episodes of environmental pollution, both as
a outlier identification problem and as a classification problem, is a
usual application of multivariate functional data analysis. This arti-
cle addresses the effects of robustifying multivariate functional sam-
ples on the identification of critical pollution episodes in Medellin,
Colombia. To do so, it compares 18 depth-based outlier identifi-
cation methods and highlights the best options in terms of pre-
cision through simulation. It then applies the two methods with
the best performance to robustify a real dataset of air pollution
(PM2.5 concentration) in the Metropolitan Area of Medellin, Colombia
and compares the effects of robustifying the samples on the accu-
racy of supervised classification through the multivariate functional
DD-classifier. Our results show that 10 out of 20 methods revised
perform better in at least one kind outliers. Nevertheless, no clear
positive effects of robustification were identified with the real dataset.

Keywords: Air pollution, Multivariate Functional Outlier Detection,
a-trimming, Sequential Transformations
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1 Introduction

Functional data analysis is a field of study where data are functions rather than
points on a finite-dimensional space. In the univariate case, points are functions
defined on a continuous domain, from which we have discrete points that
could be approximated through a smoothing procedure (Ramsay & Silverman,
2005). In the case of multivariate functional data, points are vectors of finite
dimension with infinite-dimensional functions as elements (Berrendero, Justel,
& Svare, 2011).

Urban outdoor pollution is a very fertile field of study for the applica-
tion of functional data analysis. Applications include spatio-temporal modeling
of O3 (Wang, Xu, & Li, 2020), outlier detection on industrial coal plants
(Sanchez-Lasheras, Ordénez-Galédn, Garcfa-Nieto, & Garcfa-Gonzalo, 2020)
and pollution-based spatial regionalization based on functional data methods
(Liang, Zhang, Chang, & Huang, 2020). One of the most frequent applica-
tions of functional data analysis focused on air pollution is outlier detection
(Febrero, Galeano, & Gonzélez-Manteiga, 2008; Febrero-Bande, Galeano, &
Gonzalez-Manteiga, 2007; Martinez et al., 2014; Sanchez-Lasheras et al., 2020;
Shaadan, Deni, & Jemain, 2012; Shaadan, Jemain, Latif, & Deni, 2015; Tor-
res, Nieto, Alejano, & Reyes, 2011; Torres et al., 2020). Even when there are
many applications of outlier identification in functional data analysis for air
pollution data, there is an opportunity for analyzing multivariate functions.
Among the articles identified, Martinez et al. (2014); Sénchez-Lasheras et al.
(2020); Shaadan et al. (2015) are devoted to more than one variable, but they
address each variable individually.

Outdoor concentrations of thin particulate matter (PM2.5) are particularly
relevant from the perspective of public health, since exposure to high con-
centrations of this pollutant is proven to be related to a higher risk of death
(World Health Organization, 2006). The Metropolitan Area of Medellin, in
Colombia, has gone through peaks in PM2.5 daily average concentrations, and
there have been efforts both from the city government and the metropolitan
environmental authorities to cope with this issue.

Taking advantage of the presence of many PM2.5 measuring stations, this
article applies multivariate functional depth-based techniques to average daily
concentrations of PM2.5. Depth estimation, classification and outlier detection
methods for multivariate functional data are considered.

There are plenty of methods for outlier detection and a lack of compre-
hensive reviews, the most comprehensive one being Ieva and Paganoni (2017)
, which leads to an opportunity to address this issue and complement it with
the combination of methods. Through simulation, this article tests available
methodologies and complements the review with combinations of them, mainly
an application of univariate a-trimming methods to multivariate functional
samples and an application of multivariate functional boxplots with different
depth measures.

The article has the following sections: Section 2 - Methods, describes
multivariate functional depth measures, outlier detection and the simulation
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procedures. Section 3 presents the results of the analysis applied to the PM2.5
dataset. Section 4 presents discussion and concluding remarks.

2 Methods

According to Febrero et al. (2008), outliers in functional data are either the
result of a data gathering mistake or the consequence of a disturbed data
generating process. As a consequence, they may induce bias, on one hand, or
be a potential source of knowledge about the disturbances that provoked their
appearance, on the other (Febrero et al., 2008).

Methods for outlier identification are based on the notion of statistical
depth, that relates to identifying how central is a point 2 € R? with respect to
a probability distribution F' (Liu, Parelius, & Singh, 1999). A depth function
can be defined as any function D(z; P) that provides an ordering from the
center outwards to the points z € R? based on the probability measure P (Zuo
& Serfling, 2000). Measures of depth result from applying depth functions to
examples from a probability distribution.

In the univariate functional scenario, the space in which both each indi-
vidual point and the whole sample are considered is the space of continuous
functions in a specific domain (Ramsay & Silverman, 2005). There are many
univariate functional depth functions and measures, such as Fraiman-Muniz
depth (Fraiman & Muniz, 2001), h-modal depth (Cuevas, Febrero, & Fraiman,
2006), random projection depth (Cuevas, Febrero, & Fraiman, 2007), band
and modified band depth (Lépez-Pintado & Romo, 2009), simplicial band
depth (Lépez-Pintado, Sun, Lin, & Genton, 2014), halfspace depth and ran-
dom Tukey depth (Cuesta-Albertos & Nieto-Reyes, 2008). Each approximation
highlights different attributes of the curves, which leads to different ordering
and differences in final results. Multivariate functional depth can be built as
a combination of multivariate depths over the continuous domain of the data,
or as a combination of functional depths over the multivariate scenario.

Multivariate functional depth measures are either combinations of uni-
variate functional depth measures to fit a multivariate shape (as in Ieva and
Paganoni (2013)) or combinations of multivariate measures to fit a functional
shape (as in Claeskens, Hubert, Slaets, and Vakili (2014)).

Figure 1 shows the analytical structure this section. Firstly, it describes
aggregation methods. Secondly, it summarizes the depth measures that are
most commonly aggregated by each method. Afterwards, it covers outlier
identification methods. As said in the introduction, mentions of supervised
classification are left to the last section of this document, regarding the
application of the methodology to air pollution.
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Fig. 1: Process of robustification tested on this article.

2.1 Notation

Functional data are defined henceforth as continuous functions Y; defined on
a compact interval U from which we observe T units with ¢1,%s,....,t7 € U, so
that Y; : U — R : t — Y;t. If we consider K variables, with £k = 1,2,3,..., K,
there will be a K-variate functional vector and Y; = (y;,, ¥ip, .-, Yij ) univari-
ate functional data points over a continuous domain delimited by the interval
U. Each multivariate functional observation Y; can also be represented as
Y: = iy, -, Yip) K-variate points. In this context, each y;, can be viewed a
realization of a random vector, and each y;, can be viewed as a realization of
a univariate functional variable. If each multivariate functional data point Y;
is viewed as a realization of a multivariate functional process, the complete set
of multivariate functions is named Y and comprehends N multivariate func-
tional observations; respectively, the cross-sectional view of Y for a specific
time point t is Y; and the univariate functional view of Y for a specific variable
k is Yk.

There are two possibilities for calculating the multivariate functional depth
with respect to a set Y, D(Y;;Y): to consider the multivariate case at first,
and after that the functional case or, in the contrary, to consider first the
univariate functional case and then the multivariate case. Given a multivariate
depth function Dm(y;,;Y:), the first case can be defined as:

D(Y) = FAy (Dm(y;,; Y1)) (1)

Where FA is a functional aggregation of Dm, which is a multivariate depth,

over the domain U. In the second case, given an univariate functional depth

function D f(y;,; Yx), the multivariate functional depth function can be defined
as:
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DY) = MAk (Df(yi,; Yx)) (2)

Where MA is a multivariate aggregation of D f, which is an univariate

functional depth, over the variables K.These two definitions are building blocks
for the more specific definition of multivariate functional depth.

2.2 Aggregation methods to build multivariate
functional depths

As depicted in Figure 1, two aggregation methods were found in the review.
The first method, stated by Claeskens et al. (2014) aggregates multivariate
depths whilst the second, stated by Ieva and Paganoni (2013) aggregates
functional depths.

2.2.1 Method 1: from multivariate to multivariate functional
depth:

The method proposed by Claeskens et al. (2014) ”averages a multivariate
depth function over time points, but in addition it includes a weight function”
(P.412). The multivariate functional depth proposed by the authors can be
defined, starting from ( 1), as follows !:

T
MFD(y;,; Y;) = Y Dm(y;,; Vi) * w(t)
t=1
where w(t) is a function defined on the interval U which values sum up to
1 over its domain and weights the magnitude of the multivariate distribution
at each point . Weighting functions can depend both on ¢ and on the charac-
teristics of Fy,2. The original design from Claeskens et al. (2014) is based on
random projections multivariate depth functions. Nevertheless, the assembling
process can be executed with any multivariate depth function, and many of
them will be discussed in the next section.

Algorithm 1 Pseudo code of Method 1

fortc U do
Calculate Dm(Y;,; Fy,.)
Calculate w(t)

end for

MFD(y;,; Y1) = Yi_y Dm(yi,; Vi) # w(t)

I The notation is standardized aiming uniformity and it is not necessarily equal to the original
2The original weighting function proposed by Claeskens et al. (2014) gives to each point ¢t a
weight that corresponds to the proportion of amplitude of the multivariate dataset at that point.
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2.2.2 Method 2: from functional depth to multivariate
functional depth:

Method 2, proposed by Ieva and Paganoni (2013) consists in calculating uni-
variate functional depths and then aggregating them by weighted averages to
give an estimate of multivariate functional depth. Starting from an univariate
functional depth function Df(y;, ; Yy) that assigns a depth for every y;, func-
tion with respect to a set Yy, the method can be stated, starting from (2)
as

K
MFD(Y;) = > w(k)Df (yi,; V&)
k=1
Where w(k) is a nonnegative weighting function or parameter which val-
ues summate to one and that assigns a weight to each dimension k under
consideration.

Algorithm 2 Pseudo code of Method 2

for k € K do
Calculate Df(Y;,; Fy, )
Calculate w(k)

end for

MFD(Y;) = Yoi; w(k)DE(ys, ; V)

Being depth functions that were created specifically for functional data,
band depth and modified band depth are the main depth functions that fit
this method according to Ieva and Paganoni (2013), but other univariate func-
tional depth functions can also be used with this aggregation framework. The
following section illustrates some of the functional depths that can be applied.

2.3 Depth measures

This section summarizes depth measures that are building blocks to both meth-
ods listed above. They are divided in two groups: multivariate depth measures
used for method one, and univariate functional depth measures, commonly
used for method two.

2.3.1 Multivariate depth measures: Multivariate Halfspace
Depth?®

Halfspace depth or Tukey’s depth is a measure of centrality for multivariate
data. Following our notation, for a random variable y;, € R belonging to a
sample Y; and any vector u € R¥, halfspace depth can be defined as (Claeskens
et al., 2014):

3Simplicial band depth is also used with Method one, as can be seen in Lépez-Pintado et al.
(2014), but that method is not explored in this document
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1

min Y, n=1.. N:dY. >uy
NueRK,Huﬂzl #{ tn IR} tn Z y’Lt}

i.e. the minimum proportion of multivariate points of the cross-sectional
set Y; = y¢,, ..., Yt covered by a halfspace -a projection through wu.

2.3.2 Univariate functional depth measures

Band and modified band depth

For a set of functions y1, y2, ..., Yi, a graph can be defined as G(yx) = {(t, yx, ) :
t € U}. Based on this detinition, Lépez-Pintado and Romo (2009) define a
band as

B(y1,, Y2, - Un,) = {(tyg) : t €U,y = a*r:n{linnyktr (t)+(1—a)x maxnyktT,(t)}

r=1,...,
With « € [0,1]. It is, the area contained between the maximum and the

minimum of a set of graphs for each ¢. From this definition, band depth is
defined as the proportion of bands that fully contain a specific curve y;,

-1
BDY (g, ) = <?) 3 H{X(t) € B(Yir1,Yir2s -+ Yinj) }

1<i1<i2<...<5;<n

Starting from this definition, modified band depth can be defined as the
weighted average of the centrality of each discretization point. This function
measures univariate depth at each discretization point and aggregates the
measures to get univariate functional measures.

Fraiman-Muniz depth

Taking advantage of the definition of simplicial depth (Liu, 1990), Fraiman
and Muniz Fraiman and Muniz (2001) build an univariate functional depth
defined as

1
FMD(y;,) = / 5 Fy(yiyt)
U

where Fi(y;,+) is the empirical distribution of the univariate sample
gathered from yy; evaluated at point ¢

H-Modal depth

Taking advantage of Kernel density estimation, and identifying the mode of
a sample as the most densely surrounded observation, Cuevas et al. (2006)
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develop a notion of depth to approach the concept of mode for functional data.
H-Modal depth function can be defined as

HMD (yi,: h) = 9(Yaei b Y1 oY) = O Knlllyi = v l)
=1

Random projections depth

Projection depth can be defined as the univariate depth of a unidimensional
projection of a point y;, belonging to a multivariate or functional process Y.
The projection is defined as the inner product (a, X) = fol a(t)X (t)dt (Cuevas
et al., 2007). Since a single projection could be highly biased, Cuevas et al.
(2007) use 50 random directions to project the data and average the depths
estimated on each projection to get a global depth.

2.4 Outlier detection

Outlyingness can be seen as the inverse of depth, it is, an ordering from
the surface inwards. Many methods have been proposed for depth-based out-
lier identification (Ieva & Paganoni, 2017). We describe them as general
frameworks in the following paragraphs.

Outlier detection based on bagplots

Hubert, Rousseeuw, and Segaert (2015) propose a method for outlier identifica-
tion in multivariate functional data that combines the approach to multivariate
functional depth provided by Claeskens et al. (2014) and the notion of bagplot
for multivariate data developed by Rousseeuw and Ruts (1999).

The starting point of bagplots is the definition of an o~ depth region as the
region that contains points with at least an « level of depth, i.e. D, = {x €
RP: D(Y;; Py) > a} with a-depth contour being the boundary of the set D,,.
This concept allows for the definition of a halfspace median as the center of
gravity of the smallest halfspace depth region*. The bag of a bagplot is defined
as the convex hull that contains 50% depth region. The outlier criterion is
based on inflating the bag by a factor of three and identifying points that rely
outside of the bag as outliers.

In this article, we build a K-variate halfspace-based bagplot at each time
point ¢ to identify multivariate outliers at each discrete point using the bagplot
criterion. An observation is identified as an outlier if it outlies at least at one
discretization point.

Outlier detection based on adjusted outlyingness
-Centrality-stability plot-

The Centrality-stability plot is the an outlyingness detection method proposed
by Hubert et al. (2015), based on the multivariate functional skew-adjusted

4Even when Hubert et al. (2015)’s definition of depth region is based on the halfspace depth,
any other depth function that meets the properties enumerated above can be used to build depth
regions. This is stated but not demonstrated on Hubert et al. (2015)
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projection depth (MFSPD), with Claeskens et al. (2014) aggregation method
as building block. There is a starting point definition of the skew-adjusted
projection depth based on the notion of adjusted outlyingness. The authors
define Adjusted Outlyingness as

: / : /
(o) median(ryyy AL VT > median(v'Y;)
median(v'Y;)—v'u;,

median(v’Y;)—wi (v'Yz)

AO(yi,; Y1) = sup

llvll=1

{ v'yi, —median(v'Y})

if v’z < median(v'Yy)

with wi, we defined as lower and upper parameter boundaries for the skew-
adjusted outlyingness in Hubert et al. (2015).

Based on that definition, the authors define a Multivariate Functional Skew-
adgjusted projection depth (MFSPD)

1
1+ AO(X (t;); Pa(ty))W; !
The centrality-stability plot that gives the criteria for identifying outliers
in Multivariate Functional Data is a scatter plot of the pairs given by

T
MFSPD = Z
=

L. . . L) . _1 — T

For points that are isolated outliers, the centrality-stability plot will show
relatively higher values on the y-axis. On the other hand, for persistent outliers,
there would be a relatively low value for the y axis and a relatively high value
of the X-axis.

Outlier detection based on multivariate functional outliergrams

The multivariate functional outliergram is a method based on the notion of
multivariate functional (modified) band depth and the (modified) epigraph
index for multivariate functional data (Teva & Paganoni, 2017). Starting from
the definition of epigraph index (EI) as the proportion of the curves that are
above a specific function under consideration, and the modified epigraph index
as weighted count of the proportion of the curves above a specific curve, the
multivariate outliergram method takes advantage of the inequality

MBD Yn (yi) < ao + atMEL,, .y, (vi) + a2n2(MEIy1,---7yn (%))2

Y-y

where ag = as = —2/(n(n — 1)) and a; = 2(n+1)/(n —1) °

5This inequality is shown in Ieva and Paganoni (2017) in more detail, with the corresponding
plots of (modified) band depth (X axis) against (modified) epigraph index (Y axis). Every point
falls below the aforementioned inequality, but points that fall too far from the boundary could
be understood as shape outliers, while points whit low (M)BD could be considered magnitude
outliers.
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Specifically, Ieva and Paganoni (2017) compute a distance d; = ag +
aiMEI; + asn*(MEI;)?> — MBD;,i = 1,...,n and define as outliers the data
points with d; > Qg3 + 1.5hgIQR4, with Q43 and IQ R4 the third quartile and
interquartile range of d1, ..., d,, and hg is a function of a robust measure of data
skewness, specifically for this case the exponential model developed upon the
medcouple by Hubert and Vandervieren (2008).

Outlier detection based on a-trimming

The method of trimming for outlier identification consists in iteratively
calculating functional depths, identifying a depth cutoff C' and dropping obser-
vations with depths less than or equal to that cutoff point C. According to
Febrero et al. (2008), there are two ways for defining the cutoff point C' using
bootstrap samples.

The first method obtains a trimmed sample by eliminating the most suspi-
cious curves from the original sample. After that, depths must be calculated,
B bootstrap samples of size n must be gathered and a threshold C? as the
empirical 1% percentile of the depths should be identified for each sample. The
cutoff point for the original distribution would then be the median of the C®
values.

The second procedure omits the initial trimming and weights the boot-
strapping procedure so that deeper points have a higher probability of being
sampled. This second procedure is the one used in this article on a—trimming.
The sequence is as follows:

Algorithm 3 Pseudo code for « - trimming method

forie1l:ndo

Calculate multivariate functional depths M F D(y;)
end for
forie1l:ndo

Calculate weights w(y;) =
end for

depth, . —min(depth)
max(depth)—min(depth)

® Generate B weighted bootstrap samples with the vector w of weights
determining the probability of a point of being sampled.

e Identify the depth value for the 99th percentile (c) for all samples.

® Find the median of the depth values and identify as outliers all observa-
tions with depths below this threshold.

Multivariate Functional Boxplot

Multivariate functional boxplot, developed by Ieva and Paganoni (2013) is an
extension of the univariate functional boxplot proposed by Sun and Genton
(2011). Similar to the univariate boxplot, the procedure consists on calculating
the (modified band) depth for each multivariate functional point, then ranking
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the functions according to their depths and defining the envelope that includes
the a% (usually 50%) central region, inflating the central envelope by a factor
of h (usually 1.5), and then marking as outliers those functions that are out
of the inflated region at least at one discretization point.

Functional High Density Region boxplot

HDR for functional data is a bivariate HDR boxplot (Hyndman & Shang,
2010) that plots the depths of the first two principal components scores for
each observation.

The first step for this method is building a bivariate dataset conformed by
the depths of the two first principal components for each observation. After
that, a kernel density is to be estimated for those depths, according to the
following equation:

i(z) = %Z Kn, (2 — 7))

where Z; is a set of bivariate points for the ith dimension, K is the kernel
function and h; is the bandwidth.
The High Density Region - HDR is defined as

Ra={z:f(2) = fa}
where f, is the region with probability coverage 1 — . The points displayed
in the HDR boxplot as the mode, defined as argsupf(z), and also the 50% and
99% higher density regions. The points outside HDR, are considered outliers.

Directional outlyingness

Dai and Genton (2019) develop the notion of directional outlyingness, defined
both as a method for integrating point-wise multivariate functional as a
measure of outlyingness that goes beyond depth and tries to capture both
magnitude and direction of outlyingness. Multivariate directional outlyingness
is defined by Dai and Genton (2019) as

O(yi,) = O(yi,) * v(t)
O(yi,) = {1/d(ys,) =1} *v(?)
where d(y;,) > 0 is a depth measure, and v(t) = {y;, — Z(t)/llyi;, — Z|},
where Z(t) is the unique median of the empirical distribution, as mea-
sured by depth d(y;,). The multivariate functional version of this measure of
outlyingness is generated based on Method 1.
The outlier identification procedure is as follows(Dai & Genton, 2019):

1. Generate a bivariate set of both the directional outlyingness for an obser-
vation and its variation from the mean outlyingness. According to Dai and
Genton (2019), the distribution of this is approximatedly bivariate normal.

2. Calculate the robust Mahalanobis distance for this dataset using de
Minimum Covariance Determinant Method.
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3. Approximate the tail of the distribution.
4. Identify as outliers curves that are grater than a cutoff point C

Method of sequential transformations

Dai, Mrkvicka, Sun, and Genton (2020) offer a different perspective to account
for both magnitude and shape outlyingness. The algorithm consists on iter-
atively identifying magnitude outliers through an effective magnitude-based
method such as a-trimming or functional boxplot and then applying trans-
formations to the data in order to get shape outliers. There are no standard
criteria of how many transformations -or iterations- are to be considered or
which depth function is preferable. The algorithm proposed by Dai et al. (2020)
is as follows:

Algorithm 4 Pseudo code for secuential transformations method

® Identify magnitude outliers, it is, outliers that are separated from the
sample across the complete domain U.

Transform data to get a modified sample.

Repeat step 1. Identified outliers are shape outliers.

Apply a second transformation

Repeat step 1 Identified outliers are shape outliers.

According to Dai et al. (2020), two sequences of transformations that can
be used in the univariate functional case, but extensible to the multivariate
functional case, are:

Transformation sequence 1 - (’O’ Transformation)

1. Creating a curve of multivariate outlyingness at each point in time.
2. Creating a curve of multivariate outlyingness at each point in time to the
previous curve.

In this sequence, a curve of outlyingness is the functional representation of
the multivariate outlyingness -defined as the inverse of depth- of a multivariate
point at each point in time ¢. In this case, we use directional outlyingness, as
implemented in Ojo, Lillo, and Fernandez Anta (2020).

Transformation sequence 2 - (T’ Transformation)

1. Taking first order derivatives
2. Taking second-order derivatives

2.5 Simulation and testing of summarized approaches

In this section, we simulate five kinds of outlying bivariate functional data sam-
ples from the same process and, following the methodology implemented by
Ieva and Paganoni (2017), we simulate 100 data sets with the same structure
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and evaluate their average true positive and false positive outlier identification
rate, in order for us to identify the mechanism that most precisely identify the
known outliers. On doing so, the following innovations are made to comple-
ment Ieva and Paganoni (2017)’s work, specifically on data simulation and the
number of algorithms tested:

e We add a two different types of outlyingness, obeying Hubert et al. (2015)
distinction between persistent and isolated outliers, and Nagy, Gijbels, and
Hlubinka (2017) suggestion of trend outliers.

¢ We complement boxplot outlier identification (originally made with (Modi-
fied) Band Depths) with H-modal, random projections and Fraiman-Muniz,
in order for us to compare different depth structures.

® We added a trimming identification with Band Depth, Modified Band
Depth, hmodal, Fraiman-Muniz and Random Projections depths.

® We added directional outlyingness and sequential transformations, which
are not present on Ieva and Paganoni (2017).

¢ In the original article, Ieva and Paganoni (2017) adjust for low depths when
using the Multivariate Functional Outliergram and show results only for the
adjusted version. Here, for illustration, we show both methods.

e For the same purpose, we use Febrero et al. (2008) outlier identification
mechanism with Modified Band Depth, H-modal, Random Tukey and Sim-
plicial depth and compare the results. We do the same with sequential
transformations.

We address six different types of outlyingness: magnitude, shape, covariance
structure, mixed, trend and isolated mixed outliers. Each type of outlying-
ness is illustrated through a simulated dataset. The simulated dataset consists
of two variables that come from a reference bivariate gaussian process. We
also test for the behavior of the outlier identificator under a heavy-tail dis-
tribution. To this purpose, we use the same mean functions and simulate a
t-distributed process with 3 degrees of freedom. We ran this simulations taking
advantage of the function generate_gauss_mfdata from the R Package Roahd
(Ieva, Paganoni, Romo, & Tarabelloni, 2019).

The generating process is the following;:

(X,Y), X(t) = px(t) + Zx (1), Y (t) = py (t) + Zy (¢)
where
px(t) = sin(2nt),t € I =0, 1]
wy (t) = sin(4nt),t € I =[0,1]

As in Teva and Paganoni (2017), magnitude outliers consider an upwards
shift on the parameter px(7T") in two units. Shape outliers consider an hori-
zontal displacement of the curves so that the shape is modified. Covariance
structure outliers consider a more highly correlated dataset for the outliers.
Mixed combine shape and magnitude outliers.

For isolated mixed outliers, we modify the original structure so that points
in the highest 10% of the domain follow the distribution of mixed outliers.
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The details of the generating processes of the outliers can be found in (Ieva &
Paganoni, 2017). For trend outliers we replace the mean function for an entirely
different function over the same domain, following a quadratic structure on
both cases.

Figure 2 shows the results of the simulation for a 20% of outlying
observations.

We simulated 200 multivariate functional observations in 200 discretization
points over the (0,1) domain, with 20% and 5% degrees of outliers contaminat-
ing the data. Following Ieva and Paganoni (2017), no smoothing procedure was
implemented to the data. Also, to complement the approach made in Ieva and
Paganoni (2017) and in order to test if the algorithms would perform equally
well under heavy-tailed distributions, we estimated two different random pro-
cesses for each simulation: a gaussian distribution and a t distribution with 3
degrees of freedom.

After the simulations, we implemented the outlier identification procedures
enunciated before, and measured two indicators of accuracy: the true positive
rate, which was the same used by Ieva and Paganoni (2017), and an indicator of
accuracy that consists on comparing the true positive (TP) and false positive
rate (FP) TP+1/FP+1, to adjust for the misclassification of false positives®.
Table 2 shows complete results for true positives, and table 3 shows results for
the true positive - false positive indicator.

Simulation results and discussion

Simulations show that there is no standard method for getting high levels of
accuracy on all outlyingness types. Table 1 shows best peforming methods for
each one of the tested distributions.

Outlier type Normal 5% Normal 20% T distribution 20%
Magnitude  Centrality-Stability =~ Alpha-Hmodal Alpha-Hmodal
Shape Directional Seq-O Directional
Covariance Seq-O Alpha-BD Directional
Mixed Boxplot, Seq-T  Boxplot, Seq-T Seq-T hmodal
Trend Boxplot, Seq-T Seq-T Directional
Isolated Seq-T Seq-T Seq-T hmodal

Table 1: Best performing method for each outlyingness type, according to
TP-FP criterium

According to this results, there are differences on outlier identification not
only with respect to the type of multivariate functional outlier, but also to the
percentage of outlying observations and the dispersion of the generating pro-
cess. Sequential transformations using 7' transformation twice performs well

SThe indicator goes from 0.5, indicating the poorest performance where all positives are false
and none of them are true, and 2, where all positives are true and none of them are false. This
indicator, nevertheless, must be complemented with the false positive rate.
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for Mixed and Isolated outliers for all generating processes, and for Trend out-
liers for normally distributed simulations, meaning that it performs better with
outliers that are significatively anomalous in shape. Directional outlyingness
performs better on very disperse distributions for trend, shape and covariance
outliers, and for the less contaminated normal distribution for shape outliers.

80% Magnitude outiers, variable 1 80% Magnitude outiers, variable 2 80% Shape outiers, varisble 1 80% Shape outiers, variable 2

(a) 20% Magnitude outliers (b) 20% Shape outliers

80% Covariance outliers, variable 1 80% Covariance outliers, variable 2 80% Mixed outlers, variable 1 80% Mixed outliers, variable 2

(c) 20% Covariance outliers (d) 20% Mixed outliers

80% Isolated outiiers, variable 1 80% Isolated outiiers, variable 2 80% Trend outiers, variable 1 80% Trend outiers, variable 2

(e) 20% Isolated outliers (f) 20% Trend outliers
Fig. 2: Simulated data (blue) with outlying observations (black)

Another relevant result that can be seen on tables 2, 3, and 4, is that
only 10 out of 20 methods display the best performance at least in one of
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the cases studied. Boxplot, centrality-stability plot, outliergram, bagplots and
high density regions did not have the best performance in any of the cases.

Magnitude Shape  Covariance Mixed Trend Isolated

20% Outliers
boxplot-MBD 0.16 0.02 0.02 1.00 0.96 0.00
boxplot-hmodal 0.16 0.02 0.02 1.00 0.99 0.01
boxplot-FM 0.16 0.02 0.02 1.00 0.98 0.00
boxplot-RP 0.10 0.00 0.01 0.98 0.90 0.00
centrality.stability 0.73 0.01 0.22 0.00 0.20 0.02
outliergram 0.55 0.00 0.04 0.00 0.00 0.01
outliergram_m 0.60 0.40 0.36 0.97 0.96 0.05
bagplot 0.32 1.00 0.98 1.00 1.00 1.00
hdr 0.16 0.22 0.75 0.22 0.25 0.98
directional 0.61 1.00 0.92 1.00 1.00 0.17
seq-O 0.88 1.00 0.79 1.00 1.00 0.07
seq-T-MBD 0.16 0.25 0.21 1.00 1.00 0.40
seq-T-hmodal 0.16 0.36 0.24 1.00 1.00 1.00
seq-T-FM 0.16 0.22 0.15 1.00 1.00 1.00
seq-T-RP 0.11 0.18 0.19 1.00 1.00 1.00
alpha-MBD 0.75 0.09 0.18 0.40 0.41 0.11
alpha-BD 0.58 1.00 0.91 1.00 1.00 0.58
alpha-hmodal 0.97 0.63 0.55 0.68 0.70 0.24
alpha-FM 0.95 0.26 0.37 0.68 0.55 0.15
alpha-RP 0.94 0.26 0.37 0.67 0.56 0.15

5% Outliers
boxplot-MBD 0.34 0.07 0.05 1.00 1.00 0.00
boxplot-hmodal 0.33 0.07 0.05 1.00 1.00 0.23
boxplot-FM 0.30 0.04 0.03 1.00 1.00 0.00
boxplot-RP 0.27 0.03 0.03 1.00 0.99 0.00
centrality.stability 0.98 0.73 0.38 1.00 1.00 0.02
outliergram 0.59 0.67 0.21 0.97 0.98 0.01
outliergram_m 0.60 0.98 0.57 1.00 1.00 0.10
bagplot 0.22 1.00 0.98 1.00 1.00 1.00
hdr 0.06 0.00 0.72 0.00 0.00 0.98
directional 0.64 1.00 0.95 1.00 1.00 0.72
seq-O 0.99 1.00 0.88 1.00 1.00 0.21
seq-T-MBD 0.34 0.39 0.28 1.00 1.00 1.00
seq-T-hmodal 0.33 0.46 0.32 1.00 1.00 1.00
seq-T-FM 0.30 0.33 0.18 1.00 1.00 1.00
seq-T-RP 0.25 0.26 0.26 1.00 1.00 1.00
alpha-MBD 0.97 0.33 0.21 1.00 1.00 0.10
alpha-BD 0.95 1.00 0.97 1.00 1.00 1.00
alpha-hmodal 1.00 1.00 0.71 1.00 1.00 0.55
alpha-FM 1.00 0.93 0.50 1.00 1.00 0.14
alpha-RP 1.00 0.93 0.50 1.00 1.00 0.14

Table 2: True positive average levels for 20% and 5% polluted data under
all normally-distributed models. Citation of packages used can be found in
Febrero-Bande and Oviedo de la Fuente (2012),Tarabelloni et al. (2018),
Segaert et al. (2020), Ojo et al. (2020), Kosiorowski and Zawadzki (2020)
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Magnitude Shape Covariance Mixed Trend Isolated

20% Outlyingness
boxplot-MBD 1.16 1.02 1.02 2.00 1.96 1.00
boxplot-hmodal 1.16 1.02 1.02 2.00 1.99 1.01
boxplot-FM 1.16 1.02 1.02 2.00 1.98 1.00
boxplot-RP 1.10 1.00 1.01 1.98 1.90 1.00
centrality.stability 1.73 0.99 1.22 1.00 1.20 1.00
outliergram 1.55 1.00 1.04 1.00 1.00 1.00
outliergram_m 1.58 1.40 1.35 1.97 1.95 1.02
bagplot 0.66 1.00 0.99 1.00 1.00 1.00
hdr 0.58 0.62 0.88 0.66 0.64 1.00
directional 1.57 1.96 1.89 1.97 1.98 1.15
seq-O 1.87 1.94 1.74 1.96 1.97 1.00
seq-T-MBD 1.16 1.25 1.21 2.00 2.00 1.40
seq-T-hmodal 1.16 1.36 1.24 2.00 2.00 2.00
seq-T-FM 1.16 1.22 1.15 2.00 2.00 2.00
seq-T-RP 1.11 1.18 1.19 2.00 2.00 2.00
alpha-MBD 1.75 1.00 1.09 1.33 1.34 1.01
alpha-BD 1.57 1.80 1.75 1.78 1.79 1.43
alpha-hmodal 1.88 1.57 1.47 1.61 1.64 1.14
alpha-FM 1.91 1.16 1.29 1.62 1.47 1.01
alpha-RP 1.91 1.17 1.29 1.61 1.49 1.01

5% Outlyingness
boxplot-MBD 1.34 1.07 1.05 2.00 2.00 1.00
boxplot-hmodal 1.33 1.07 1.05 2.00 2.00 1.23
boxplot-FM 1.30 1.04 1.03 2.00 2.00 1.00
boxplot-RP 1.27 1.03 1.03 2.00 1.99 1.00
centrality.stability 1.96 1.71 1.37 1.98 1.98 1.00
outliergram 1.59 1.66 1.21 1.97 1.98 1.00
outliergram_m 1.54 1.93 1.52 1.94 1.94 1.06
bagplot 0.61 1.00 0.99 1.00 1.00 1.00
hdr 0.53 0.50 0.86 0.50 0.50 1.00
directional 1.58 1.93 1.88 1.93 1.93 1.66
seq-O 1.90 1.90 1.79 1.91 1.90 1.13
seq-T-MBD 1.34 1.39 1.27 2.00 2.00 2.00
seq-T-hmodal 1.33 1.46 1.32 2.00 2.00 2.00
seq-T-FM 1.30 1.33 1.18 2.00 2.00 2.00
seq-T-RP 1.25 1.26 1.26 2.00 2.00 2.00
alpha-MBD 1.83 1.22 1.10 1.85 1.85 0.99
alpha-BD 1.85 1.73 1.73 1.73 1.73 1.74
alpha-hmodal 1.82 1.82 1.57 1.82 1.82 1.41
alpha-FM 1.85 1.75 1.36 1.82 1.82 1.00
alpha-RP 1.85 1.75 1.36 1.83 1.82 1.00

Table 3: TP +1/FP+1 ratio for 20% and 5% polluted data under all models
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Magnitude Shape Covariance Mixed Trend Isolated

20% Outlyingness TP ratio

boxplot-MBD 0.04 0.01 0.08 0.42 0.11 0.01
boxplot-hmodal 0.05 0.02 0.09 0.48 0.14 0.01
boxplot-FM 0.04 0.01 0.08 0.39 0.11 0.01
boxplot-RP 0.03 0.01 0.06 0.25 0.07 0.01
centrality.stability 0.52 0.05 0.22 0.03 0.00 0.05
outliergram 0.35 0.00 0.02 0.00 0.00 0.01
outliergram_m 0.51 0.11 0.35 0.53 0.51 0.05
bagplot 0.53 1.00 0.97 1.00 1.00 0.99
hdr 0.34 0.39 0.69 0.17 0.25 0.94
directional 0.53 0.99 0.90 1.00 1.00 0.08
seq-O 0.67 0.38 0.78 1.00 1.00 0.12
seq-T-MBD 0.06 0.03 0.48 0.94 0.12 0.07
seq-T-hmodal 0.06 0.05 0.53 0.99 0.17 1.00
seq-T-FM 0.05 0.03 0.42 0.93 0.12 0.29
seq-T-RP 0.05 0.03 0.46 0.90 0.08 0.59
alpha-MBD 0.47 0.08 0.16 0.13 0.08 0.10
alpha-BD 0.40 0.78 0.79 1.00 0.99 0.44
alpha-hmodal 0.81 0.34 0.59 0.58 0.25 0.16
alpha-FM 0.74 0.12 0.33 0.25 0.20 0.12
alpha-RP 0.73 0.13 0.34 0.25 0.20 0.12
TP+ 1/FP + 1 ratio
boxplot-MBD 1.03 1.01 1.07 1.40 1.10 1.00
boxplot-hmodal 1.04 1.01 1.08 1.47 1.13 1.00
boxplot-FM 1.03 1.01 1.07 1.38 1.10 1.00
boxplot-RP 1.02 1.00 1.06 1.24 1.07 1.00
centrality.stability 1.50 0.99 1.20 0.97 0.94 1.00
outliergram 1.35 1.00 1.02 1.00 1.00 1.00
outliergram_m 1.48 1.10 1.33 1.52 1.50 1.01
bagplot 0.77 1.00 0.99 1.00 1.00 1.00
hdr 0.69 0.71 0.86 0.60 0.63 1.00
directional 1.46 1.92 1.83 1.92 1.93 1.03
seq-O 1.61 1.27 1.68 1.89 1.91 1.00
seq-T-MBD 1.03 1.01 1.44 1.90 1.10 1.04
seq-T-hmodal 1.03 1.02 1.50 1.94 1.13 1.94
seq-T-FM 1.03 1.01 1.40 1.89 1.10 1.26
seq-T-RP 1.02 1.01 1.43 1.86 1.06 1.55
alpha-MBD 1.42 0.98 1.08 1.06 1.00 1.00
alpha-BD 1.34 1.69 1.70 1.85 1.86 1.34
alpha-hmodal 1.70 1.23 1.46 1.47 1.13 1.03
alpha-FM 1.68 1.02 1.24 1.18 1.11 1.00
alpha-RP 1.66 1.02 1.25 1.18 1.11 1.00

Table 4: TP and TP + 1/FP + 1 ratio for 20% polluted data under all t-
distributed models

3 Application to PM2.5 pollution data

One of the common usages of multivariate functional outlier detection is sample
robustification on supervised classification procedures Ieva and Paganoni (2017). In
this section, the findings of section 2 are applied to fit that purpose on a real dataset
of air pollution in Medellin, Colombia.
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We consider hourly records of air pollution from four measuring stations over
the Metropolitan Area of Aburrd Valley in Medellin, Colombia. Two of them are
traffic-level stations and two of them trend stations. Data are taken from a publicly
available source (SIATA, 2021) and their characteristics are summarised in 5.

Station code Station name Location Type of station
CEN-TRAF Trafico Centro Center Traffic
ITA-CJUS Casa de Justicia Itagiii  Southwest Trend
SUR-TRAF Trafico Sur South Traffic
MED-VILL Villahermosa East Trend

Table 5: Attributes of the stations analyzed

The data time span comprehends 670 multivariate functional observations, start-
ing on 2019/01/01 and ending on 2020/10/31. Since each observation takes into
account hourly data, those 670 daily observations are in fact 16080 discrete hourly
points.

3.1 Missing value imputation

During data preprocessing, some missing data were found, mainly associated to fail-
ures in the measuring devices. We used the same validation criteria that was provided
by SIATA (2019) to discard pre-defined atypical observations. The application of
those criteria lead to an amount of missing data that ranges from 82 days with miss-
ing hourly points in ITA-CJUS to 209 in MED-VILL. As shown in table 6, most of
the days had one missing hourly point and very few of them had missing a whole
day. Summarizing, 1.487 points (or 11.46% out of 16.080) were missing.

Table 6 shows the quantity of days according to the amount of missing hours. As
depicted, most of the missing values where found isolatedly, from 1 to 4 hours per
day at all monitoring stations.

The presence of moderate Pearson’s cross-sectional correlation among the four
variables (see Table 7) suggests probable gains from multivariate imputation. To
take advantage of the complete dataset, we implemented the imputation procedure
developed by Junger and Ponce de Leon (2015), specifically tested on air pollution
multivariate time series data .

3.2 Classification procedure

To test the effects of data robustification on the accuracy of a classification procedure,
we implemented the DD-G Classifier, developed by Cuesta-Albertos, Febrero-Bande,
and Oviedo de la Fuente (2017), based on Li, Cuesta-Albertos, and Liu (2012).
Whilst in the traditional DD- classifier the method consists in applying classification
methods to DD-Plots Liu et al. (1999), which are scatter plots where the dimensions
are, respectively, depths of a point with respect to each variable of a bivariate data
set, in the DD-G Classifier, depths are not calculated with respect to the distribution

“the imputation algorithm consists on the estimation of the smoothed mean value for each t
using a cubic spline, followed by a modification of the EM algorithm made of three steps: 1.
Replacing missing values by estimates, 2. estimate the parameters p and 3, 3. Estimate the level
for each multivariate time series, 4. Re-estimate the missing values with new parameters (Junger
& Ponce de Leon, 2015). The procedure was made using the R package mtsdi
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Number of days
Missing hours CEN-TRAF ITA-CJUS SUR-TRAF MED-VILL

1 122 42 51 118
2 43 19 18 46
3 11 3 4 23
4 9 0 3 5
5 4 1 0 2
6 1 3 1 2
7 1 0 0 0
8 3 0 1 2
9 0 2 0 2
10 3 1 1 0
11 1 2 0 2
12 0 1 1 2
13 1 0 1 0
14 2 1 2 0
15 2 1 0 1
16 0 1 1 0
17 1 0 1 0
18 1 0 1 0
19 0 0 0 1
20 0 0 1 0
21 1 0 0 0
24 2 5 8 3
Total 208 82 95 209

Table 6: Number of days according to the number of missing values on each
day, for days with missing values, per station.

CEN-TRAF ITA-CJUS SUR-TRAF MED-VILL

CEN-TRAF 1.00 0.75 0.69 0.77

ITA-CJUS 0.75 1.00 0.72 0.70
SUR-TRAF 0.69 0.72 1.00 0.62
MED-VILL 0.77 0.70 0.62 1.00

Table 7: Pearson’s Correlation of four stations, omitting missing values.

of a specific variable but to the distribution of the multivariate (functional) subset
of the sample grouped by a specific value of the dependent variable. From that
perspective, we go from a multivariate functional dataset with a discrete response
variable, to a g-variate dataset, each variable being the depth of a (multivariate
functional) observation w.r.t group g;, and a response variable with g levels.

In order to accurately predict the occurrence of non-critical episodes of possible
health-injuring levels of PM2.5 contamination, we built as an identifier the 7-days
forward-moving average of PM2.5 concentration. The indicator used for the classifi-
cation task took the value of 1 if any of the four stations had 7-days-forward averages
of the daily average concentration of PM2.5 pollution over 37 ,ug/m3 (SIATA, 2019),
which led us to dropping 7 of the 670 observations and keeping 663, out of which 542
are not critical and 121 (18.25%) are critical. Figure 3 shows the data with the clas-
sification criterium. Given that we are trying to classify 7-days-forward averages, the
predictions in which there are outlying observations are prone to be moderated by
those non-outlying and, hence, an improvement from robustification is hypotetically
likely to happen.
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PM2.5 at CEN-TRAF with outlier label PM2.5 at ITA-CJUS with outlier label

Outler
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Fig. 3: Complete datasets with Identified outliers (blue).

Models  Train.complete  Train.robust Test.complete Test.robust

1  knn 0.89 0.86 0.91 0.92
2 glm 0.90 0.87 0.92 0.92
3 np 0.90 0.87 0.92 0.91

Table 8: Accuracy rates of DD-G classifying with different classification
procedures.

3.3 Results of outlier identification

Since outliers in this case are more likely magnitude outliers sith a high degree of
dispersion, Alpha-hmodal identification criteria was used to robustify the sample,
leading to the identification of 77 Multivariate Functional outlying observations, as
can be seen in figure 3.

We used three classification methods inside the DD-G classifier methodology: K-
nearest neighbours, logistic regression (glm) and non-parametric kernel regression.
The methods were applied using the R package fda.usc(Febrero-Bande & Oviedo de
la Fuente, 2012). To assess the accuracy of the methods, we split the sample into train
(70%), robust train (same as train but without outliers), and test (not robustified)
and calculated the usual accuracy index as the trace of the confusion matrix divided
by the number of cases. The results of the classification procedure can be seen in
table 8.

As seen, robustifying the samples had little or no effect on the classification
algorithms. Both robustified and non-robustified methods had a classifying accuracy
of 0.91 on the testing sample.

4 Conclusion

This article summarized methods for outlier identification on Multivariate Functional
Data and showed the effect of robustification on the prediction of 7-day averages as
critical periods of PM2.5 contamination on the Metropolitan Area of Medellin.

We were able to classify the best performing outlier identification mechanisms
for low and high levels of pollution and for heavy-tailed distributions, finding that
mixed, trend and isolated outliers under our simulation can be better identified
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by sequential transformations, boxplot and directional outlyingness methods, and
that magnitude, shape and covariance outliers are can be better identified by the
directional outlyingness method, sequential transformations with the outlyingness
method, alpha-trimming with hmodal depth and centrality-stability plots.

We showed that an undocumented procedure with low computational costs as
the alpha-trimming with h-modal depth has a good performance on identifying
magnitude outliers.

When verifying the effect of robustification on the classification accuracy, we
showed that there is no clear effect of robustification. This can be due to two main
reasons: the atypical nature of the indicator variables for environmental phenomena,
that could be endogenous to the outlyingness of observations, and the fact that we are
correlating many measuring stations on a single pollutant instead of many pollutants
on a single station, which can lead to more correlated variables and, possibly, more
diverse results.

The topic of Multivariate Functional Data Analysis of environmental data is a
fertile field. Some future research starting from this methodology could include the
evaluation of many more functions on the sequential transformations procedure, and
the modification of data structure with other pollutants and stations. Also, further
consideration of spatial dependence can also be of importance for future work.

References

Berrendero, J.R., Justel, A., Svarc, M. (2011). Principal components for mul-
tivariate functional data. Computational Statistics and Data Analysis,
55(9), 2619-2634.

10.1016/j.csda.2011.03.011

Claeskens, G., Hubert, M., Slaets, L., Vakili, K. (2014). Multivariate func-
tional halfspace depth. Journal of the American Statistical Association,
109(505), 411-423.

10.1080/01621459.2013.856795

Cuesta-Albertos, J.A., Febrero-Bande, M., Oviedo de la Fuente, M. (2017).
The DD G -classifier in the functional setting. Test, 26 (1), 119-142.

10.1007/s11749-016-0502-6

Cuesta-Albertos, J.A., & Nieto-Reyes, A. (2008). The random Tukey depth.
Computational Statistics and Data Analysis, 52(11), 4979-4988. https://
arxiv.org/abs/0707.0167

10.1016/j.csda.2008.04.021

Cuevas, A., Febrero, M., Fraiman, R. (2006). On the use of the bootstrap for
estimating functions with functional data. Computational Statistics and
Data Analysis, 51(2), 1063-1074.


{arXiv:0707.0167}
{arXiv:0707.0167}

Springer Nature 2021 BTEX template

Multivariate Functional Robustification 23

10.1016/j.csda.2005.10.012

Cuevas, A., Febrero, M., Fraiman, R. (2007). Robust estimation and
classification for functional data via projection-based depth notions.
Computational Statistics, 22(3), 481-496.

10.1007/s00180-007-0053-0

Dai, W., & Genton, M.G. (2019). Directional outlyingness for multivariate
functional data. Computational Statistics and Data Analysis, 131, 50—
65. Retrieved from https://doi.org/10.1016/j.csda.2018.03.017 https://
arxiv.org/abs/1612.04615
10.1016/j.csda.2018.03.017

Dai, W., Mrkvicka, T., Sun, Y., Genton, M.G. (2020). Functional outlier
detection and taxonomy by sequential transformations. Computational
Statistics and Data Analysis, 149(11901573). https://arxiv.org/abs/
1808.05414

Febrero, M., Galeano, P., Gonzdlez-Manteiga, W. (2008). Outlier detection in
functional data by depth measures, with application to identify abnormal
NOx levels. Environmetrics, 19(4), 331-345.

10.1002/env.878

Febrero-Bande, M., Galeano, P., Gonzélez-Manteiga, W. (2007). A func-
tional analysis of NOx levels: location and scale estimation and outlier
detection. Reports in statistics and operations research, 22(3), 481-496.

10.1007/s00180-007-0053-0

Febrero-Bande, M., & Oviedo de la Fuente, M. (2012). Statisti-
cal computing in functional data analysis: The R package fda.usc.
Journal of Statistical Software, 51(4), 1-28. Retrieved from
http://www.jstatsoft.org/v51/i04/

Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test,
10(2), 419-440.
10.1007/BF 02595706

Hubert, M., Rousseeuw, P.J., Segaert, P. (2015). Multivariate functional
outlier detection. Statistical Methods and Applications, 24(2), 177-202.

10.1007/s10260-015-0297-8


{arXiv:1612.04615}
{arXiv:1612.04615}
{arXiv:1808.05414}
{arXiv:1808.05414}

Springer Nature 2021 BTEX template

24 Multivariate Functional Robustification

Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed
distributions. Computational Statistics and Data Analysis, 52(12), 5186—
5201.

10.1016/j.csda.2007.11.008

Hyndman, R.J., & Shang, H.L. (2010). Rainbow plots, bagplots, and boxplots
for functional data. Journal of Computational and Graphical Statistics,
19(1), 29-45.

10.1198 /jcgs.2009.08158

Ieva, F., & Paganoni, A.M. (2013). Depth measures for multivariate functional
data. Communications in Statistics - Theory and Methods, 42(7), 1265—
1276.

10.1080/03610926.2012.746368

Teva, F., & Paganoni, A.M. (2017). Component-wise outlier detection methods
for robustifying multivariate functional samples. Statistical Papers, 1—
20.

10.1007/s00362-017-0953-1

Ieva, F., Paganoni, A.M., Romo, J., Tarabelloni, N. (2019). Roahd package:
Robust analysis of high dimensional data. R Journal, 11(2), 291-307.

10.32614/RJ-2019-032

Junger, W.L., & Ponce de Leon, A. (2015). Imputation of missing data in
time series for air pollutants. Atmospheric Environment, 102, 96-104.
Retrieved from http://dx.doi.org/10.1016/j.atmosenv.2014.11.049

10.1016/j.atmosenv.2014.11.049

Kosiorowski, D., & Zawadzki, Z. (2020). Depthproc an r package for
robust exploration of multidimensional economic phenomena [Computer
software manual.

Li, J., Cuesta-Albertos, J.A., Liu, R.Y. (2012). DD-classifier: Nonparamet-
ric classification procedure based on DD-plot. Journal of the American
Statistical Association, 107(498), 737-753.

10.1080/01621459.2012.688462

Liang, D., Zhang, H., Chang, X., Huang, H. (2020). Modeling and Region-
alization of China’s PM2.5 Using Spatial-Functional Mixture Models.



Springer Nature 2021 BTEX template

Multivariate Functional Robustification 25

Journal of the American Statistical Association, 0(0), 1-70. Retrieved
from https://doi.org/10.1080/01621459.2020.1764363

10.1080/01621459.2020.1764363

Liu, R.Y. (1990). On a notion of data depth based on random simplices.
Annals of Statistics, 18(1), 1403-405-414.

Liu, R.Y., Parelius, J.M., Singh, K. (1999). Multivariate analysis by data
depth: Descriptive statistics, graphics and inference. Annals of Statistics,
27(3), 783-858.

10.2307/120138

Lépez-Pintado, S., & Romo, J. (2009). On the concept of depth for functional
data. Journal of the American Statistical Association, 104 (486), 718—
734.

10.1198/jasa.2009.0108

Lépez-Pintado, S., Sun, Y., Lin, J.K., Genton, M.G. (2014). Simplicial band
depth for multivariate functional data. Advances in Data Analysis and
Classification, 8(3), 321-338.

10.1007/s11634-014-0166-6

Martinez, J., Saavedra, A., Garcia-Nieto, P.J., Pineiro, J.I., Iglesias, C.,
Taboada, J., ... Pastor, J. (2014). Air quality parameters outliers detec-
tion using functional data analysis in the Langreo urban area (Northern
Spain). Applied Mathematics and Computation, 241(2), 1-10.

10.1016/j.amc.2014.05.004

Nagy, S., Gijbels, I., Hlubinka, D. (2017). Depth-based recogni-
tion of shape outlying functions. Journal of Computational
and  Graphical Statistics, 26(4), 883-893. Retrieved from
https://doi.org/10.1080/10618600.2017.1336445  https://arxiv.org/
abs/https://doi.org/10.1080/10618600.2017.1336445

10.1080/10618600.2017.1336445

Ojo, O.T., Lillo, R.E., Fernandez Anta, A. (2020). fdaoutlier: Outlier detec-
tion tools for functional data analysis [Computer software manual].
Retrieved from https://CRAN.R-project.org/package=fdaoutlier (R
package version 0.1.1)

Ramsay, J., & Silverman, B. (2005). Functional Data Analysis. Springer.


{https://doi.org/10.1080/10618600.2017.1336445}
{https://doi.org/10.1080/10618600.2017.1336445}

Springer Nature 2021 BTEX template

26 Multivariate Functional Robustification

Rousseeuw, P.J.; & Ruts, I. (1999). The Bagplot: A Bivariate Boxplot.
Statistical Computing and Graphics, 53(4), 382-387.

Sénchez-Lasheras, F., Ordénez-Galan, C., Garcia-Nieto, P.J., Garcia-Gonzalo,
E. (2020). Detection of outliers in pollutant emissions from the Soto
de Ribera coal-fired power plant using functional data analysis: a case
study in northern Spain. Environmental Science and Pollution Research,
27(1), 8-20.

10.1007/s11356-019-04435-4

Segaert, P., Hubert, M., Rousseeuw, P., Raymaekers, J. (2020). mrfdepth:
Depth measures in multivariate, regression and functional settings
[Computer software manual]. Retrieved from https://CRAN.R-
project.org/package=mrfDepth (R package version 1.0.12)

Shaadan, N., Deni, S.M., Jemain, A.A. (2012). Assessing and comparing PM10
pollutant behaviour using functional data approach. Sains Malaysiana,
41(11), 1335-1344.

Shaadan, N., Jemain, A.A., Latif, M.T., Deni, S.M. (2015). Anomaly detec-
tion and assessment of PM10 functional data at several locations in the
Klang Valley, Malaysia. Atmospheric Pollution Research, 6(2), 365-375.
Retrieved from http://dx.doi.org/10.5094/APR.2015.040

10.5094/APR.2015.040

STATA (2019). Generalidades de la informacion Red de Cali-
dad del Aire del Valle de Aburrd (Tech. Rep.). Medellin:
Area Metropolitana del Valle de Aburra. Retrieved from
https://siata.gov.co/descarga_siata/index.php/info/aire/

SIATA  (2021).  Informacién de calidad del aire.  Retrieved from
https://siata.gov.co/descarga_siata/index.php/index2/calidad _aire/

Sun, Y., & Genton, M.G. (2011). Functional boxplots. Journal of
Computational and Graphical Statistics, 20(2), 316-334.

10.1198/jcgs.2011.09224

Tarabelloni, N., Arribas-Gil, A., Ieva, F., Paganoni, A.M., Romo, J. (2018).
roahd: Robust analysis of high dimensional data [Computer software
manual]. Retrieved from https://CRAN.R-project.org/package=roahd
(R package version 1.4)



Springer Nature 2021 BTEX template

Multivariate Functional Robustification 27

Torres, J.M., Nieto, P.J., Alejano, L., Reyes, A.N. (2011). Detection of outliers
in gas emissions from urban areas using functional data analysis. Journal
of Hazardous Materials, 186 (1), 144-149.

10.1016/j.jhazmat.2010.10.091

Torres, J.M., Pérez, J.P., Val, J.S., McNabola, A., Comesana, M.M., Gal-
lagher, J. (2020). A functional data analysis approach for the detection
of air pollution episodes and outliers: A case study in Dublin, Ireland.
Mathematics, 8(2).

10.3390/math8020225

Wang, Y., Xu, K., Li, S. (2020). The functional spatio-temporal statistical
model with application to O3 pollution in Beijing, China. International
Journal of Environmental Research and Public Health, 17(9).

10.3390/ijerph17093172

World Health Organization (2006). WHO Air quality guide-
lines for particulate matter, ozone, nitrogen dioxide and sulfur
diozide - Global Update 2005 (Tech. Rep.). Retrieved from
https://apps.who.int/iris/bitstream/handle/10665/69477/WHO SDE PHE OEH 06
10.1007/s12011-019-01864-7

Zuo, Y., & Serfling, R. (2000). General Notions of Statistical Depth Function.
Statistics, 28(2), 461-482.



	fe914e71-7daf-4207-815e-33224d21e6c6.pdf
	Introduction
	Methods
	Notation
	Aggregation methods to build multivariate functional depths
	Method 1: from multivariate to multivariate functional depth:
	Method 2: from functional depth to multivariate functional depth:

	Depth measures
	Multivariate depth measures: Multivariate Halfspace DepthSimplicial band depth is also used with Method one, as can be seen in Lopez-Pintado2014, but that method is not explored in this document
	Univariate functional depth measures
	Band and modified band depth
	Fraiman-Muniz depth
	H-Modal depth
	Random projections depth


	Outlier detection
	Outlier detection based on bagplots
	Outlier detection based on adjusted outlyingness -Centrality-stability plot-
	 Outlier detection based on multivariate functional outliergrams
	Outlier detection based on -trimming
	 Multivariate Functional Boxplot
	 Functional High Density Region boxplot
	Directional outlyingness
	Method of sequential transformations
	Transformation sequence 1 - ('O' Transformation)
	Transformation sequence 2 - ('T' Transformation)


	Simulation and testing of summarized approaches
	Simulation results and discussion


	Application to PM2.5 pollution data
	Missing value imputation
	Classification procedure
	Results of outlier identification

	Conclusion


