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Abstract: Confinement loss of inhibited coupling fibers with a cladding
composed of a lattice of tubes of various shapes is theoretically and
numerically investigated. Both solid core and hollow core are taken into
account. It is shown that in case of polygonal shaped tubes, confinement
loss is affected by extra loss due to Fano resonances between core modes
and cladding modes with high spatial dependence. This explains why
hollow core Kagome fibers exhibit much higher confinement loss with
respect to tube lattice fibers and why hypocycloid core cladding interfaces
significantly reduce fiber loss. Moreover it is shown that tube deformations,
due for example to fabrication process, affect fiber performances. A
relationship between the number of polygon sides and the spectral position
of the extra loss is found. This suggests general guide lines for the design
and fabrication of fibers free of Fano resonance in the spectral range of
interest.
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1. Introduction

Inhibited Coupling Fibers (ICFs) have been extensively studied in recent years [1–9]. Their
confinement mechanism is based on the inhibition of the coupling between the core and the
cladding modes. When the coupling is high, then cladding becomes almost transparent to the
electromagnetic wave, causing high confinement loss (CL). On the other hand, when the cou-
pling is weak, the electromagnetic wave can propagate along the core with low loss [1,2]. ICFs
exhibit better performance than photonic band gap fibers in terms of low loss bandwidth and
dispersion, but they suffer from higher loss. Reduction of loss in ICFs is thus a key point in the
development of this kind of fibers. The microstructured cladding of ICFs is often composed of a
regular arrangement of rods or tubes immersed in a background material. Tubes allow to obtain
lower CL, larger transmission windows (TWs), and reduced bend sensitivity than rods [3–5].
For this reason, only Tube Lattice Fibers (TLF) will be considered in the following. Background
material can be either air or a different dielectric material. In the first case, the fibers are known
as Hollow Core TLFs (HC-TLFs), while in the second one as Solid Core TLFs (SC-TLFs).
Kagome Fibers (KFs) belong to the group of HC-TLF since their microstructured cladding
can be seen as composed of a regular arrangement of tubes with hexagonal shape [10]. KFs
suffer from high confinement loss compared to HC-TLFs with circular tubes (Circular TLFs
- CTLFs) [10, 11]. Numerical and experimental works have shown that this high confinement
loss is connected to the shape of the core-cladding interface [12], and to the presence or ab-
sence of struts around the core [13]. The polygonal shape of the tubes composing the cladding
of TLFs with both HC and SC can also be due to the drawing step of the fabrication pro-
cess [2,14,15]. Recently, it has been numerically shown that in HC-TLFs with polygonal tubes
(Polygonal TLFs - PTLFs), loss reduces by increasing the number of sides of the polygons, and
that CTLFs exhibit the best performance [10]. The confinement loss in HC-TLFs seems thus
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to depend on the shape of the struts composing the core boundary. However simple numerical
results are not enough to fully understand the physical origin of this dependence and what are
the fiber geometrical parameters that affect it.

The motivation of this paper originates from all these empirical observations, regarding both
SC and HC-TLFs, and its goal is to develop a theoretical model able to fill this lack of knowl-
edge, explaining the relationship between the cladding parameters and the confinement loss
spectra in TLFs. A solid theoretical ground is of paramount importance as it provides useful
information to find out possible ways to overcome the problem of high confinement loss in
TLFs. The model here proposed is based on the observation that the confinement mechanism
of TLFs can be fruitfully analyzed by starting from the analytical description of the modes of
the tubes that compose their cladding [3,16]. When a stand alone Tube Fiber (TF) is perturbed,
by changing its shape from circular to polygonal, confinement loss increases due to additional
resonances [17]. These resonances exhibit an asymmetric shape typical of the Fano resonance.
This kind of resonance was firstly observed in the context of solid state physics [18], and it
has been more recently observed in a wide variety of optical structures such as microstructured
fibers [3], gratings [19, 20], and photonic crystals [21, 22]. In TFs, these resonances occur be-
tween the core mode and some high order dielectric modes. The dielectric modes involved into
the coupling mechanism are strictly related to the number of sides of the polygon.

In this paper it will be shown that a similar coupling mechanism also appears in TLFs when
the tubes composing the cladding are changed from a circular shape (CTLFs) to a polygonal
one (PTLFs). By applying the coupled mode theory to PTLFs, a simple analytical formula
connecting the extra loss spectral regions to the number of sides is obtained. The higher the
number of the sides of the tubes, the higher the frequencies where the extra losses appear.
Circular shaped cladding tubes represent thus the best case for the confinement loss spectrum,
while KFs composed of hexagonal tubes are affected by extra loss over the whole spectrum.
This is very important both from a design and manufacturing point of view.

The numerical results shown in the paper are obtained through the modal solver COMSOL
based on finite element method [23] and prove the validity of the model. At first, the analyti-
cal model is applied to a HC-TLF, explaining results reported in [10] and suggesting general
manufacturing rules to reduce their confinement loss. The model is then applied also to a SC-
TLF which have been presented in literature [14]. It is proved that the high confinement loss
regions are due to the alteration of the cladding tube shape during the drawing process, and that
a thorough control of the manufacturing process should allow better performance.

The paper is organized as follows. Section 2 shows the structure of both SC-TLFs and HC-
TLFs considered in the analysis and it gives a brief overview of the confinement mechanism of
TLFs. In the section 3 the relationship between extra loss and the tube shape is outlined through
numerical results. The section 4 is devoted to the development of the analytical model based on
the coupled mode theory. The model is validated in the section 5 through numerical results and
comparison with experimental results reported in the literature. Conclusions follow.

2. Outline of the waveguiding mechanism in CTLFs

Figures 1(a) and 1(b) show the transverse cross sections that are typically used in CTLFs with
HC and SC respectively [3, 6, 14, 16]. Claddings are composed of a regular arrangement of
circular tubes with external radius Rext

c , thickness t and refractive index n1, separated by a pitch
Λ and immersed in a uniform dielectric background with lower refractive index n2. The cross
section of a stand alone circular tube is reported in Fig. 1(c). In the HC-TLFs, the background
material is air (n2 = 1). The tubes must be in contact with each other and thus the tube radius
Rext

c and the pitch Λ are bounded each other. Kagome fibers can be seen as a particular case
of these fibers in which tubes have an hexagonal shape [10]. In the SC-TLFs, the background
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Fig. 1. (a)-(b) Cross sections of a HC-TLF and a SC-TLF respectively, with circular tubes
in the cladding. (c)-(d) Cross sections of a standalone circular and a polygonal tube fiber.
They also represent the tubes composing the cladding of CTLFs and PTLFs, respectively.
White and gray regions represent low refractive index n1 background material and high
index n2 one respectively.

material has a refraction index n2 > 1. In this case, mechanical stability of the fiber is not a
problem, thus Λ can have any desired value. Typically, for HC-TLFs also an external jacket
that surrounds the cladding tubes is added in order to enhance the mechanical stability of the
fiber structure. Its refractive index is here assumed to be equal to that of the cladding tubes for
simplicity.

TLFs support three different kind of modes: core modes, which confine the major part of
their electromagnetic power inside the core region; cladding hole modes (airy modes in HC-
TLFs [2], [16]), which are confined in the inner part of cladding tubes; cladding ring modes,
that concentrate their power mainly in the high index rings of the cladding tubes [16]. The first
two kinds of modes have ne f f < n2, whereas the latter has n2 ≤ ne f f < n1. For the confinement
mechanism purposes, only the core modes and the cladding ring modes can be considered.
Cladding ring modes can be described in terms of a combination of the ring modes of the single
tubes composing the cladding [3, 16] as shown in Figs. 2(a) and 2(b). In general, ring modes
can be HEri

ξ ,γ , EHri
ξ ,γ , TEri

0,γ and TMri
0,γ modes. The subscripts ξ and γ , refer to the number of

periods along the circumference direction of the tube and to the number of maxima/minima in
the radial direction, respectively. In the SC-TLF usually (n2−n1)/n2 << 1 and ring modes can
be described in terms of LPri

ξ ,γ modes which are composed of HEri
ξ+1,γ , EHri

ξ−1,γ modes if ξ ≥ 2.
This approximation is no longer valid in HC-TLF because the step index is much higher. In this
paper, for sake of simplicity, cladding ring modes are named after the ring modes composing
them.

In order to introduce the general waveguiding properties of TLFs, SC-CTLFs will be con-
sidered, since the bigger Λ allows a clearer identification of the resonances with the cladding
ring modes. A SC-CTLF with the cross section reported in Fig. 1(b), and a double layer of
tubes around the core obtained by removing a tube is here considered [14]. The parameters
are n1 = 1.47288, n2 = 1.457, Rext

c = 5.25μm, t = 472.5nm, and Λ = 15μm. The bottom of
Fig. 2(c) shows the confinement loss of the fundamental mode HEco

1,1 versus the normalized
frequency [1, 3]:

F =
2t
c

f
√

n2
1−n2

2 (1)

where f and c are the frequency and the speed of light in vacuum, respectively. Confinement
loss varies with frequency depending on the coupling between the core mode and the cladding
ring ones [3, 16]. Such coupling depends on two factors: the difference between the effective
indexes of core and ring modes, and the field integral overlap between them. The effect of the
former is maximized at the crossing point between the dispersion curves of the two involved
modes (phase-matching condition). Since the fibers work in the large core regime, the effective
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Fig. 2. (a)-(b) Eφ field component for the cladding ring modes HEri
1,2 and LPri

11,2 respec-
tively. (c) Top: comparison of the confinement loss spectra of a circular (black dots) and a
12-sided polygonal (red triangles) tube fibers. Geometrical and physical properties of fibers
are described through the paper. Middle: cutoff frequencies for the tube modes of the cir-
cular tube fiber. Dotted lines highlight the tubes modes which cause Fano resonances in
tube fiber, according to Eq. (2). Solid lines highlight the cladding modes which defines the
boundaries of the Fano resonances regions according to Eq. (8) with μ̄ = 3. Red, green,
and blue colors are used for the cases m = 1 and m = 2, respectively. Bottom: comparison
of the confinement loss performance of SF-TLFs with circular (black dots) and 12-sided
polygonal (red triangles) tubes in the cladding.

index of the core mode is very close to 1, thus the crossing frequencies can be well approx-
imated by the cutoff frequencies of the ring modes [16, 17]. The modes overlap depends on
spatial variation of the cladding ring modes along the tubes circumferences [1, 16]: the higher
the periodicity, the lower the coupling. Figures 2(a) and 2(b) show the azimuthal field compo-
nents of the electric field (Eφ ) of two cladding ring modes with low and high spatial dependence,
respectively. The former is the LPri

0,1↔HEri
1,1 mode which gives rise to high coupling with core

mode at its cut-off frequency F = 1. The latter is the LPri
11,2 mode which is composed of EHri

10,2

and HEri
12,2 modes. Conversely to the previous one, its coupling with the core mode is weak be-

cause its spatial dependence along the tube boundary is high. For this reason, the confinement
loss variation at its cut-off frequency F = 1.54 is negligible. As it will be shown in the next
paragraph this is not longer true in TLFs composed of polygonal tubes.

3. Fano resonances in polygonal TFs and TLFs

The purpose of this section is to numerically show that, when the shape of the tubes change
from circular to polygonal, extra loss appears in the confinement loss spectrum in both TFs
and TLFs. The extra losses are due to the resonances between core mode and cladding modes
with quickly spatial variation, which occur at the cut-off frequencies of the latter. As shown at
the end of the previous paragraph, these couplings are absent in CTLFs. For sake of simplicity,
only coupling with the fundamental mode HEco

1,1 is here considered. These characteristics are
highlighted by considering firstly a single polygonal TF (PTF) with solid core and then a SC-
PTLF. Similar behaviors have been observed both in HC-PTFs [17] and in HC-PTLFs [10].
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3.1. Polygonal tube fibers

The top of Fig. 2(c) compares confinement loss of a CTF and a PTF with N = 12 sides whose
cross sections are reported in Figs. 1(c) and 1(d) respectively. Their parameters are the same as
the tubes composing the cladding in the SC-TLFs considered in the previous section. Confine-
ment loss spectrum of the PTF has some additional peaks due to extra-resonances. The peaks
exhibit an asymmetric shape typical of the Fano resonance [18]. This behavior has already
been found and analyzed in HC-TFs [17]. These additional resonances are due to the polygonal
shape of the tube, which causes a coupling between the core and some ring modes with high
azimuthal dependence. The ring modes involved in the coupling with the fundamental mode
are the hybrid modes HEξ ,γ and EHξ ,γ with azimuthal index ξ :

|ξ −mN|= 1 (2)

with m integer number.
In the SC-TF, being n2− n1 << 1, the coupling strength is much lower and hybrid modes

degenerate into linearly polarized modes: LPri
ξ ,γ ←→ HEri

ξ+1,γ ,EHri
ξ−1,γ . Due to the weakness

of the coupling, only LPri
mN,γ modes give rise to non-negligible Fano resonances, because they

are composed of hybrid modes both satisfying Eq. (2). In LPri
mN−1,γ and LPri

mN+1,γ modes, only
one of the two hybrid modes satisfy Eq. (2), thus the resonances are much lower and they are
not visible with the scale used in Fig. 2(c). A detail of the resonance with the LPri

12,1 mode
is reported on the top of Fig. 3(a). Figure 3(b) clearly shows the hybridization between the
core mode HEco

1,1 and the ring LP12,1 mode. In the middle of Fig. 2(c), the cut-off normalized
frequencies of the ring modes HEri

ξ ,γ and EHri
ξ ,γ with γ = 1, 2 of a CTF are reported. Vertical

dotted lines correspond to cut off of the HEri
mN+1,γ and EHri

mN−1,γ modes (LPmN,γ ) satisfying
Eq. (2) with m = 1 (red lines), m = 2 (green lines), and m = 3 (blue lines). They coincide with
Fano resonances in the confinement loss spectrum of the PTF.

3.2. Polygonal tube lattice fibers

Figure 2(c) compares confinement loss of the CTLF previously analyzed, and those of a PTLF
composed of tubes with N = 12 sides. As in TFs, polygonal shapes cause a worsening of the
confinement loss performance even if the peaks are spectrally wider. Figure 3(a) reports a detail
of the loss in the spectral region F ∈ [0.39,0.75], showing that the widening is due to the
resonance of the fundamental mode with a multiplicity of modes and not only with the LP12,1

one. The same behavior holds for all the additional resonances, although they are not reported
here for sake of brevity. In particular, it is found that the azimuthal index ξ of the resonant ring
modes that couple to the core one is still strictly connected with N. The reason of the growth
of the number of modes involved in the resonances with respect to TFs will be explained by
the analytical model described in the next section and it is related to a much more complex
core-cladding interface.

4. Analytical model

In order to investigate which cladding ring modes are able to couple to the core one, coupled
mode theory is used [24, 25]. A PTLF with polygonal tubes in the cladding can be seen as the
perturbed version of a CTLF. An example with N = 6 is shown in Fig. 4(a). A similar approach
has already been successfully applied to investigate this kind of resonances in PTFs [17].

In TLFs, the overlap between ring and core modes is quite low and the coupling coefficient
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Fig. 3. (a) Zoom of Fig. 2(c) for F = [0.39,0.75]. In the middle the degeneration of the
HEξ+1,γ and EHξ−1,γ modes composing the LPξ ,γ modes is highlighted. (b) z-component
of the Poynting vector of the guided mode at F = 0.569373 of the PTF (top) and PTLF
(bottom) both with N = 24.

can be written as [17, 24]:

K̃co,ri =
π f
2

∫ ∫

S∞

Δε
(

Ēco
t ·Ēri

t −
εc

εc +Δε
Eco

z Eri
z

)
dS, (3)

where S∞ is the whole transverse plane, and the subscripts t and z indicate the transverse and
longitudinal components of the electric field, respectively; εc is the dielectric permittivity of the
CTLF, and Δε is the perturbation function shown in Fig. 4(a).

In order to find the conditions which guarantee that the integral (Eq. (3)) is non-zero, the
Nt tubes composing the cladding are indexed by i and their centers are specified by vector C̄i

(see Fig. 4(a)). A local cylindrical coordinate system (ri,φi) is introduced at the center of each
cylinder. The perturbation function can thus be expressed as:

Δε(r̄) =
Nt

∑
i=1

Δε̃(r̄−C̄i); (4)

Δε̃ is the perturbation of a PTF centered in the origin of the reference system (r,φ) and it is
periodic along φ with period 2π/N.

Due to the vectorial nature of the Eq. (3), its development gives rise to three similar integrals,
one for each field component. By substituting Eq. (4) in each one of these integrals, it yields:

K̃x
co,ri = (−1)δx,z

π f
2

Nt

∑
i=1

∫ ∫

Ai

Δε̃
(

ε̃c

ε̃c +Δε̃δx,z
Eco

x Eri
x

)
ri dφi dri (5)

where x = {r,φ ,z}, δx,z is the Kronecker index, ε̃c is the permittivity of a CTF centered in the
origin, and Ai is the surface where Δε̃(r̄−C̄i) �= 0. Since cladding ring modes can be described
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Fig. 4. (a) Example of perturbation function for a PTLF. z-component of the Poynting
vector of the fundamental mode on log scale is also shown. The inset shows the perturbation
function for a generic cladding tube, with the local reference system centered at its center.
(b) Electric field components of the fundamental mode along the six innermost tubes of the
TLF; different colors refer to different tubes.

as a composition of the modes of a CTF, in each integral of the series the field components of
the ring modes can be expressed as [17]:

Eri
x (ri,φi) = Rri

x1
(ri)cos(ξ φi)+Rri

x2
(ri)sin(ξ φi), (6)

which are periodic functions with period 2π/ξ along φi. For the core modes, this is true in the
TFs, but not in the TLFs as shown in Fig. 4(a), where the z component of the Poynting vector of
the fundamental mode is reported on log scale. Despite that, since Δε̃(r̄−C̄i) �= 0 only near the
circular tube interface, Eco

x can be locally described by means of a Fourier-Bessel series [26]:

Eco
x (ri,φi) =

μ̄

∑
μ=0

AxμRco,μ
x1

(ri)cos(μφi)+BxμRco,μ
x2

(ri)sin(μφi), (7)

where μ̄ is the integer at which the Fourier-Bessel series can be truncated without loss accuracy.
As reported in Fig. 4(b), Ēco components are slowly varying along φi with i = 1, ..,Nt . This
allows to consider very few terms in the series (Eq. (7)). By introducing Eq. (7) into Eq. (5),
for each tube in the cladding there are μ̄ +1 integrals equal to those of a PTF. For a PTF with
N sides, a core mode with an azimuthal index μ̃ couples with cladding modes with azimuthal
index such that |mN−ξ |= μ̃ [17]. In the TLF, all the harmonics of Eq. (7) must be considered
and the condition on the ring modes becomes:

|mN−ξ | ≤ μ̄ . (8)

In Fig. 2(c) solid lines correspond to cut-off of the HEri
mN+1,γ and EHri

mN−1,γ modes (LPmN,γ )
satisfying Eq. (8) with μ̄ = 3 and m = 1 (red lines), m = 2 (green lines), and m = 3 (blue lines).
They coincide with the edges of the high loss regions in the confinement loss spectrum of the
PTLF.
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In short, in TFs the core modes are described on the perturbation domain by only one sinu-
soidal function along the azimuthal direction. On the contrary, in the TLFs, the core modes do
not exhibit a periodic trend on the perturbation. Despite that they can be described in terms of a
series of periodic functions, each of which gives a non zero term to the integral (Eq. (3)). This
justify the increment of the number of the resonances shown in Fig. 3(a).

It is important to point out that the model here developed does not rely on the particular per-
turbation, provided that it is a periodic function along the tube boundaries. As a consequence it
can be also applied in case of non-polygonal deformation. Moreover, it does not rely on specific
values of refraction indexes so it is valid for both SC-TLFs and HC-TLFs. The applicability to
both kinds of fibers is shown in the next section.

4.1. Conditions to have a resonance free spectral region

The resonance having the lowest frequency Fq is the most important. It determines the spectral
region [0 : Fq] without Fano resonances, where confinement loss is very close to that of a CTLF
[10, 17]. The first resonance is due to the HEri

N−μ̄ ,1 mode. Cutoff frequencies of the modes
of a TF are reported in the middle of Fig. 2(c). They are analytically known [27] and give a
good approximation of those of the cladding ring modes. For every given Fq, it always exists
a number of sides N which guarantee that resonance free spectral region. When ξ >> 1, the
relationship between Fq and ξ is well approximated by:

ξ = aF−b. (9)

Both the a and the b parameters depend on the geometrical and physical parameters of the
cladding tubes. By combining Eq. (9) and (8) it yields:

Fq =
N +b− μ̄

a
, (10)

thus the number of the sides N which guarantee the absence of Fano resonances in the spectral
region [0 : Fq] is:

N = 	aFq−b+ μ̄
, (11)

where 	x
 denotes the nearest integer value that is bigger than x.

5. Numerical validation

5.1. HC-TLF

The HC-TLF here considered is shown in Fig. 1(a) with Rext
c = 5μm, t = 500nm, n1 = 1.45 and

n2 = 1. A single layer of tubes surrounds the HC obtained by removing the seven innermost
ones. The parameters of the Eq. (9) are a = 31.8 and b = 8. The polygons in the cladding are
oriented in such a way to contact each other only on vertices, as happens in the KFs [12, 13].

In Fig. 5(a) a polygonal HC-TLF with N = 6 is considered. It corresponds to a Kagome fiber
with pitch Λ= 9.5μm and strut thickness t = 500nm. Colored rectangles on the top of the graphs
represent the cutoff regions of the rings modes that satisfy Eq. (8) with μ̄ = 3. Different colors
correspond to different values of the m parameter. Confinement loss is compared to that of a
HC-CTLF. CLs coincide only in the high loss spectral regions corresponding to resonances with
low azimuthal dependence ring modes [10, 16]. In the low loss regions, the Fano resonances
due to hexagonal shape of the tubes composing the cladding cause a significant worsening
of the confinement loss with respect to the circular case. Since Fq = 0.24 and the bands of
m = 1,2,3 are partially overlapped, the Fano resonances cover the whole spectrum. Figure
5(b) shows the case of an HC-TLF with N = 12. The change from N = 6 to N = 12 shifts the
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Fig. 5. Comparison of the confinement loss performances between a HC-TLF with circular
(black dots) and N-sided polygonal HC-TLF (red triangles), with N = 6 (a), N = 12 (b),
N = 24 (c), N = 66 (d). Rectangles on the top of the graphs represent the cutoff regions
for the rings modes that satisfy Eq. (8) with μ̄ = 3. Different colors are used for different
values of the m parameter. In (a) only m≤ 4 has been considered for clearness.

bands toward higher frequencies, but Fq = 0.53 is still too low and the bands are still partially
overlapped, thus there is not a significant improvement. By further increasing the sides up to
N = 24 (Fig. 5(c)) an improvement of the confinement loss is obtained in the first and in the
second transmission window. In fact, being Fq = 0.91, in the first transmission window there
is a wide frequency range where confinement loss coincides with that of CTLF. Moreover, the
bands with m = 1 and with m = 2 are no longer overlapped in the second transmission window
creating a frequency range where confinement loss coincides with the circular case. For higher
frequencies, there are still a lot of resonant modes that worsen the performance of the fiber. In
order to widen the Fano resonance free region, polygons with a higher number of sides must be
considered. From Eq. (11) by choosing Fq = 2, it yields N ≥ 62. Actually N = 66 is required
in order to satisfy geometrical constraints about the polygon vertices. Figure 5(d) shows the
confinement loss performance for such fiber. As expected, the confinement loss performance of
the 66-sided HC-PTLF remain very close to those of the HC-CTLF in the first two transmission
windows.

Finally notice that the model and these results are in agreement with the results reported
in [12] where the shape of the tubes facing towards the HC has been changed into a rounded
one, obtaining a reduction of the CL.

5.2. SC-TLF

The model that have been developed through this paper is very useful to predict the effect
of the manufacturing imperfections for both SC and HC-TLFs. For this purpose a SC-CTLF
with n1 = 1.47288, n2 = 1.457, t = 540nm and Rext

c = 5.4μm is taken into account [14]. As
it can be seen in the scanning electron micrograph reported in [14], due to the manufacturing
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SC-PTLF
with rounded
corners and
N=6

SC-CTLF

(c)

Fig. 6. (a) Rounding scheme of the polygon vertex: L is the length of the polygon side
and a is the distance of the rounding point from the center of the side. (b) Comparison
of the confinement loss between a SC-TLF with circles (black dots) or rounded hexagons
(red triangles) in the cladding. Resonant rings modes are highlighted on the top of the
figure. Yellow regions represent the high confinement loss regions reported in [14]. (c)
Hybridization between core mode and ring modes LPri

4,1 (A) and LPri
8,1 (B) computed at

F = 0.305 and F = 0.47, respectively.

process, cladding tubes are actually hexagons with rounded corners. Rounded corners do not
affect the spectral position of the Fano resonances but reduce their bandwidth [17]. A smoothing
parameter s= 1−2a/L, as shown in Fig. 6(a), is defined for the polygons of the cladding. In the
simulations, s = 0.75 has been used. Figure 6(b) compares the confinement loss performance
of the SC-PTLF with rounded hexagons with those of a SC-CTLF. Yellow regions represent the
spectral regions with high transmission loss obtained experimentally in [14]. For the SC-CTLF,
the resonance intensities with LPri

ξ ,1 quickly decrease as ξ increases and the fiber does not
exhibit high loss peaks for F > 0.40. On the contrary, the SC-PTLF exhibits all high loss peaks
experimentally observed, showing that they are due to the hexagonal shape of the cladding
elements. This is further confirmed by Fig. 6(c) which shows the modes found in simulations
at F = 0.305 and F = 0.47. They agree with near field images reported in [14]. The differences
of the spectral position of the loss peaks between numerical results and experimental ones are
due to the fact that it was not possible to make a numerical prototype exactly like the fiber used
in the experiment. For example, in the simulations the tube thickness was considered constant,
whereas in the fabricated fiber the cross section of each tube is actually a ring of closely-spaced
rods, spaced by around 0.6μm, but the reported image does not allow to determine exactly their
shape and size. A better agreement between numerical and experimental results can be obtained
only by a higher resolution scanning micrograph image of the fiber cross section.

6. Conclusions

Confinement loss of inhibited coupling fibers with a cladding composed of a lattice of tubes
of various shapes has been theoretically and numerically investigated. Both solid and hollow
cores have been taken into account. It has been shown that in case of polygonal shaped tubes,
confinement loss is affected by extra losses with respect to fibers with circular tubes. The extra
losses are due to Fano resonances between core modes and cladding modes with high spa-
tial dependence. By mean of a theoretical model based on the coupled mode theory, it has been
shown that the spectral positions of the extra losses are intimately related to the number of sides
of the polygonal tubes. The higher the number of sides, the higher their frequencies. Through
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the model it has demonstrated that Kagome fibers are affected by extra loss over the whole
transmission spectrum due to the small number of tube sides. This is the reason why Kagome
fibers exhibit much higher confinement loss with respect to fibers made of circular tubes. The
model has also allowed to demonstrate that some low transmission bands experimentally ob-
served into solid core ICFs are due to the tube deformation occurred during the drawing step of
the fabrication process. The developed model is thus a useful tool for inhibited coupling fibers,
from both the design and the manufacturing point of view.
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