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The nonresonant tunneling regime for charge transfer across nanojunctions is critically dependent on the
so-called β parameter, governing the exponential decay of the current as the length of the junction increases.
For periodic materials, this parameter can be theoretically evaluated by computing the complex band structure
(CBS)—or evanescent states—of the material forming the tunneling junction. In this work we present the
calculation of the CBS for organic polymers using a variety of computational schemes, including standard
local, semilocal, and hybrid-exchange density functionals, and many-body perturbation theory within the GW
approximation. We compare the description of localization and β parameters among the adopted methods and
with experimental data. We show that local and semilocal density functionals systematically underestimate the
β parameter, while hybrid-exchange schemes partially correct for this discrepancy, resulting in a much better
agreement with GW calculations and experiments. Self-consistency effects and self-energy representation issues
of the GW corrections are discussed together with the use of Wannier functions to interpolate the electronic band
structure.
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I. INTRODUCTION

The fields of molecular electronics and charge transport
through nanojunctions have been extensively investigated
in the past 15 years.1–3 At the experimental level many
techniques have been developed, including those based on
break junctions, nanostructured and scanning probe layouts,
and self-assembled monolayers.3,4 Significant improvements
in the accuracy with which these junctions are characterized
have been achieved over the years, e.g., to address the I-V
characteristics of single molecular junctions. Moreover, a large
experimental literature exists5–7 on nonresonant tunneling
experiments, where it is possible to determine the exponential
decay (β0) of the current I = I0 exp(−β0L) as a function of
the length L of the tunneling layer, e.g., a layer of organic
self-assembled monolayers connected to metallic electrodes.
Even though the β0 parameter also depends6,8–10 on the
detailed nature of the interface, it carries mostly information
about the properties of the tunneling layer itself, which makes
β0 an interesting analysis and characterization tool.

Experimentally, these measurements are performed using
different setups, ranging from metal-insulator-metal (MIM)
junctions, as mentioned above, to the evaluation of kinetic
constants of electrotransfer reactions (optically or elec-
trochemically induced) in donor-bridge-acceptor molecular
complexes.11–15 In terms of systems, measurements have been
performed on a number of cases, ranging from saturated
olephins (alkanes)5,12,13 to biological molecules (such as
DNA).16–18 Theoretically, the electronic mechanism underly-
ing these experiments has been analyzed and understood.1,5,8,10

As stated in Ref. 8, the key parameter β can be expressed

(e.g., in MIM junctions) in terms of (i) the band gap Eg

and the (frontier) band widths (or hopping parameter) t of
the insulating layer and (ii) the alignment of the Fermi level
in metals with the energy gap of the insulator. Indeed, the
effect of the electronic structure of the insulating layer can be
singled out by evaluating8 the complex band structure (CBS),
or evanescent states, in the limit of an infinitely long insulating
region. The CBS approach is also particularly interesting
for an ab initio evaluation of β, where the calculations can
be performed using either wave-function-based19 or Green’s-
function-based8 approaches. A scheme describing the relation
between the electronic structure of the MIM junction and the
evaluation of the β-decay factor is shown in Fig. 1.

Nevertheless, since the β parameter can be8 directly related
to the ratio between the energy gap and the band width of the
insulator layer, the accuracy of standard electronic-structure
simulations based on the Kohn-Sham (KS) framework of
the density functional theory (DFT) can be questioned. In
fact, using eigenvalues computed from the KS-DFT it is well
known that the fundamental band gap is badly underestimated
and (when using local and semilocal approximations) the
delocalization of electronic states is typically overestimated.
Moreover, the description of this class of experiments in terms
of single-particle energies would require them to be inter-
preted as quasiparticle (QP) energies, in order to address the
electronic dynamics of the system. This is valid for advanced
MBPT methods,20 such as Hedin’s GW approximation,21,22

and, at least in a perturbative sense, also for Hartree-Fock (HF)
calculations. However, KS-DFT states are fictitious orbitals
with no direct physical interpretation, and their use in this
context can only be justified by the assumption that the
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FIG. 1. Nonresonant tunneling experiment. (a) Scheme of the
alignment of electronic levels in a metal-insulator-metal (MIM)
junction. (b) Complex band structure (CBS) and (c) real band
structure (RBS) corresponding to the (extended) insulator system.
The computed value to be compared with experiments is highlighted
as β(EF ), EF being the Fermi energy of the MIM junction.

exchange-correlation kernel is an approximation for the
QP Hamiltonian. Model self-energies have also been used
recently23 to correct the electronic structure of metal-
molecule-metal junctions and found to be important for
the evaluation of β. To date there has been no systematic
investigation of the performance of different ab initio schemes
in the calculation of β-decay factors.

In this paper we study the effects of hybrid exchange-
correlation functionals24 and the GW21,22 approximation on the
calculation of β-decay factors, according to a scheme based
on the CBS formalism.8 A detailed comparison with local and
semilocal functionals is also provided. The theoretical back-
ground of CBS and GW and hybrid functionals is described in
Secs. II and III, respectively. We discuss a general application
of the Wannier function (WF) interpolation to the case of a
GW electronic structure (Sec. III B). Our approach is applied
to a number of polymers as reported in Fig. 2: We compute

FIG. 2. Polymers studied: (a) PE (polyethylene), with each car-
bon atom in the polymer chain being fully saturated by two hydrogen
atoms; (b) PA (polyacetylene), where sp2 hybridization of carbon
atoms in the chain (each one also bonded to one hydrogen atom)
implies π conjugation, i.e., alternation of single and double C–C
bonds along the chain; (c) PPV [poly-(para-phenylene-vinylene)],
constituted by benzene rings connected through vinyl groups, also
presenting conjugation; (d) PPI [poly-(phenylene-imine)], differing
from PPV in the substitution of one carbon atom in each vinyl group
by a N atom, which still preserves the polymer conjugation.

the CBS for polyethylene (PE) and polyacetylene (PA) as
references for saturated and conjugated chains, respectively.
We then consider poly-(para-phenylene-vinylene) (PPV)25

and poly-(phenylene-imine)7,26 (PPI), which are relevant from
a technological point of view, and we also make a comparison
with recent experimental data.7 All chains are studied as
isolated; see Appendix B for full numerical details.

II. METHOD: TRANSPORT

To simulate the decay factors of nonresonant tunneling ex-
periments we adopt the CBS algorithm proposed by Tomfohr
and Sankey.8 For a recent discussion of the connection of
transport properties with the CBS theory, see also the work by
Prodan and Car.10 Within this approach, we need to evaluate
the CBS in the limit of an infinitely thick insulating region
(β is in fact an asymptotic behavior). The outcome of this
procedure is a set of β(E) curves. The value β0 which has to
be compared with the experiments is the smallest one (i.e., the
most penetrating) aligned with the Fermi level of the junction:

β0 = β(EF ). (1)

Since the electrodes are not considered in the calculation,
together with the proper metal-insulator interface, EF is not
known a priori and must be either estimated or calculated
separately. This issue is discussed in detail in Ref. 8. In the
present work we do not compute the Fermi level alignment
explicitly, and we rely on the estimation method proposed in
the above reference,8 which consists in evaluating β(E) at
the energy where dβ/dE = 0 (branch point). This method
is originally due to Tersoff27 and based on the pinning
of EF by metal-induced gap states (MIGSs). We discuss
this approximation in Sec. V, where we compare it with
experimental results. Note that the value of β at the branch
point is also connected (for nonmetallic one-dimensional
systems with a local potential) with the degree of localization
of the density matrix, since β determines28,29 its spatial decay.
Pictorially, a better description of β(E) means, then, an
improved description of the electronic localization.

Scanning the energy spectrum, the CBS procedure searches
for evanescent solutions to a given effective single-particle
Hamiltonian. By definition, states with (real) Bloch symmetry
k satisfy the relation

T̂ (R) ψk(r) = ψk(r + R) = λ ψk(r), (2)

where R is any direct lattice vector, T̂ (R) is a translation
operator, and λ = eik·R. In the same way it is possible to
define a complex Bloch symmetry κ = k + iβ/2 setting λ =
eiκ ·R = eik·R e−β·R/2, which is thus no longer a pure phase.
The imaginary part of κ implies a real-space exponential
decay of the wave functions and it is customary to define
β(E) = 2 |Im[κ(E) · ê]| (ê is the transport direction). The
energy dependence of κ comes from the fact that, for a fixed
energy E, the solutions are searched in terms of κ , as is usually
done in scattering theory.

By adopting a localized basis set {|φiR〉} (i and R are orbital
and lattice indexes, respectively), it is possible to define the
Hamiltonian H and overlap S operators through their ma-
trix elements Hij (R) = 〈φi0|H |φjR〉 and Sij (R) = 〈φi0|φjR〉,
and the wave functions as |ψl〉 = ∑

iR Cil(R) |φiR〉. Setting
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Z = H − ES, the eigenvalue equation for H can be written as

N∑
m=−N

Z(Rm)C(Rm) = 0, (3)

where matrix multiplication is implicit, and N is the number
defining the last nonzero matrix Z(RN ). Here we are assuming
a real-space decay of the Hamiltonian and overlap matrices,
which is typically physical, even if the range can be strongly
dependent on the scheme used to define the Hamiltonian. We
comment on this point later when discussing the use of GW or
HF methods. It is then possible to derive8 the system of 2N

matrix equations

−
N−1∑

m=−N

Z(Rm)C(Rm) = Z(RN ) λC(RN−1), (4)

C(Rm+1) = λC(Rm), m = −N,N − 2, (5)

where Eq. (5) is a direct consequence of Eq. (2). Such matrix
equations become an eigenvalue problem for λ, assuming we
can invert the matrix Z(RN ). As pointed out in Ref. 8, this
is very often not the case, as the matrix is singular, but the
singluarities can be avoided. The reader is referred to the
original work for the details. The full algorithm proposed in
Ref. 8 has been implemented in the WANT code30,31 and used in
the present work. A simple tight-binding analytical model (a
generalized version of the one presented in Ref. 8) is discussed
in Appendix A. This model is used in Sec. IV to fit and interpret
the real and CBSs of the polymers we have investigated here.

III. METHOD: ELECTRONIC STRUCTURE

According to the above discussion, in order to simulate the
decay coefficient of an MIM junction, we need to compute
the electronic structure of the insulating layer (considered
to be infinitely extended). The underlying reason for this
simplification is that we interpret the computed single-particle
energies of the system as QP energies, which, in turn,
determine the dynamics of singly charged excitations. In
general, the transport problem for interacting systems is
more complicated than that and requires a more sophisticated
treatment.32–40 For DFT, the understanding of how the exact
KS-DFT Hamiltonian performs to compute transport has
recently been the subject of several investigations.41–44 Apart
from the properties of the exact functional, currently available
DFT approximations like the LDA and GGA have been
demonstrated to systematically overestimate the conductance,
especially for off-resonant junctions.32,45,46 Pragmatically, this
suggests that corrections beyond local and semilocal KS-DFT
approaches are needed.

Using QP-corrected electronic structure to compute charge
transport (e.g., by means of the Landauer formula)47 through
interacting systems seems to be a reasonable approximation
when finite-lifetime effects are weak.37,48 Indeed, a number
of works computing QP energies by means of the GW
approximation35,49–52 or model self-energies23,53–55 have been
reported in the literature. On the other hand, hybrid-exchange
functional methods like B3LYP56 and PBE057 are widely used
and lead to band gaps and band widths which are usually
closer58 to the experimental values than simple semi-local KS

approaches, for both molecules and solids. Recent works59–62

have further investigated the accuracy of hybrid exchange
functionals, also in comparison with GW calculations. In
this work we compare GW and hybrid functionals for the
calculation of electronic structure and transport properties of
selected organic polymers. In the following we summarize
the GW approximation and underline some formal similarities
with hybrid functionals.

A. The GW approximation and hybrid DFT

A many-body theoretical formulation of the electronic
structure problem can be obtained using the Green’s function
formalism. The one-particle excitation energies of an interact-
ing system are the poles of its interacting Green’s function
G(E),20,63 which can be written as

G(E) = [EI − h0 − �(E)]−1 , (6)

where h0 is an effective single-particle Hamiltonian and
�(E) is the nonlocal, non-Hermitian, frequency-dependent
self-energy operator. In general, � is not known a priori
and must be approximated. In this work the self-energy is
computed within the GW approximation:21,22

�GW(r1,r2,E) = i

∫
dω′

2π
e−iδω′

G(r1,r2,E − ω′)W (r1,r2,ω
′),

(7)

where W (ω) is the screened Coulomb interaction evaluated
in the random phase approximation. For more details see,
e.g., Refs. 63 and 64. In the simplest implementation of
the GW approximation, the self-energy is computed non-self-
consistently, i.e., by evaluating G and W according to the
eigenvalues and eigenvectors of a reference noninteracting
Hamiltonian (typically the KS Hamiltonian at the LDA or
GGA level). Such a procedure is known as G0W0 and gives rea-
sonable results for the QP energies in a number of cases.63,65,66

In the present paper we exploit the G0W0 approximation and
evaluate the frequency integrals in Eq. (7) by using a plasmon
pole model according to Godby and Needs.67

In this work, the main quantities we are interested in are
the QP energies. If we neglect finite-lifetime effects and take
(or symmetrize) the self-energy to be Hermitian, QP energies
are given by first-order perturbation theory as

εQP
m = εKS

m + 〈ψm| �(
εQP
m

) − vxc |ψm〉. (8)

As is customary,64 in order to solve for εQP
m , the self-energy

in the above equation is expanded to first order as a function
of E.

In order to gain more physical insight we also refer to
the (static) COHSEX21,64 approximation of GW, where the
self-energy is written as � = �COH + �SEX:

�SEX(r1,r2) = −γ (r1,r2) W (r1,r2,0), (9)

�COH(r1,r2) = 1
2 δ(r1,r2) Wp(r1,r2,0). (10)

Here γ (r1,r2) is the one-particle density matrix, and Wp =
W − v is the dynamical contribution to W (v being the
bare Coulomb interaction). The COHSEX self-energy is thus
the sum of a statically screened exchange term and a local
potential. This partition is particularly useful for discussing
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the connection between hybrid exchange functionals and GW.
In the former case, the potential can be written as24

vhyb
xc = α vNL

x + (1 − α) vL
x + vL

c , (11)

where vNL
x is the nonlocal exchange potential, while vL

x
and vL

c are local potentials. It is then straightforward to
interpret α as an inverse effective screening to stress the
formal analogy of Eqs. (9)–(11). Similar considerations are,
of course, valid for more complex forms of hybrid functionals,
like range-separated or local formulations.24,68,69 This formal
analogy is well known in the literature,24 and it has also
been further investigated recently.70 Besides their accuracy
for thermochemistry, this analysis highlights that also the
electronic structure computed by nonlocal hybrids can benefit
from the inclusion of some screened exchange term. Indeed,
improved descriptions of the electronic structure for finite and
extended systems are typically found,58,70 even though the
accuracy may vary significantly, depending on the system.

B. Interpolation of the GW electronic structure
using Wannier functions

Dealing with periodic systems, interpolation over the first
Brillouin zone (1BZ) is a long standing issue. Calculations
are typically performed by discretizing k points in the 1BZ,
and some postprocessing schemes [e.g., those to compute
density-of-states (DOS), Fermi surface, band structure, or
phonons] might need a better discretization of the 1BZ
than some of the previous steps (often aimed at computing
total energy, forces, and charge density). This is particularly
critical when the computational requirements of the adopted
methods limit the k-point discretization, as is the case for
GW calculations. Schemes able to refine or interpolate71 over
the 1BZ are particularly useful for this purpose. One of these
is the Wannier interpolation,31,72–74 where the localization of
the WF basis together with the finite range in real space of the
Hamiltonian is used to perform a Fourier interpolation of the
eigenvalues and, eventually, the eigenvectors. The use of this
scheme to interpolate GW results has also been reported by
Hamann and Vanderbilt.75

The procedure can be applied not only to the Hamiltonian
but, in principle, to any operator A(r,r′) with the translational
symmetry of the Hamiltonian. First, we define the projector P

over a subspace of interest,

P =
∑
nk

|ψnk〉〈ψnk|, (12)

in terms of the eigenvectors of H . When the subspace P is
complete, we can represent A as

A =
∑

k

∑
mn

|ψmk〉Amn(k) 〈ψnk|, (13)

Amn(k) = 〈ψmk|A|ψnk〉. (14)

Here, A is diagonal with respect to the k index because it
commutes with the translation operators of the direct lattice
(as assumed). In practice, limiting the number of eigenstates
of H included in P is equivalent to considering the projection
of A on the P subspace, namely, AP = PAP instead of A.
At this point we can use the definition of maximally localized

WFs (MLWFs), according to Ref. 73,

|wiR〉 = 1

Nk

∑
k

e−ikR
∑
m

Uk
mi |ψmk〉, (15)

to obtain an expression for the matrix elements of A on the
Wannier basis, AP

ij (R) = 〈wi0|A|wjR〉:

AP
ij (R) = 1

Nk

∑
k

e−ikR [Uk†AP (k)Uk]ij . (16)

Note that when the original Marzari-Vanderbilt procedure73 is
applied without any disentanglement,74 the Uk matrices are a
unitary mapping of N Bloch states (usually, but not necessarily,
occupied) into N WFs. Instead, when the disentanglement is
performed, the resulting WF set does not span the whole P

subspace (Uk are then rectangular matrices). This means that
in the general case the final representation of A is actually
projected not on P but on the smaller subspace spanned by the
WFs.

Assuming that AP is decaying fast enough in real space
to have ‖AP (R)‖ � 0 for |R| > |R0| (where R0 is within
the finite set compatible with the initial k-point grid), we
can perform the following Fourier interpolation to obtain the
matrix elements of A for any k′ point:

AP
ij (k′) =

|R|<|R0|∑
R

eik′R AP
ij (R). (17)

When interpolating GW results, we want to represent
the operator �(E) = �GW (E) − vxc, which is, in general,
nonlocal, non-Hermitian, and frequency dependent. For the
sake of the Wannier interpolation, we are mainly interested in
checking that the intrinsic nonlocality of P�P is compatible
with the selected k-point grid (or, in other terms, that the
GW calculation is converged with respect to the number of k
points used). The localization of the GW self-energy is further
discussed in Sec. V A, especially in connection with the usual
approximation which neglects off-diagonal �mn(kE) matrix
elements.

C. Numerical approach

In this work, DFT and hybrid-DFT calculations have been
performed using the CRYSTAL09 package.76 The code imple-
ments all-electron electronic structure methods within periodic
boundary conditions and adopts an atomic basis set expanded
in Gaussian functions (further details in Appendix B). Once
the Hamiltonian matrix elements are obtained,77 the real and
CBSs are interpolated (as discussed in the previous sections)
using the WANT30,31 package.

GW results have been obtained using the plane-wave and
pseudopotential implementation of SAX,78 which is interfaced
to Quantum ESPRESSO79 (QE) for DFT calculations. In this
case, once the KS electronic structure is evaluated, we first
compute MLWFs73,74 using WANT and then apply the CBS
technique. In order to assess any systematic error in comparing
GW and hybrid-DFT results (which have been obtained using
different basis sets such as plane waves and local orbitals), we
have also performed hybrid-DFT and HF calculations using
QE and SAX. In this case WFs are computed on top of the
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already corrected electronic structure. Results are shown for
the case of PA [see Table III and Fig. 8 in particular]. The
excellent agreement between the two sets of data suggests
that the pseudopotential approximation, the basis set, and
the numerical thresholds are sufficiently well converged
to have negligible influence on the results presented.
Full computational details and parameters are reported in
Appendix B.

IV. RESULTS

A. Structural properties

Before focusing on the electronic and transport properties
of the isolated polymer chains in Fig. 2, we investigate their
structure by fully relaxing both the atomic positions and the
cell parameters using different exchange-correlation schemes.
All systems are treated with one-dimensional periodicity; the
details of the calculations (performed using CRYSTAL09) are
given in Appendix B. The results for the lattice parameters are
reported in Table I.

In the case of PA, electronic properties such as the band gap
(as well as the evanescent states) are strongly dependent on the
dimerization of the C–C bond lengths (Peierls distortion). Such
bond alternation is not easily captured by local and semilocal
DFT schemes, leading to band gaps that are far too small, i.e.,
to an overestimation of the metallicity. Since these parameters
are critical to our purpose, we report also the bond length
alternation (BLA) for PA in Table I. Our HF results are in
excellent agreement with previously published results.80,81 In
the following we label as PAHF the calculations performed
using the geometry from Ref. 80, where c = 2.469 Å and
BLA is 1.339/1.451 Å. We also decided to consider two
frozen geometries of PA (namely, PA1 and PA2), according
to other data in the literature.8,82 In the case of PA1

82 we set
c = 2.451 Å and the BLA to 1.370/1.460 Å, while for PA2

8

c = 2.496 Å and the BLA is 1.340/1.540 Å (assuming ideal
C–C bond angles of 120◦). In passing, we note that the PA1

geometry is also very similar to the one adopted in Refs. 83–85,
where c = 2.457 Å and the BLA is set to 1.360/1.440 Å,
according to experimental data.86,87 Since these theoretical
studies report GW results, in Sec. IV B we compare them with
those for PA1.

Data from multiple geometries of PA are useful to decouple
the electronic and structural effects of the adopted exchange

TABLE I. Lattice parameter c (Å) for PA, PE, PPV, and PPI,
computed using different XC schemes as implemented in CRYSTAL09.
In the case of PA, we also report the bond length alternation (BLA)
(Å) of single and double C–C bonds.

Scheme PA PA BLA PE PPV PPI

LDA 2.463 1.369/1.416 2.537 6.644 12.869
PW 2.482 1.376/1.428 2.570 6.712 13.001
BLYP 2.493 1.380/1.435 2.590 6.747 13.079
PBE 2.484 1.378/1.429 2.572 6.719 13.014
B3PW 2.471 1.362/1.432 2.560 6.692 12.961
B3LYP 2.476 1.375/1.435 2.570 6.706 12.998
PBE0 2.468 1.359/1.432 2.553 6.680 12.938
HF 2.465 1.332/1.457 2.556 6.689 12.950

and correlation (XC) schemes on the CBS. Since the extent
of this goes beyond PA, in the following we decided to
look at the effect of XC treatment first using a frozen
geometry, independently of the adopted method, and then to
compare them also with the same quantities obtained using
fully relaxed geometries. Moreover, since GW corrections
are usually computed without performing a further structural
relaxation, working at fixed geometry allows us to compare
GW corrections and results from hybrid functionals for
identical geometries. For each polymer except PA we adopted
the geometry obtained after full relaxation at the PBE level
using QE. The lattice parameters (2.564 Å for PE, 6.702 Å for
PPV, and 13.004 Å for PPI) are in very good agreement with
those in Table I obtained using PBE in CRYSTAL09.

B. Electronic structure: Polyethylene and polyacetylene

In this section we investigate the effect of different XC
schemes (local and semilocal DFT, hybrid functionals, HF, and
GW) on the electronic properties of two prototype polymers
(PE and PA), while results for PPV and PPI are reported in
Sec. IV C. We compute both the real and the CBSs. Figures 3
and 4 refer to the case of frozen geometries (i.e., geometry
is not changing according to the adopted scheme; see also
Sec. IV A). Details on the electronic structure of the three PA
geometries studied are reported in Table III. In the case of
PA (as well as PPV), we can also compare the results with
previously published GW calculations.83–85,88 Note that the
GW results are interpolated using MLWFs, which results in
filtering out some of the states above the vacuum level.

In Fig. 3, we report77 the real and CBSs for PE. Our results
are in reasonably good agreement with previously published

FIG. 3. (Color online) Polyethylene. Real and complex band
structures using the following schemes: (a) PBE, (b) PBE0, (c)
HF, and (d) GW. Solid (black) lines in (a)–(c) refer to CRYSTAL09

calculations. GW results were obtained using SAX (circles) and
interpolated with WFs [solid (black) lines].
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FIG. 4. (Color online) Polyacetylene (PA1 geometry). Real and
complex band structures using the following schemes: (a) PBE, (b)
PBE0, (c) HF, and (d) GW. Solid (black) lines in (a)–(c) refer to
CRYSTAL09 calculations. GW results were obtained using SAX (circles)
and interpolated with WFs [solid (black) lines]. Dashed (red) lines
refer to data interpolated according to the tight-binding model in
Appendix A.

theoretical data.8,10,19,89,90 As shown in Figs. 3(a) and 3(b),
the maximum value of β from the arc across the fundamental
gap does not change much when passing from PBE to PBE0
(βmax � 0.8 Å−1). In agreement with Ref. 10, we believe this
to be one of the reasons why the β values computed at the
LDA or GGA levels were found to be in agreement with the
experiment.

The main qualitative difference from Fig. 2(a) in Ref. 19
comes from the filtering of some vacuum-like states, due to
the use of the localized basis (or WF interpolation) in our
approach. Our results are more similar to those presented
in Ref. 8, obtained using a localized basis set. This has
little influence on the part of the CBS spectrum that is
physically relevant for the nonresonant tunneling experiment.
The G0W0-corrected band structure is reported in Fig. 3(d).
The G0W0 CBS is not computed here because the missing self-
consistency is critical for the CBS, as discussed in Sec. V A.
Instead, we have computed CBS from the self-consistent91

COHSEX electronic structure. All results for βmax are collected
in Table II, where we compare data obtained using CRYSTAL09

versus QE or SAX after Wannierization. Results and trends
compare reasonably well.

In Fig. 4, we show the results for the real and CBSs in
the case of PA1. The dependence of the β parameter on the
exchange-correlation scheme is displayed. As expected, upon
increasing the percentage of nonlocal exchange from PBE
(0%), to PBE0 (25%), up to HF (100%), the band gap opens,
and the “degree of localization” increases as indicated by the
increasing values of βmax. This trend is general and also found

TABLE II. Polyethylene: Maximum β(E) (Å−1) inside the gap
computed by means of different theoretical schemes. Results were
obtained by CRYSTAL09 (CRY) and by Quantum ESPRESSO (QE)–SAX.

Polyethylene

βmax LDA PBE PBE0 HF COHSEX

CRY 0.77 0.77 0.81 0.92
QE-SAX 0.80 0.81 0.94 0.94

for the other conjugated polymers studied in this work. A
detailed description of the computed band structure for PA in
the PAHF, PA1, and PA2 geometries is reported in Table III for
all the methods.

In order to gain more physical insight from our calcu-
lations, we have also fitted the data using the generalized

TABLE III. Polyacetylene (PA)HF, PA1, and PA2: Band gap (Eg;
in eV), hopping parameters (t1, t2; in eV) according to the tight-
binding (TB) model in Eq. (A5), and maximum β(E) (Å−1) inside the
gap. Calculations were performed using DFT, hybrid-DFT, HF, and
diagonal-GW schemes. βmax values through the CBS interpolation,
using the TB model, are also listed. All data were computed using
CRYSTAL09 except the GW results and the X-QE lines (X = LDA,
PBE, PBE0).

Scheme Eg t1 t2 βmax βmodel
max

PAHF

LDA 0.99 2.97 0.199 0.13 0.13
PW 1.01 2.97 0.203 0.14 0.14
BLYP 1.02 2.96 0.199 0.14 0.14
PBE 1.01 2.98 0.204 0.14 0.14
B3PW 1.94 3.78 0.223 0.19 0.21
B3LYP 1.95 3.77 0.218 0.20 0.21
PBE0 2.20 3.98 0.228 0.21 0.22
HF 6.97 6.45 0.277 0.38 0.43
d-G0W0 2.60 3.85 0.154 (0.17) 0.27
LDA-QE 0.99 3.02 0.214 0.13 0.13
PBE-QE 1.02 3.00 0.212 0.14 0.14
PBE0-QE 2.22 3.99 0.238 0.20 0.22

PA1

LDA 0.78 2.90 0.144 0.11 0.11
PW 0.80 2.90 0.148 0.11 0.11
BLYP 0.80 2.89 0.144 0.11 0.11
PBE 0.80 2.91 0.149 0.11 0.11
B3PW 1.64 3.73 0.166 0.17 0.18
B3LYP 1.64 3.72 0.161 0.17 0.18
PBE0 1.88 3.94 0.171 0.18 0.19
HF 6.46 6.46 0.212 0.36 0.40
d-G0W0 2.05 3.72 0.090 (0.14) 0.22

PA2

LDA 1.68 2.76 0.134 0.24 0.24
PW 1.72 2.76 0.139 0.25 0.25
BLYP 1.72 2.75 0.134 0.25 0.25
PBE 1.72 2.77 0.139 0.25 0.25
B3PW 2.89 3.49 0.153 0.31 0.33
B3LYP 2.90 3.47 0.149 0.31 0.33
PBE0 3.20 3.67 0.158 0.33 0.35
HF 8.37 5.88 0.196 0.50 0.56
d-G0W0 4.17 3.87 0.092 (0.27) 0.43
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nearest-neighbor (NN) model presented in Sec. II and
Appendix A. This model has three parameters, which approx-
imately correspond to the band gap Eg and the band widths
of the HOMO and LUMO bands (related to the parameters
t1 and t2). The proper relation between the band widths and
t1,2 is given in Eqs. (A11) and (A12). The main difference
between this model and the one introduced in Ref. 8 is that the
one used here allows for different band widths for the HOMO
and LUMO. While this difference is found to be small (but
generally not negligible) in the cases studied, the generalized
model allows for a more accurate fitting of the electronic struc-
ture of polymers. As shown in Figs. 4(a)–4(c), the model fitting
[dashed (red) lines] is very accurate for all the local, semilocal,
and hybrid functionals. In general, the HF data show the largest
deviation from the model. We believe the nonlocal nature of
the exchange potential to be the origin of this behavior.

Figure 4(d) reports the GW results for PA1. The fundamental
gap is 0.8 eV at the PBE KS-DFT level, while it increases to
2.05 eV when G0W0 is applied. This is in very good agreement
with previous GW data for PA.83–85,92 As already mentioned,
GW calculations are performed by using plane waves and
pseudopotentials, while the hybrid-DFT is evaluated on a
localized basis set. In order to assess a possible systematic error
due to this procedure, we have also computed the electronic
structure of PAHF at the LDA, PBE, and PBE0 levels, by using
the plane-wave implementation of QE. Results are reported
in Table III on the “X-QE” rows (X = LDA, PBE, PBE0).
The two sets of data are found to be in excellent agreement,
allowing for a direct comparison of GW and hybrid-DFT data.
See also Sec. V A and Fig. 8(b) for further details.

As a last remark, according to the standard approach for
GW calculations,63,64 only the KS eigenvalues are corrected,
without modifying the wave functions. In other words, only
the diagonal matrix elements of the self-energy (on the original

FIG. 5. (Color online) PPV: Real and complex band structures,
as in Fig. 4.

TABLE IV. Poly-(para-phenylene-vinylene) (PPV): Band gap
(Eg; eV), hopping parameters (t1, t2; eV), and maximum β(E) (Å−1)
inside the gap (computed and fitted from the tight-binding model), as
in Table III. The last column reports the βmax values for the relaxed
geometries.

Scheme Eg t1 t2 βmax βmodel
max β relax

max

LDA 1.28 1.07 0.016 0.19 0.18 0.18
PW 1.31 1.07 0.017 0.19 0.18 0.19
BLYP 1.31 1.07 0.016 0.19 0.18 0.19
PBE 1.31 1.07 0.017 0.19 0.18 0.19
B3PW 2.22 1.39 0.021 0.25 0.23 0.26
B3LYP 2.22 1.38 0.020 0.25 0.23 0.26
PBE0 2.46 1.46 0.022 0.26 0.24 0.28
HF 6.74 2.46 0.033 0.41 0.38 0.46
G0W0 3.09 1.63 −0.004 0.20(d) 0.28

DFT Bloch eigenvectors) are considered. The effects of this
are analyzed in detail in Sec. V A, where it is demonstrated
that this procedure has a sizable effect on the calculation of
the CBS. For this reason, the GW CBS directly computed is
reported in a lighter color in the right panel in Fig. 4(d), while
βmax is listed in parentheses in Table III.

C. Electronic structure: PPV and PPI

In this section we consider two further polymers, namely,
PPV and PPI. PPV has been largely investigated for its role
in organic (opto-)electronics,25 while oligo-(phenylene-imine)
molecules attached to gold leads have recently been considered
and the β-decay coefficents measured.7,26 This makes these
two polymers particularly appealing for our analysis.

FIG. 6. (Color online) PPI: Real and complex band structures, as
in Fig. 4. The fitting procedure was applied on a cell of half-length
and then folded, resulting in four bands instead of two.
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TABLE V. Poly-(phenylene-imine): Band gap (Eg; in eV), hop-
ping parameters (t1, t2; in eV), and maximum β(E) (Å−1) inside
the gap (computed and fitted from the tight-binding model), as in
Table III. The last column reports the βmax values for the relaxed
geometries.

Scheme Eg t1 t2 βmax βmodel
max β relax

max

LDA 1.40 1.05 0.014 0.21 0.20 0.20
PW 1.42 1.05 0.014 0.21 0.20 0.21
BLYP 1.42 1.04 0.014 0.21 0.21 0.21
PBE 1.42 1.05 0.014 0.21 0.20 0.21
B3PW 2.38 1.36 0.020 0.27 0.26 0.29
B3LYP 2.38 1.35 0.019 0.27 0.26 0.29
PBE0 2.64 1.43 0.021 0.29 0.28 0.30
HF 7.12 2.38 0.036 0.45 0.43 0.50

Results for PPV are reported in Fig. 5 and Table IV. The
behavior of the real and CBSs are qualitatively in agreement
with what we have found for PA. PBE0 results (βmax =
0.26 Å−1) are those among the hybrid functionals that best
compare with the interpolated GW data (βmax = 0.28 Å−1),
though slightly underestimating βmax and, to a larger extent, the
band gap. In the case of PPI, results are reported in Fig. 6 and
Table V. For this polymer, the model fitting has been applied
on a cell of half-length and then bands have been folded,
leading to four interpolated bands instead of two. Despite the
reduction of translational symmetry, this procedure leads to
a better fit because it describes a larger part of the frontier
electronic structure. In agreement with previous cases, while
we do not have GW results for PPI, we consider PBE0 data
(βrelax

max = 0.29 Å−1) as our best estimate. In the next section we
also discuss the comparison of these computed data with recent
experimental results.7,26 For the PPV and PPI cases, we have
also studied separately the effect of the geometrical relaxation
induced by the different functionals on the CBS. This effect is
consistent with the trends already observed at fixed geometry.
In the last columns in Tables IV and V we report the βmax

value for the relaxed polymer geometries (labeled βrelax
max ). The

βmax parameters increase further with increasing fraction of
nonlocal exchange, when the geometries are relaxed according
to the adopted functional. While the coupling of the electronic
structure with the structural properties is particularly evident
and critical in the case of PA (since the opening of the gap
is due to Peierls distortion of the C–C bonds), it is much less
pronounced for PPV and PPI, where it accounts for a correction
term only, the leading contribution being the description of the
electronic levels.

V. DISCUSSION

A. Analysis of the GW data

In this section we discuss the effect of some of the approx-
imations involved in the evaluation of the GW self-energy. In
particular, we address issues related to the representation of
� when computing the CBS, as well as the effect of the self-
consistency. The GW self-consistency is investigated within
the static COHSEX approximation. In doing so, we discuss the
localization properties of the resulting Hamiltonians together

with the quality of the NN model fitting of the CBS. We focus
on the case of PA, which is a good prototype for this class of
one-dimensional systems.

Let us begin with the representation problem. As already
recalled in Sec. III B, assuming a large enough subset of Bloch
vectors (in principle, all of them), the self-energy operator can
be represented as

�GW (E) =
∑

k

∑
mn

|ψmk〉�mn(k E) 〈ψnk| (18)

[see also Eqs. (13) and (14)]. In the usual GW practice, besides
evaluating the self-energy by using the underlying KS-DFT
electronic structure for G and W (G0W0 approximation, i.e.,
no self-consistency), it is also customary to neglect the off-
diagonal band indexes m �= n in Eq. (18) when computing
QP energies. This approximation forces the self-energy to be
diagonal on the KS-DFT Bloch states and, thus, allows us
to modify the QP energies without changing the DFT wave
functions. If we assume that the correctly represented self-
energy Eq. (18) is physically short-ranged in real space (further
comments follow), as happens, e.g., for HF and COHSEX,
when the representation is taken to be diagonal on the Bloch
basis, spurious long-range components of the self-energy may
(and typically do) arise. The diagonal approximation has been
found64 to have little effect on the QP energy spectrum (at least
when LDA wave functions are a reasonable starting point).
Our investigations confirm this picture at both the HF and the
COHSEX level. As discussed in the following, the case of the
CBS is more critical.

First, we focus on a tight-binding model. In Fig. 7 we
report the real and complex band structures for such a model,
according to Appendix A. In order to simulate the effect
of a diagonal self-energy, we refer to a picture where the
� correction can be modeled as a stretching of the bands
(which may be different for valence and conduction states)

FIG. 7. (Color online) Real and complex band structures for a
nearest-neighbor (NN) tight-binding model Hamiltonian h0 [thin
solid (black) line]. Scissor (a) and scissor + stretching (b) corrections
to h0 are applied. Thick solid (gray) lines represent the electronic
structures obtained while including such corrections. Dashed (red)
lines are obtained by an NN tight-binding fitting of the real electronic
structure after corrections. Lower panels report the spatial decay of
the original and corrected Hamiltonians.
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plus a scissor operator applied to the HOMO-LUMO gap. A
simple scissor [Fig. 7(a)] and a scissor + stretching [Fig. 7(b)]
correction are applied to the model in Fig. 7 [solid (black) lines
for the original model, thick solid (gray) lines for the corrected
ones]. The new Hamiltonian including the corrections is now
longer-range than the original NN Hamiltonian h0, because
of the nonlocal projectors used to express the scissor and
scissor + stretching corrections. The different spatial decay
of the pristine and corrected Hamiltonians is shown in the
lower panels in Fig. 7. We then fit the corrected Hamiltonian
by again using the NN model [dashed (red) lines]. This fitting
emulates the real band structure, but using a short-range (NN)
Hamiltonian. The effect on the CBS is evident and sizable.
The simply shifted and stretched electronic structures leads
to small corrections to the CBS, while much larger correc-
tions are obtained when considering the fitted short-range
Hamiltonians. Because CBS measures the decay of the
evanescent states in real space, it is not surprising that a method
which does not update the wave functions (as the diagonal
self-energy corrections) is not able to capture all of the physics
involved in the change of the electronic structure.

In order to further numerically support this interpretation
and to investigate the effect of the self-consistency, we
evaluated the HF and COHSEX self-energies for PAHF. At
first we did so non-self-consistently (self-energies evaluated
on the LDA wave functions), with and without the diagonal
approximation. Then self-consistent91 COHSEX results are
provided. HF results are plotted in Figs. 8(a) and 8(b);
COHSEX data, in Fig. 8(c). LDA βmax is shown by a dashed
line in the CBS panels as a reference. Regarding the real band
structure, we found that the inclusion of off-diagonal matrix
elements is not very relevant for PA, the bands being almost
overlapping for both HF and COHSEX [diagonal data shown
in Figs. 8(a) and 8(c) by dashed (gray) lines]. The situation is
different for the CBS, as is highlighted in Fig. 8(a). The HF0

correction of βmax from the full off-diagonal representation is
almost twice as large as the diagonal correction. This confirms
the behavior observed with the models in Fig. 7.

This observation also correlates with the decay of the HF0

(LDA) Hamiltonian reported in the lower part of Fig. 8(a). As
for the models (Fig. 7), the diagonal representation induces
a much longer (and unphysical) decay. The same situation
is found for COHSEX (the off-diagonal results at the first
SCF iteration are not shown). The proper Hamiltonian decay
(black line with circles) is clearly longer-range than the LDA
results, because of the nonlocal contribution of the exchange
operator. The decay of the exchange potential is driven by that
of the density matrix, which in turn is related29 to β at the
branch point. As βmax is typically underestimated at the LDA
level, so is the decay of the HF0 Hamiltonian. The effect of
the self-consistency of HF (as well as COHSEX) is then to
reduce such over-delocalization and to produce shorter-range
self-energies. This is shown in the decay plot in Figs. 8(b)
and 8(c).

This behavior has strong consequences regarding the qual-
ity of the NN model fit. In the case of local and self-consistent
hybrid functional calculations from CRYSTAL09, the model
fit [dashed (red) lines in Figs. 4 and 5] works very well
compared with the full calculations, despite its simplicity. This
is not the case in comparison with the diagonal corrections in

FIG. 8. (Color online) Real and complex band structures for PAHF

at the HF and COHSEX levels. (a) Non-self-consistent HF results
with a diagonal [solid (gray) lines] and fully off-diagonal (black
lines) representation of the correction. (b) The same data for the
self-consistent HF solution, as computed from SAX [solid (black)
lines] and CRYSTAL09 [(green) triangles]. (c) COHSEX data: Diagonal
non-self-consistent [solid (gray) lines] and fully self-consistent [solid
(black) lines] data are reported. In both cases, an NN tight-binding
fit of the real and complex band structures is performed [dashed
(red) lines]. Lower panels show a measure of the spatial decay of the
COHSEX and HF Hamiltonian matrices on the WF basis.

Figs. 8(a) and 8(c). The off-diagonal representation improves
the situation but does not solve the problem. The failure of the
model fit in Fig. 8(a) is in fact mostly related to the decay of
the exchange operator. A much better fit is then found when
full self-consistency is included, as in Figs. 8(b) and 8(c).
Finally, we have also compared the HF results from SaX (plane
waves and pseudopotentials) and CRYSTAL09 (localized basis,
full electron). Results are reported in Fig. 8(b) by the solid
(black) lines and the (green) triangles, respectively. We find
excellent agreement for both the real and the CBSs, confirming
that the results from the two codes are well comparable and
free of any systematic error.

In light of the discussion above, when presenting the
diagonal G0W0 data for PA and PPV [Figs. 4(d) and 5(d)],
the CBS is better described by the interpolated data (dashed
lines) instead of the data directly calculated from the diagonal
GW corrections (thin solid lines). Similar conclusions about
the importance of describing changes to wave functions when
applying GW to transport calculations are also reported in
Refs. 49, 50, and 93.
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B. Electronic structure

Now we can turn to a discussion of the accuracy of
the electronic structure calculations for conjugated polymers.
First, we note that our results for PA1 and PPV are in good
agreement with previously published83–85,92 G0W0 results. In
particular, for PA1 we obtain a GW gap Eg = 2.05 eV, to be
compared with 2.1 eV83,85 and 2.13 eV.92 These results are
obtained for isolated chains of PA. In the case of a crystal,
the gap shrinks84 to 1.8 eV due to interchain interactions.
For the isolated chain of PPV, Rohlfing et al.83,85 found
Eg = 3.3 eV (G0W0), which compares reasonably well with
our G0W0 result of 3.09 eV (see Table IV). In general, the
overall shape (including the band widths) of the GW-corrected
band structures for PA and PPV computed in this work is in
excellent agreement with that of Ref. 85.

From a methodological point of view, the accuracy of G0W0

corrections (based on the LDA electronic structure) for or-
ganic molecules has been recently widely addressed,59,62,94–96

compared with different implementations of self-consistent
GW and experimental results. G0W0 (LDA) is found to
underestimate ionization potentials more than in extended
systems, suggesting that a certain degree of self-consistency
tends to improve on the results. Moreover, self-consistency
is found to further lower the HOMO level and increase the
fundamental gap. This leads to larger estimates of βmax.

In terms of a direct quantitative comparison with experi-
ments, some issues have to be taken into account. First, the
electronic structure (and optical) measurements for polymers
typically distinguish between crystalline grains and amor-
phous regions. Isolated chains are considered to resemble
more (and to be used as rough models for) the amorphous
regions. Clearly, a direct theory-experiment comparison may
suffer from systematic errors (interchain interactions, medium
polarization, electrostatic effects). These features generally
tend to reduce the fundamental gap with regard to that of the
ideally isolated chain. With this in mind, we can compare data
calculated here with experimental data from photoemission
or scanning tunneling spectroscopy (STS). Rinaldi et al.
measured97 the electronic gap of PPV films (on a GaAs
substrate) by means of STS. They were able to estimate
Eg ∼ 3 eV. Kemeriket al.98 also used STS and found the
fundamental gap of PPV [film deposited on Au(111)] to be
around 2.8 eV. All of these results are to be reasonably
considered as lower bounds of the theoretical gap for the
isolated PPV chain.

C. Complex band structure: Trends

As can be directly inferred from the model described in
Appendix A, as well as from Ref. 8, the important parameters
that determine the behavior of β(E) (and βmax) are the band gap
Eg and the effective band widths of the states around the gap,
given, e.g., in terms of the hopping t1. While our model (see
Appendix A) includes a second parameter t2 to describe the
difference in the band widths of the frontier bands, considering
that the ratio t2/t1 ranges from 0.1 to 0.01 or less, corrections
to the model due to t2 are not particularly relevant for the
cases studied here. According to Eqs. (A4) and (A18), βmax is
mostly determined by the Eg/t1 ratio. Even though this is just
a simplified NN model, our numerical investigations suggest

FIG. 9. (Color online) Computed βmax a/2 versus Eg/t1, Eg

being the band gap, t1 the effective hopping, and a the lattice
parameter. All polymers and XC functionals or methods are plotted.
Filled (black) circles, PA1; filled (black) squares, PA2; filled (blue)
diamonds, PPV; filled (orange) triangles, PPI. Open symbols refer
to HF results. Dashed (red) line: βmax according to the tight-binding
model.

that the model is widely applicable (using a folding technique
as in the case of PPI when needed).

In general the band gaps are expected to increase with
the fraction of nonlocal exchange included in the hybrid
functional. For covalently bonded systems, the same trend is
expected for the band widths. Numerically, in all our examples,
while increasing the energy gap, HF increases also the band
widths. The same trend is found for all the hybrid functionals
we have investigated. Since both Eg and t1 increase, it is
not trivial to understand a priori which mechanisms would
dominate. Indeed, it is very clear that the band gap opens
more than the band width, leading to a clear trend of βmax

increasing when a larger fraction of exchange is included in
the calculation. The same trend is also found for the GW results,
even though we had to extrapolate the CBS from the real band
structure by using the model fitting (as described in detail in
Sec. V A).

In Fig. 9 we report a synthetic view of all the computed
values of βmax (times a/2, a being the polymer lattice
parameter), including all electronic structure methods for PA
(PA1 and PA2 are shown; PAHF is not shown because it is
almost superimposed on the other PA geometries), PPV, and
PPI. These data are plotted against the Eg/t1 value. The ideal
curve from the tight-binding NN model is reported [dashed
(red) line]. The agreement between the computed and the
modeled data is remarkable for all the cases studied. HF
data are represented by open symbols, showing, in general,
a slightly worse agreement (as discussed in Sec. IV C). On
the basis of the above relations, and according to the results
reported in Fig. 9, we suggest the use of the model fitting
to extrapolate information about βmax from experiments able
to investigate the electronic structure. This would allow for
an indirect measure of the CBS and the related parameters
(as βmax).

D. Comparison with transport data

As discussed in Secs. I and II, in order to compute the
β decay of the current (or conductance) in a MIM junction,
we need two ingredients: (i) knowledge of the CBS for the
infinitely long insulating region and (ii) the position of the
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Fermi level of the MIM junction with regard to the band
structure of the insulator. This is depicted in Fig. 1. Assuming
that at low bias the current is carried by the states close to the
Fermi level of the junction, we basically need to know how
these states decay into the insulating region (the polymer, in
the present case). Once the CBS is known, either the Fermi
level alignment is computed explicitly or it is estimated on the
basis of physical considerations. While the direct calculation is
feasible (but demanding), and in some cases necessary, it is also
possible to give a first estimate of the Fermi level according to
the so-called MIGS theory.8,27,99 As proposed by Tersoff,27 if
the metal DOS around the Fermi level is sufficiently featureless
and the MIGSs penetrate deep enough in the insulating region,
the Fermi level of the metal-insulator junction is approximately
pinned at the charge-neutrality level (often close to the midgap
point) in order to avoid charge imbalance at the interface.
The charge neutrality level can be easily identified from the
CBS, as the energy where β(E) reaches its maximum inside
the gap. From this perspective, βmax is the first estimate of
the experimental β decay. In general, the Fermi level will
move from the charge neutrality level and the β decay will
change accordingly. The physical reasons leading the Fermi
level to shift are mostly related to the charge transfer (and
dipole formation) at the interface. This explains why different
chemical linking groups on the same molecule may lead to
different values of β. In general, the βmax value computed
from the CBS may be regarded as an upper bound for β and
thus as a lower bound for the ability of the insulating layer to
allow the current to tunnel through the junction.

The above discussion stresses the fact that the experimen-
tally measured β does not, in general, depend8 only on the
electronic structure of the insulator (especially the CBS), but
also on the details of the interface (which determines the
position of the Fermi level). For instance, recent measurements
on alkanes (oligomers of PE) determined a β-decay length
of 0.71–0.76 Å−1 for −NH2 terminations,100–102 while it has
been found in the range 0.8–0.9 Å−1 (and more disperse) for
thiolated molecules.5,102–104 Recent calculations confirm this
picture also for conjugated polymers connected to gold leads
through different chemical groups.9 In that work, the authors
have studied a number of oligomers including oligophenylenes
(whose infinite polymer is PPP). In the case of the molecule
connected to gold leads via thiol groups, after investigating
the interface-DOS projected on the molecule, they find that
the Fermi level aligns close to the midgap point (reasonably
the charge neutrality level considered here), off by a few tenths
of electron volts (∼0.2–0.3 eV, the molecular gap being about
2 eV) at the LDA level. Since the basic unit of PPP (a phenyl
ring) is the same as part of the monomers forming PPV and
PPI, we assume the charge neutrality condition to be almost
fulfilled if we were considering Au-PPV-Au and Au-PPI-Au
junctions with thiol anchoring. We can thus estimate βmax to
be a good estimate of β, keeping in mind that a small deviation
from the midgap would slightly decrease β.

Recent experiments7,26 reported β = 0.3 Å−1 for oligomers
of PPI connected to the gold substrate through a thiol group.
This number is in very good agreement with the value
βmax = 0.29 Å−1 we found for PPI using PBE0 (see Table V).
According to our findings for PA and PPV (see Tables III
and IV), GW should give results for β comparable to PBE0,

but slightly larger. In order to compare with other existing
(experimental and theoretical) results for oligophenylenes
(PPP in the infinite limit),23,103,105,106 we would need to address
separately the issue of the Fermi level alignment (tending to
decrease β with regard to the ideal βmax) and that of the phenyl
twist angle (which goes in the direction of increasing β). This
will be the subject of future work. Coming to the case of PA, we
note that recent experimental results107,108 report β values of
0.22 Å−1 for molecules similar to oligoacetylenes. While this
number is in very good agreement with our GW (and PBE0)
results for PA1 (and consistent with PAHF; see Table III), the
large variability of β with the structural parameters of PA does
not allow us to be conclusive on the assessment of the theory
vs the experiment for this specific case. Nevertheless, our
findings suggest that the use of PBE0 or GW results, together
with proper determination of the Fermi level alignment, will
provide a reasonable approximation. We also note that gap
underestimation and a priori assumption of the validity of the
MIGS theory tend to partly cancel each other, and fortuitous
agreement of experimentally measured β values with LDA
calculations may occur.

VI. CONCLUSIONS

In this work we have computed from first principles the real
and CBSs of prototype alkylic and conjugated polymer chains
using a number of theoretical schemes, ranging from local and
semilocal to hybrid-DFT and GW corrections. The accuracy of
these different methods has been evaluated and compared with
existing theoretical and experimental data, in terms of both the
electronic structure and the transport properties. From the CBS
the β-decay parameter, which governs nonresonant tunneling
experiments through MIM junctions, can be computed.

In doing so, we have stressed the formal analogy of hybrid-
DFT and GW (especially in the COHSEX formulation) and
the interpretation of the hybrid-DFT electronic structure as
an approximation to the proper QP spectrum. We have also
described in detail how to interpolate GW results using a WF
scheme. In this case we have found that while the real band
structure is always well interpolated, the CBS needs the self-
energy real-space decay to be properly treated (off-diagonal
representation and self-consistency of the wave functions).

We have numerically investigated four polymers, namely,
PE, PA, PPV, and PPI. Our results compare well with the
existing theoretical and experimental literature. Among the
hybrid functionals studied, PBE0 results compare best with
the G0W0 electronic structure. While the PBE0 band gaps may
still have a non-negligible deviation from GW, the agreement
is remarkable on the CBS and β coefficient. The comparison
with transport data (when available) is also very promising.
This suggests PBE0 as an efficient and reliable alternative to
GW for these class systems, at least for transport properties.
More generally, a systematic application of hybrid functionals
to improve the accuracy of DFT-based electronic structure
results is appealing, while further developments along the lines
of Ref. 70 are probably needed.

APPENDIX A: ONE-DIMENSIONAL MODEL

In the case of one-dimensional systems like conjugated
polymers, numerical results for β can be rationalized in terms

235105-11



ANDREA FERRETTI et al. PHYSICAL REVIEW B 85, 235105 (2012)

of a simple tight-binding model as presented in Ref. 8. In
their work, Tomfohr and Sankey presented a two-band model
which provides an analytical expression for the CBS within
the fundamental energy gap. This model can also be used to fit
the real band structure of realistic systems in order to evaluate
the CBS analytically. The model is described in terms of two
inequivalent sites (εa,b) with NNs hopping t1. These three
parameters can be recast into Eg (the fundamental gap), t1,
and a further shift of the energy levels, which has no physical
meaning. Moreover, it is shown that in this case βmax [the
maximum value of β(E) within the fundamental gap] depends
only on Eg/t1, according to

β(E)a/2 = ln[γ (E) +
√

γ (E)2 − 1], (A1)

γ (E) = (E − Ev)(Ec − E)

2t2
1

+ 1, (A2)

Eβmax = � = Ev + Ec

2
, (A3)

γ (Eβmax ) = 1 + 1

8

(
Eg

t1

)2

. (A4)

All the details are given in Ref. 8. We note, however, that this
model is unable to reproduce any difference in the widths of the
two bands (thus resulting in the CBS maximum being located
at midgap), while in our realistic simulations we typically
find the LUMO band width to be somewhat greater than
that of the HOMO. We have then generalized the above to
the following three-parameters model, which is more suitable
for determination of the relevant physical quantities from our
simulations. Extending the previous model, we add second-NN
interactions (with strength t2) between equivalent sites, t1
being the hopping between inequivalent sites as in the previous
model. The model Hamiltonian is

H =
∑

R

εaψ
†
a,Rψa,R +

∑
R

εbψ
†
b,Rψb,R

+
∑

R

t1[ψ†
a,Rψb,R + ψ

†
a,R+1ψb,R] + c.c.

+
∑

R

t2[ψ†
a,R+1ψa,R + ψ

†
b,R+1ψb,R] + c.c., (A5)

where a,b indicate inequivalent sites and R is a cell index.
The model is pictorially described in Fig. 10. The parameters
t1 and t2 are, in general, complex numbers. Taking t1 and t2 to
be real, for simplicity, the analytical expressions of the energy
bands read

E1,2(k) = � + 2t2 x(k) ± [
�2 + 2t2

1 x(k)
] 1

2 , (A6)

FIG. 10. Scheme of the Hamiltonian adopted to fit the computed
data, according to Eq. (A5).

where, assuming εa > εb, we have set
Ev = εb − 2t2, Ec = εa − 2t2, (A7)

x(k) = 1 + cos(ka), (A8)

� = 1

2
(Ec + Ev), (A9)

� = 1

2
(Ec − Ev) = Eg

2
. (A10)

In this picture Ec,v are the onsets of the valence and conduction
bands, a is the lattice parameter, and k runs from −π

a
to π

a
.

Under the condition |t2| 
 |t1|, the band gap of the model
is still at the Brillouin zone edge. A difference choice of the
relative phases of the model parameters would be needed to
have the gap at � (which is the case for PPI).

It is also possible to express the results of the model in
terms of more physical parameters such as the energy gap and
the HOMO and LUMO band widths:

Wc = [
�2 + 4t2

1

]1/2 − � + 4t2, (A11)

Wv = [
�2 + 4t2

1

]1/2 − � − 4t2. (A12)

Because in the realistic calculations the bands of interest may
cross other bands far from the k corresponding to the gap, we
consider partial (W̃c, W̃v) and not full band widths. These
quantities are defined by the amplitude of the bands in a
limited range of the Brillouin zone around the fundamental
gap. This yields a much better agreement of the model bands
with the calculated bands close to Eg , which is the energy
range of interest. In order to extract the parameters Eg , t1,
and t2 from our calculations, we used the following relations
(under the restriction that the band gap is direct and located at
the Brillouin zone edge k = π/a):

x0 = x(k0), (A13)

t2 = 1

4x0
(W̃c − W̃v), (A14)

t2
1 = 1

2x0
((W̃c − 2t2 x0 + �)2 − �2). (A15)

Following Ref. 8, once we have parametrized the model,
we can give an analytical expression for the CBS (neglecting
t2
2 order terms):

γ (E) = (E − Ev)(Ec − E)

2
(
t2
1 + 2Et2 − 2t2�

) + 1, (A16)

where Eq. (A1) connecting β to γ holds unchanged. The
maximum of γ (E) can be found analytically, and the resulting
expression can be further simplified under the assumption
|t2| 
 |t1|:

Eβmax ∼ � − t2

(
�

t1

)2

, (A17)

γ (Eβmax ) ∼ 1 + 1

8

(
Eg

t1

)2
[

1 + t2
2

t2
1

(
�

t1

)2
]

. (A18)

APPENDIX B: COMPUTATIONAL DETAILS

The CRYSTAL09 software package76 performs calculations
based on the expansion of the crystalline orbitals as a linear
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combination of a local basis set consisting of atom-centered
Gaussian orbitals. A 6-31G* contraction double-valence (one
s, two sp, and one d shells) quality basis set has been selected
to describe carbon and nitrogen atoms; the most diffuse sp

(d) exponents are αC = 0.1687 (0.8) bohr−2 and αN = 0.2120
(0.8) bohr−2. The hydrogen atom basis set consists of a 31G*
contraction (two s and one p shells): the most diffuse s and p

exponents are 0.1613 and 1.1 bohr−2. The self-consistent field
procedure was converged to a tolerance in the total energy
of �E = 2 × 10−7 Ry per unit cell.109 Reciprocal space
sampling was performed on a Monkhorst-Pack grid with 12 k
points. The thresholds for the maximum and r.m.s. forces (the
maximum and the r.m.s. atomic displacements) have been set
to 0.00090 and 0.00060 Ry/bohr (0.00180 and 0.00120 bohr).

The calculations performed with QE adopt a plane-wave
basis set and norm-conserving pseudopotentials to describe the
ion-electron interaction. The kinetic energy cutoff has been set
to 45 Ry for wave functions. For ionic relaxation, total energy
LDA and GGA calculations use a Monkhorst-Pack grid of
8, 6, and 6 k points for PE, PPV, and PPI, respectively (PA
geometries are taken from the literature and not relaxed with
QE). The convergence threshold on the atomic forces has been
set to 10−3 Ry/bohr. A minimum distance of 20 bohr between
chain replicas is used.

When performing GW calculations using SAX, the k-point
grids have been made finer by using 50, 50, and 20 k
points for PA, PE, and PPV, respectively. The long-range
divergence of exchange-like Coulomb integrals is treated
using a generalized version110 of the approach given by
Massidda et al.111 The same approach has also been used
when performing hybrid-DFT calculations with QE. Note that
other schemes to treat exchange in one-dimensional systems
have been proposed.112–115 The Godby-Needs plasmon-pole
model67 has been used, setting the fitting energies at 0.0 and
2.0 Ry along the imaginary axis, for all cases. A kinetic energy
cutoff of 6 Ry has been used to represent the polarizability P

and the dynamic part of the screened Coulomb interaction
W on a plane-wave basis, while a cutoff of 45 Ry has been
used for the exchange operator. In order to converge the
sums over empty states for the polarizability (self-energy),
a total number of 288, 288, and 288 (288, 288, and 608)
states has been used for PA, PE, and PPV, respectively. This
corresponds to an equivalent transition-energy cutoff of 53,
53, and 35 eV (53, 53, and 44 eV). The interchain distance has
been increased to �30 bohr to control spurious interactions
of periodic replica. The QP corrections are computed by
evaluating the diagonal matrix elements of the self-energy
operator 〈nk|�xc|nk〉, unless explicitly stated.
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112A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys.
Commun. 180, 1392 (2009).

113S. Ismail-Beigi, Phys. Rev. B 73, 233103 (2006).
114Y. Li and I. Dabo, Phys. Rev. B 84, 155127 (2011).
115C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio,

Phys. Rev. B 73, 205119 (2006).
116C. Pisani, R. Dovesi, and C. Roetti, Hartree-Fock Ab Initio

Treatment of Crystalline Systems, Vol. 48 of Lecture Notes in
Chemistry (Springer-Verlag, Heidelberg, 1988).

235105-15

http://dx.doi.org/10.1103/PhysRevB.70.045202
http://dx.doi.org/10.1103/PhysRevB.70.045202
http://dx.doi.org/10.1103/PhysRevB.30.4874
http://dx.doi.org/10.1021/nl052373+
http://dx.doi.org/10.1021/ja903731m
http://dx.doi.org/10.1021/ja903731m
http://dx.doi.org/10.1088/0953-8984/20/37/374115
http://dx.doi.org/10.1088/0953-8984/20/37/374115
http://dx.doi.org/10.1021/jp013476t
http://dx.doi.org/10.1021/jp013476t
http://dx.doi.org/10.1126/science.1087481
http://dx.doi.org/10.1103/PhysRevB.67.121411
http://dx.doi.org/10.1103/PhysRevB.67.121411
http://dx.doi.org/10.1038/nature05037
http://dx.doi.org/10.1021/ja043279i
http://dx.doi.org/10.1021/ja043279i
http://dx.doi.org/10.1021/nl104411f
http://dx.doi.org/10.1103/PhysRevB.48.5058
http://dx.doi.org/10.1103/PhysRevB.48.5058
http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.84.155127
http://dx.doi.org/10.1103/PhysRevB.73.205119

