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Abstract

The etiology of sporadic amyotrophic lateral sclerosis (ALS),
the most common form of this degenerative disease of the
motor neurons, is still unknown, despite extensive inves-
tigation of several genetic and environmental potential risk
factors. We have reviewed laboratory and epidemiological
studies assessing the role of exposure to neurotoxic chemicals
(metalloid selenium; heavy metals mercury, cadmium, and
lead; pesticides) in ALS etiology by summarizing the results
of these investigations and examining their strengths and
limitations. Despite limitations in the exposure assessment
methodologies typically used in human studies, we found
suggestive epidemiological evidence and biologic plausibility
for an association between ALS and antecedent overexposure
to environmental selenium and pesticides. The relation with
mercury, cadmium, and lead appears weaker.

Keywords: heavy metals; motor neuron disease; neurotoxins;
pesticides.

Introduction

Amyotrophic lateral sclerosis (ALS) is a rare and extremely
severe human neurodegenerative disease characterized by a
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degeneration of upper and lower motor neurons in both motor
cortex and spinal cord, leading to progressive paralysis and
death due to respiratory failure (unless mechanical ventilation
is supplied). The etiology of this most common form of motor
neuron disease (MND), nearly 140 years after its description
by Charcot, still remains unknown. Both environmental and
genetic factors have been involved in the familial and in the
more common sporadic form, the incidence of which might
be increasing according to recent reports (1, 2) and appears
to have uneven spatial distribution (3). Environmental risk
factors for which some epidemiological and clinical evidence
exists include neurotropic viruses, cyanobacterial toxins,
magnetic fields, and several chemicals (4-6). In this review,
we have summarized and discussed the evidence supporting
a role of environmental exposure to chemical substances in
ALS etiology, focusing on a metalloid [selenium (Se)], three
heavy metals [mercury (Hg), cadmium (Cd), and lead (Pb)],
and pesticides.

Selenium

Se is a trace element commonly found in very low concen-
trations in the environment and occurs naturally in several
organic and inorganic species. The element is of paramount
importance in both toxicological and nutritional aspects
(7-10). The main source of Se intake in humans is the diet,
although sometimes ambient air in occupational settings and
in areas characterized by large combustion of coal (11, 12)
or in drinking water (10, 13) can become relevant sources
of exposure. The exact role of Se in human health is still
not well defined and highly controversial (10, 14), despite
recent advancements in the understanding of its dichotomous
involvement in human health and disease (10, 12, 14-17).
ALS is among the human diseases suggested to derive from
excess Se exposure on the basis of two epidemiological stud-
ies that found an increased risk of ALS associated with resi-
dence in a seleniferous area or with consumption of drinking
water with unusually high levels of inorganic hexavalent Se.
Laboratory investigations have provided supportive evidence
of a cause-effect relation (18, 19).

Se has long been recognized as a wide-spectrum neurotoxic
agent, based on laboratory studies. In the rat, Se compounds
(in most cases, in its inorganic tetravalent form, selenite) were
observed to enter the central nervous system (CNS) from
peripheral blood vessels, showing an enhanced affinity for
the spinal cord and the hypothalamus (20). The metalloid can
alter dopamine levels in brain, exert hypothermic and nocice-
ptive responses, impair locomotor activity (21), interfere with
prostaglandin D synthesis and activity (22), inhibit at very
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low levels &-aminolevulinate dehydratase in the CNS (23),
and affect the latencies and conduction velocity distribution
of sciatic nerve fibers (24). Se compounds increase the activity
of lactato dehydrogenase and the amount of thiobarbituric
acid reactive substances in the rat brain (25), impair gluta-
mate uptake (26, 27), and inhibit succinic dehydrogenase,
acetylcholine esterase, and Na/K ATPase (28). In cultured
primary mouse cortical neurons (29), Se levels as low as 8
pg/L and even less in its inorganic tetravalent form (selenite)
induced apoptosis. Selenite was shown to provoke abnor-
malities in dopamine metabolites, lipids, and thiobarbituric
acid-reactive substances in the striatum (19, 30) and cardio-
respiratory effects, hind-limb paralysis, and death after intra-
venous administration (31). Se may also be responsible for
the accumulation of a Hg-Se complex in CNS areas (32), with
a consequent possible release of these toxic elements into the
CNS over time. Depending on its concentration and chemical
form, Se toxicity in cultured nervous system cells might be
additive or antagonistic to Hg toxicity (33).

Se compounds are able to damage mitochondrial func-
tions and integrity (34, 35), a pattern that might be involved
in ALS etiopathogenesis (36). Several lines of evidence sup-
port the view that mitochondria are affected in the course of
motor neuron degeneration and that mitochondrial dysfunc-
tion may actively participate in the demise of motor neurons.
Mitochondrial abnormalities have been described in ALS
patients. In vitro studies using rabbit aorta have shown Se
compounds to damage vascular smooth muscle reactivity
by inhibiting both contracting and relaxing properties (37),
which might also be related to the amyotrophic process char-
acterizing ALS. Se also inhibits purified human squalene
monooxygenase, a key enzyme for cholesterol biosynthesis
(38). Inhibition of this enzyme leads to a peripheral demyeli-
nating neuropathy in rats, which occurs secondary to a sys-
temic block in cholesterol synthesis (39).

All the above-mentioned studies demonstrate the potential
neurotoxicity of Se in the experimental animal. Nevertheless,
the strongest evidence of a biological plausibility for the
Se-ALS association emerges from veterinary medicine studies
in swine, which showed that Se intoxication (due to inorganic
Se compounds in most cases) results in a selective necrosis
of the ventral horns of the spinal cord and other CNS regions
(40—-45). The induction of symmetrical poliomyelomalacia in
pigs was enhanced by inorganic Se compared with organic
Se, despite the higher Se tissue content after the administra-
tion of the organic form (46). The occurrence of polioenceph-
alomyelomalacia has also been experimentally induced in
cattle following the administration of inorganic Se as selenite;
neurological signs included trembling of skeletal muscles,
enhanced by exercise, which led the treated animals to shiver
(47), resembling the blind-staggers originally described in
livestock from seleniferous areas in the USA (12). Sodium sel-
enite was found to be toxic to chicks, inducing neuromuscular
blockade and tetanic spasm: the compound blocked axonal
conduction and directly affected the muscle membrane by
releasing Ca”* from the sarcoplasmic reticulum (18). Selenite
also inhibited neurotransmitter release and axonal conduc-
tion in a mouse phrenic nerve-diaphragm preparation (48).

Morgan et al. (49) have shown the capability of long-term
Se exposure to impair locomotor activity and even to para-
lyze the nematode Caenorhabditis elegans, likely due to a
Se-induced generation of reactive oxygen species (ROS).

Overall, in the light of the above studies, Se appears to
exert selective toxicity on the motor neurons in several animal
species at least. The same pathological feature characterizes
ALS and seems to be a distinctive feature of Se compared
with all other chemicals, to the best of our knowledge. Such
neurotoxic effects of Se, however, may vary considerably
according to the animal species and the chemical forms of the
metalloid involved (12, 14, 50).

The key evidence linking Se to ALS, however, is based on
epidemiological evidence arising from human studies. The
first investigation to suggest a relation between exposure to
environmental Se and ALS was a report published in 1977
by a physician in a private practice, Arthur Kilness, and the
Harvard neurologist Fred Hochberg, who described the occur-
rence of a cluster of four cases of ALS among male ranchers
within a sparsely populated South Dakota county (around
4000 inhabitants) during an 11-year period (51). The authors
also outlined the early veterinary medicine observations that
showed the occurrence of the so-called blind-staggers disease
in livestock chronically intoxicated with Se, as well as the
finding of spinal cord degeneration in malformed embryos of
hens characterized by excess Se intake, and remarked on the
need to further investigate environmental Se as a potential
risk factor for human ALS. This study had some limitations,
however, such as the lack of a prespecified area and period of
the study and, more importantly, the possibility of ecological
bias due to other environmental or genetic factors.

A few case-control studies were subsequently carried out to
investigate the role of Se exposure in ALS etiology, although
the lack of specific biomarkers of long-term exposure to the
metalloid, as well as the severe impairment of health status
occurring during early disease progression, substantially
hampered the assessment of long-term antecedent exposure in
patients. Two studies found higher Se levels in the spinal cord
of ALS patients compared with controls (52, 53), whereas
in two Italian studies, blood and toenail Se concentrations
were not increased in such patients (54, 55). The results of
these studies also suggest that the nutritional status of patients
might severely alter the circulating Se levels and, therefore,
that case-control studies lacking long-term indicators of
exposure are unsuitable to investigate the Se-ALS relation.
Furthermore, no studies were conducted on the possible rela-
tion between the different Se chemical forms and ALS risk,
which further hinders our ability to assess this issue, consid-
ering the differences in the biological activity and toxicity of
the different Se compounds. Other observations from selenif-
erous areas of China indicated the potential of environmental
Se to induce slight to severe motor disorders in humans (56,
57), although no such effect was recently reported in a popu-
lation the Brazilian Amazon characterized by high Se intake
and which also has the highest Hg exposures reported in the
world today (58). The authors noted that their results are not
necessarily applicable to populations with lower Hg exposure
and/or Se status. Signs of neurotoxicity were also detected
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in Inuit children from Northern Quebec exposed to high
levels of methyl-Hg, polychlorinated biphenyl, and Se, but in
that case, the adverse effects were exerted on visual-evoked
potentials (59).

Two studies carried out in a peculiar Italian area, where a
limited population experienced intake of inorganic hexava-
lent Se (selenate) for several years, have provided new and
suggestive evidence linking environmental Se with ALS
(60, 61). The study area was Rivalta, a neighbor of the city
of Reggio Emilia in Northern Italy (around 150,000 inhabit-
ants), where during the 1970s and the 1980s, the public water
supply system had to be separated from the remaining system
due to technical reasons. The Rivalta aqueduct was connected
to two local wells providing, as detected several years later,
water with an unusually high content of Se (around 8 pg/L)
in its inorganic hexavalent form, selenate, the species usually
found in underground waters (Figure 1) (62, 63). Consumption
of this high-Se drinking water by the local population (2000
to >6000 residents, according to length of drinking water
consumption) was unknown to both the population itself and
the Municipal Water Authority until 1988 (60, 62, 64). Only
then, due to the disclosure of the high Se content, were the
two wells disconnected from the municipal aqueduct, and the
Rivalta aqueduct shared the water distributed in the remain-
ing municipality, containing <1 pg Se/L. This situation pro-
vided the unusual design of a ‘natural experiment’, a situation
of strong interest in epidemiology to investigate adverse

health effects of toxicants that cannot be studied in planned
experimental studies for obvious ethical reasons. Indeed, the
exposed population was unaware of the high Se content of the
drinking water they consumed, and no other chemical fea-
tures differentiated the tap water distributed in Rivalta from
the tap water supplied to the remaining municipality. The sub-
jects consuming the high-Se drinking water in Rivalta and the
remaining municipal population also appeared to be consid-
erably similar regarding their socioeconomic characteristics
(62, 63). This situation provided an optimal setting to per-
form a cohort study, originally designed under the hypothesis
that a higher Se intake in Rivalta might be associated with
beneficial effects on cancer and cardiovascular risk (64, 65)
but later including other adverse effects, such as ALS inci-
dence in the follow-up (60). Long-term consumption of the
high-Se drinking water was associated with a strong increase
in ALS risk [4.2, 95% confidence interval (CI) 1.2-10.8],
which was even higher when we limited the analysis to the
2065 individuals having the longest exposure (8.9, 95% CI,
2.4-22.8) (60). Several years after this report, an analysis of
the Se-ALS relation was repeated in the same locale, with two
key methodological variations to the study design: extension
of the analysis to any source and period of consumption of
high-Se drinking water and choice of a case-control approach.
The ALS incidence was assessed among the exposed subjects
in the period 1995-2006, immediately subsequent to that
examined in the prior cohort study (1986-1994) (61). The
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Figure 1 Map of the Rivalta area in the Reggio Emilia municipality (extension, 231.6 km?; population, ~150,000), where tap water with
unusually high content of inorganic hexavalent Se from the two local wells, 1 and 2, was distributed from 1972 to 1988.
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results of this investigation confirmed an association between
drinking water (inorganic) Se and ALS, showing a relative
risk (RR) of 5.4 (95% CI, 1.1-26) for the consumption of
tap water with Se =1 pg/L after adjustment for potential con-
founders and evidence of a dose-response relation between
the long-term intake of inorganic Se and disease risk (61).
Overall, the results confirmed the likelihood of a selec-
tive relation between Se and ALS in the municipal popula-
tion under study, suggesting that major sources of bias were
unlikely to occur.

Thus, the epidemiological evidence suggests that Se may
cause or contribute to triggering ALS. As high Se areas are
detected in various parts of the world (7, 10, 11) and occupa-
tional exposures to Se compounds may occur, further epide-
miological studies for the ascertainment of this issue appear
feasible and should be seriously pursued (12). In line with
the usual paradoxes characterizing Se research, we should
note that due to the antioxidant activity of the Se-containing
enzymes glutathione peroxidases, the metalloid has also been
considered a potential tool in the therapy of the disease, but a
careful analysis of the epidemiological data has not provided
convincing evidence of such an effect (66).

Mercury

The heavy metal Hg exists in a wide variety of physical
states: elemental Hg, organic, and inorganic Hg compounds.
The neurotoxic effects of elemental Hg (e.g., ‘mad hatter syn-
drome’) have been known for centuries, and the first detailed
account of the clinical neurotoxic syndrome induced by occu-
pational exposure to organic Hg compounds was published
in 1940 (67). A massive epidemic of organic Hg poisoning
became known in the 1950s following the Minamata disease
outbreak in Japan (68, 69). Subsequent studies have impli-
cated Hg in the etiology of several neurodegenerative disor-
ders, including Alzheimer disease and ALS (70).

Elemental Hg is liquid at cool room temperatures and in
this form is less toxic than inorganic or organic Hg com-
pounds. When heated, however, Hg evaporates and becomes
highly toxic. In an aquatic environment, elemental Hg may
also undergo biomethylation by bacteria and algae: the
organic compounds that are obtained, such as methyl-Hg and
ethyl-Hg, accumulate in fish, crustaceans, and throughout
the food chain to humans. These compounds can adversely
affect human health because they are rapidly and completely
absorbed from the gastrointestinal tract; they can bind to free
cysteine, after which the final complex may replace methion-
ine. Because of this mimicry, organic Hg compounds can be
transported freely throughout the body and pass through the
blood-brain barrier and the placenta, with consequent harm to
the developing fetus (71). Occupational exposure to elemental
Hg has also been associated with parkinsonism (72). In ani-
mal studies, inorganic Hg-chloride (HgCl,) has been shown
to concentrate in the cerebellar gray matter, area postrema,
and hypothalamus, whereas organic Hg compounds have a
more uniform distribution (73-76). Hg-chloride, in particular,
induces evident nervous tissue atrophy, alongside a reduced

number of neurons and with the proliferation of astrocytosis,
glial fibers, and capillary networks. The disruption of granule
cells in rat cerebellum following dimethylmercuric sulfide
administration has been reported (77). In addition to the neu-
ronal body, Hg may damage myelin sheaths, which lose their
laminar structure (78-80).

This heavy metal may damage blood-brain barrier func-
tion due to its capacity to form cross-linkages with cell
membrane proteins, thus inducing its permeability (81).
Steinwall and colleagues (82—84) demonstrated that this pro-
cess occurs when Hg is administered at high dosages or is
perfused directly into the CNS. Once the blood-brain bar-
rier is disrupted, however, Hg ions, especially in the organic
forms (73), may exert various neurotoxic effects on the adult
CNS, affecting different intracellular organelles. In the rat,
Hg intoxication impairs protein synthesis (85-87). Hg also
adversely affects several enzymatic activities, decreasing the
activity of sulthydryl enzymes such Mg-activated ATPase,
fructose-diphosphate aldolase, and succinic deydrogenase
(85), increasing acid phosphatase activity with a consequent
accumulation in the lysosomes (88), impairing the glycolytic
pathway, and decreasing ATP levels (89). In rat nerve cells,
HgCl, markedly reduced RNA levels (79, 80), probably by
two mechanisms: diminished synthesis of RNA and increased
RNA degradation, with a consequent altered RNA turnover.
Hg reacts with and depletes free sulthydryl groups and deter-
mines a decline of superoxide-dismutase (SOD) activity
leading to oxidative stress, a mechanism implicated in ALS
pathophysiology (90). Interestingly, in a mouse ALS model
overexpressing the human SOD type 1 [SODI1 or copper (Cu)-
zinc (Zn) SOD] gene, chronic exposure to methyl-Hg induced
an early onset of hind-limb weakness (69).

Because ALS is characterized, among other effects, by the
dislocation of a DNA-binding protein (TDP-43) from nucleus
to cytoplasm, forming inclusions (91-93) for a lengthy period
(94, 95), Pamphlett and Jew (94) exposed mice to different
concentrations of inorganic Hg (the HgCl, vapor) for a pro-
longed time. No TDP-43 inclusions in motor neurons were
detected, however, and the exposed mice continued to move
and run without presenting weakness or other signs resem-
bling ALS. A single dose of HgCl, was shown to cause Hg
deposition in spinal motor neurons in mice (96). Noteworthy
is that in all ALS forms, TDP-43 inclusions are generally
found, with the exception of SODI mutation-associated dis-
ease, suggesting that Hg might play a role only in the lat-
ter (95). Neurophysiologic studies also suggested that Hg
slows conduction velocity in dorsal roots and repolarization
(97, 98). Also, low concentrations of methyl-HgCl, caused a
stable increase in the threshold for excitation and blockage
of action potentials in isolated squid axons without chang-
ing their resting membrane potentials, whereas higher con-
centrations decreased the resting membrane potentials (99).
Although these studies were carried out in different experi-
mental systems, the overall results indicate that Hg intoxica-
tion in the CNS disrupts cellular metabolism and degrades
several cellular constituents, eventually leading to cell death
and clinical disease. Probably, the biochemical mechanisms
and the clinical pictures of Hg toxicity in the human depend
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on several factors, such as individual genetic susceptibility
(specific polymorphisms or mutations); the chemical forms
of the metal; and the source, length, timing, and amount of
exposure during life.

In the epidemiological literature, a few studies have sug-
gested the possibility of an Hg-ALS exposure-effects linkage.
A case of an ALS-like syndrome following exposure to organic
Hg was described in a farmer, who presented with a 3-year
history of progressive muscle weakness and died 8§ months
after diagnosis (100). The authors of this study concluded
that exposure to Pb or Hg or excessive milk ingestion might
have been the events leading to disease onset. Barber (101)
and Adams (102) reported cases of inorganic Hg intoxication
leading to ALS-like symptoms, with subsequent resolution
of the disease after removal from exposure. More recently,
Praline et al. (103) reported the case of an 8§1-year-old woman
affected by ALS who presented with a high level of Hg in the
blood, urine, and spinal cord. Despite a therapeutic trial with
a chelating agent, the Hg levels remained elevated, indicating
heavy Hg body burden due to severe antecedent chronic Hg
intoxication. An association between Hg and ALS was also
suggested in the case of a 24-year-old man who injected him-
self intravenously with elemental Hg in a suicide attempt; he
died 5 months later after heroin injection and wrist laceration
but without a clinical history of ALS. Postmortem examina-
tion showed, however, dense deposits of Hg in large cortical
motor neurons but not in other neurons, whereas all glial cells
were occupied by Hg deposits.

Two studies did not find an association between Hg expo-
sure and ALS. In a retrospective case-control study carried
out on 66 patients and 66 age- and gender-matched controls,
Gresham et al. (104) investigated, through a self-administered
questionnaire, exposure to nine heavy metals, including Hg
and Se. Another ‘negative’ case-control study was that con-
ducted by Moriwaka et al. (105) in subjects living in the
non-endemic area of Hokkaido, Japan: Hg concentrations
in plasma, blood cells, and scalp hair were lower in 21 ALS
patients than in their 36 controls, although such abnormali-
ties were considered by the authors to be a disease-induced
effect.

In conclusion, humans exposed to various forms of Hg
may have neurotoxic effects, including in utero and postpar-
tum exposures, but no convincing evidence has emerged for
an involvement of this heavy metal in ALS etiology. Too few
human studies have, however, been conducted on this issue,
and most were affected by methodological limitations con-
cerning exposure assessment and/or confounders control. In
addition, the results of epidemiological investigations have
been conflicting.

Cadmium

Pure Cd is found naturally in small quantities in air, water,
and soil. Cd in the environment occurs as a byproduct of the
smelting of other metals, such as Zn, Pb, and Cu, and its dis-
tribution is increased due to human activities. The ingestion
of foods, such as cereals, seafood, and offal and the inhalation

of tobacco smoke are generally considered the main sources
of environmental Cd exposure (106). Occupational exposure
is frequently due to fume inhalation, working in the nickel
(Ni)-Cd battery industry, and exposure to paint pigments.
Once absorbed from the gastrointestinal tract, Cd has a long
half-life in the body, as it is not biodegradable.

Cd stimulates the formation of metallothioneins (MT), a
family of cysteine-rich low-molecular-weight metal-binding
proteins. Experimental data support the participation of MT
in the detoxification of toxic metals, such as Cd and in scav-
enging ROS. Cd is red-ox inert as compared with other transi-
tional metals, except when conjugated with MT. The Cd-MT
complex is formed in the liver, released into the blood, and
transported to the kidneys (107, 108). Acute Cd poisoning
causes pulmonary edema and hemorrhage; chronic exposure
adversely affects kidney and bone (109). Cd also acts as an
endocrine disruptor (110, 111) and may thus affect repro-
duction and child development (112). In addition, Cd and
its compounds are classified by the International Agency for
Research on Cancer as a group 1 human carcinogen based on
evidence that lung cancer is increased in Cd workers (113).
Cd exposure has also been linked to human prostate and renal
cancer, although this linkage is weaker than for lung cancer
(114). The role of the metal in liver, pancreas, and stomach
carcinogenesis is considered equivocal (115).

Some of the toxicological effects of Cd mirror the bio-
chemical mechanisms underlying ALS pathophysiology,
thus providing biological plausibility to a Cd-ALS relation.
In particular, considering that 20% of familial ALS cases
show SODI gene mutations (5), the capacity of Cd to alter
SOD1 activity is of considerable interest. Cd can induce
MT expression (116), which may act as a protective factor
against ROS, but this protein also binds Zn ions in mam-
malian cells in addition to Cd (117), irreversibly decreasing
SODI1 enzyme activity (118). Moreover, Cd can interfere
with the secondary structure of the SOD1 protein by decreas-
ing its Zn content and thus enzymatic activity (109) and by
inducing misfolding and aggregation of the SODI protein
(119). These effects were analyzed by spectroscopy, which
showed that Cd modifies SOD1 conformation by increasing
the o-helix structure and decreasing the random coil domain.
Cd also induces SOD1 cytoplasmic inclusions in the proximal
axon and neuron cell body, which represent the pathological
findings detected in motor neurons and astrocytes from ALS
patients (120). Degeneration of the neural tube in Cd-treated
embryos of zebra fish has also been demonstrated (121). In
particular, if the animal embryos are exposed to Cd before
neurulation, a gap in the anterior neural tube is observed,
and if exposure follows the closure of the neural tube, upper
limb defects may occur (122, 123). Other studies confirmed
that Cd induces cell apoptosis, especially in mouse N2A neu-
roblastoma cells. (109). The mechanism through which Cd
induces programmed cell death is not clear, but proteomic
studies identified differences of protein expression and aggre-
gation between control and Cd-treated N2A cells, involving
structural proteins, stress-related and chaperone proteins,
ROS enzymes, apoptosis, and survival signals (109).
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In the epidemiological literature, of interest is the observa-
tion by Pamphlett et al. (124) of higher blood Cd concentra-
tions in 20 ALS patients compared with controls. Successive
studies measuring heavy metal levels in ALS patients have
produced contradictory results, but in most investigations,
Cd appeared to be increased. Bar-Sela et al. (125) reported in
2001 a case of a 44-year-old patient who died from ALS after
9 years of Cd exposure while working in a Ni-Cd battery plant
in Israel. The work conditions and exposures in that plant
were extremely hazardous, and the exposure of this patient
was considerably more intense than that characterizing his
coworkers. In particular, the patient had to shake the barrels
to loosen up chunks of Cd, a process releasing Cd-containing
fumes. As soon as ALS was diagnosed, the blood Cd level
was 8 ug/L, 10-fold higher than in non-smoking Israelis, but
this concentration might not reflect the long-term antecedent
exposure because blood Cd levels are known to fall rapidly
when exposure ends (126). The urinary Cd level, an indicator
of cumulative past exposure, was 13 pug/L (125). The epidemi-
ological data are extremely limited, but the available evidence
suggests that occupations and workplace Cd exposure may be
linked with excess ALS risk, but there could have been a con-
tributory role for solvent. The patient was one of many with
neurotoxic type syndromes, and many other effects associated
with mixed exposures to Cd, Ni, and solvents in appalling
working conditions (127). A case-control study carried out in
New England between 1993 and 1996 showed a higher risk
of ALS for construction workers [odds ratio (OR)=2.9; 95%
CI, 1.2-7.2] and precision metal workers (OR=3.5; 95% (I,
1.2-10.5), but establishing what compounds — including Cd —
were specifically involved was impossible (128). In accor-
dance, other research gave support to the hypothesis that ALS
patients are more likely to have been exposed to heavy metals
compared with controls (129-131).

On the other hand, Pierce-Ruhland and Patten (132) were
unable to detect long-term excessive exposure to Cd in ALS
patients, although overall exposure to heavy metals, such
as Pb and Hg appeared to be related to disease risk. Their
study encompassed 80 MND patients and 78 controls using
telephonic interviews. In another case-control study from
Australia, no correlation between ALS and antecedent occupa-
tional exposure to Cd or other metals (as ascertained through
questionnaires) was found when analyzing 179 disease cases
and a corresponding number of controls (133). Interestingly,
in an older study based on autopsy samples carried out on 24
patients with ALS and 18 controls, an elevated level of MT in
liver and kidneys of patients was detected (134), which may
be of considerable interest for ALS etiology, considering the
interrelation between MT and Cd.

In summary Cd, a recognized neurotoxic element, is
assumed to be involved in ALS etiology on the basis of spe-
cific biological plausibility supporting this view, but epidemi-
ological evidence is still lacking due to the very few number
of studies (generally with low statistical power) carried out
to date. Additionally, despite various international guidelines
from the 1990s that have banned the use of Cd in plastic,
PVC, batteries, and electronics and have led to a decrease
in Cd occupational exposure, little evidence has emerged of

decreased ALS incidence [which, on the converse, might be
increasing (2)]. Thus, although Cd might be involved in ALS
etiopathogenesis, such a relation is still far from being dem-
onstrated and we need more reliable data to assess it.

Lead

Pb is a naturally occurring metal that is present in small
amounts in the earth’s crust. In the environment, Pb derives
mainly from human activities, including burning fossil fuels,
mining, and manufacturing. Pb is used in the production of
batteries, ammunition, metal products (solder and pipes), and
devices to shield X-rays. Due to health concerns, Pb from
gasoline, paints and ceramic products, caulking, and pipe sol-
der has been reduced in recent years; hence, cases of overt Pb
poisoning have become less frequent (135). The toxic effects
of Pb on the nervous system are well known and include Pb
encephalopathy (primarily in children) and a peripheral motor
neuropathy (primarily in adults) (136). After absorption from
the gut, Pb is deposited in the soft tissues (liver, kidney, eryth-
rocytes), and then transferred to the bones, where it is stored
in a biologically inactive form. Bone Pb levels increase with
age (135). The half-life of Pb is 1 month in blood, 3-5 years
in trabecular bones, such as patella, and 15-25 years in corti-
cal bones, such as tibia. Hence, blood Pb is generally consid-
ered to reflect acute exposure, whereas bone Pb is believed
to reflect cumulative exposure. Prolonged exposure results in
increased bone Pb concentration that persists after the termi-
nation of the original exposure (137).

With regard to ALS, the mechanisms underlying Pb neuro-
toxicity make the relation of Pb to ALS biologically plausible
because Pb neurotoxicity depends on the same mechanisms
suggested for the pathogenesis of this disease. The pathophys-
iological mechanisms underlying the development of ALS
appear to be multifactorial, with emerging evidence of a com-
plex interaction between genetic and environmental factors.
In the last years, in addition to the SOD1 gene, new genes
have been discovered (TDP43, FUS, VCP, etc.) that can act
synergistically with environmental factors through different
pathogenetic mechanisms. Such mechanisms include gluta-
mate neurotoxicity, oxidative stress, mitochondrial or axonal
transport dysfunction, autophagy, and protein misfolding.
An excessive activation of these postsynaptic receptors by
glutamate, known as glutamate-induced excitotoxicity, can
incite neurodegeneration through the activation of calcium-
dependent enzymatic pathways. Glutamate-induced excito-
toxicity can also result in the generation of free radicals, which
in turn can cause neurodegeneration by damaging intracellu-
lar organelles and up-regulating proinflammatory mediators
(138). Oxidative stress might also be caused by the toxic gain
of function of the SOD1 enzyme following SOD1 mutation
(139). In addition, structural abnormalities of mitochondria,
dysfunction of the sodium/potassium ion pump, autophagy,
and disrupted axonal transport systems have all been impli-
cated in ALS pathogenesis (138). Non-neuronal cells, such
as astrocytes and microglia, might also directly contribute to
neurodegeneration through mechanisms including insufficient
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release of neurotrophic factors, secretion of neurotoxic media-
tors, and modulation of glutamate receptor expression (known
as noncell autonomous neurodegeneration) (140). Another
possible pathogenetic mechanism involves protein misfold-
ing. SOD1 mutations induce conformational instability and
misfolding of the SOD1 peptide, resulting in the formation
of intracellular aggregates that inhibit normal proteosomic
function, disrupting axonal transport systems and vital cel-
lular functions. The TAR DNA binding protein 43 (TDP-43)
has also been recognized as a major component of ubiquit-
inated cytoplasmic protein aggregates in almost all patients
with sporadic ALS (sALS) (141). Aggregates of another pro-
tein, the fused-in sarcoma protein (FUS), were found in ALS
but not in patients with pathological changes in TDP-43 or
SOD1, indicating a novel disease pathway (142). Pb can also
substitute for calcium in many intracellular reactions, damage
mitochondria, and amplify glutamate excitotoxicity (143).
Animal studies have suggested that ALS onset may be related
to motor neuron function, whereas progression is regulated
by neuroglia (144).

Surprisingly, Pb might injure motor neurons and at the
same time stimulate glial cells to provide trophic support to
neurons and therefore delay cell death. Experimental evi-
dence supports the view that astrocytes can sequester and
buffer Pb in the CNS, preventing further diffusion of the
metal to the neuronal compartment and subsequent neuro-
toxicity or altered synaptic transmission (145, 146). In par-
ticular, astrocytes are the cells that preferentially induce
cytoprotective and antioxidant gene expression in response
to Pb (147). When pretreated with low, non-toxic Pb concen-
trations, astrocytes can induce neuroprotective mechanisms,
such as the up-regulation of VEGF (vascular endothelial
growth factor) gene expression, and can down-regulate neu-
roinflammation, as shown by a dramatic reduction of GFAP-
immunoreactive astrocytes (148). Accordingly, Barbeito and
colleagues (149) found that Pb exposure prolonged survival
in SODI1 transgenic mice.

Hence, Pb exposure could potentially have opposing
actions during the course of ALS, initially promoting the
degeneration of motor neurons but later abrogating damage
and neuroinflammation mediated by dysfunctional glia (148).
Additionally, Pb decreases SOD activity in Pb-exposed rats
(150) and stimulates antioxidant enzyme hemoxygenase 1
expression in astrocytes (147), mechanisms that could con-
tribute to neuronal protection. Alternatively, another possi-
bility is that factors associated with better survival are also
associated with higher Pb levels in the population, such as
gender (men have higher Pb levels and longer ALS survival)
but not age because older individuals have higher Pb levels
but shorter ALS survival (151). Another possibility is that Pb
exposure is related not to ALS risk but rather to longer sur-
vival, favoring the higher participation of Pb-exposed cases
in epidemiological studies, thus being a source of selection
bias (151). Another possibility is that of reverse causality, i.e.,
Pb levels are a result of ALS due to the decline in physical
activity in ALS patients, leading to bone demineralization
and the release of Pb from bone into blood, as also suggested
by the direct correlation between blood Pb and disability due

to the disease in a case-control study (54). Nevertheless, the
associations of blood and bone Pb in ALS patients were not
appreciably changed by adjusting for physical activity levels
(143, 152, 153) or by bone turnover (152).

In epidemiological studies, Pb exposure has long been
investigated as a potential ALS risk factor and as a factor
affecting survival in this disease (154). In the first report on
progressive muscular atrophy by Aran (155) in 1850, 3 of 11
cases had contact with Pb, and in 2 cases, Pb poisoning was
diagnosed. A number of cases with lower motor neuron signs
and pyramidal involvement can be dated at the first years of
the 20th century. More recently, Oh et al. (156) reported a
case of ALS in a worker who was exposed to Pb while work-
ing in electronic parts manufacturing. Besides single case
reports, a number of case-control studies and registry-based
case-control or cohort studies have dealt with this topic. The
majority of the case-control studies (104, 131, 132, 143, 152,
154, 157-159) found some evidence for an association of
ALS with Pb exposure as estimated through the administra-
tion of questionnaires. In 1970, Campbell et al. (154), through
a case-control study on 74 patients with MND and 74 age-
and gender-matched controls, found a history of extensive Pb
exposure in 15% of patients and in 5.4% of the controls and
a history of bone disease or fracture in 25% of patients and
in 9.4% of the controls. The authors also found a 54% 5-year
survival rate in MND patients previously exposed to Pb vs.
16% in patients without antecedent Pb exposure. Increased
Pb exposure and increased frequency of bone fractures could
suggest a role of toxic Pb reservoir for the bone, which may
release Pb after traumatic events, thus contributing to ALS
onset. Yet, the authors did not find different bone Pb levels
in the two groups. Felmus et al. (157) studied the anteced-
ent events of Pb exposure in 25 patients with ALS and 50
controls, detecting a higher exposure to Pb, Hg, athletics,
and consumption of milk in patients compared with controls
(157). This study was replicated in 1981 with confirmation of
the results (132). Armon et al. (158) found that men with ALS
had worked more frequently at welding and soldering, sug-
gesting an association between ALS in men and exposure to
Pb vapors. In a study from the Scottish MND Register carried
out on 103 ALS patients and their matched controls, history
of fractures (OR=1.3), manual occupation (OR=2.6), and
exposure to Pb (OR=5.7), and solvents/chemicals (OR=3.3)
was more frequent in patients (131). Other studies, however,
did not confirm these results (104, 160, 161). Nevertheless,
the validity of the early data is still debated. These studies
include occupational exposures that epidemiologists often
use as a surrogate to assess potentially toxic exposures, and
many studies relied on self-reporting through questionnaire
use, an approach at risk of recall bias. Indeed, McGuire
et al. (159) reported that Pb exposure based on expert evalu-
ation of self-reported occupational histories by a panel of
industrial hygienists was not associated with ALS (OR=1.1),
suggesting that recall bias might explain findings obtained on
the basis of self-reported data. In another study (143), occu-
pational Pb exposure based on review of self-reported occu-
pational history was associated with ALS, and the RR was
similar to that computed for self-reported Pb exposure. More
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recently, blood Pb levels were found to be increased among
US veterans affected by ALS compared with controls (152),
suggesting that Pb exposure might at least in part explain the
higher risk of ALS noted for military personnel, who can be
exposed to Pb from firing and other practices. Residential and
recreational Pb exposure might also represent a risk factor
for ALS, but such exposures are generally lower than those
experienced in occupational settings and therefore more dif-
ficult to investigate due to a high risk of misclassification.
In the Italian province of Modena, ALS rates were higher in
residents in the ‘ceramic district’, where several paving-tile
factories were located and induced a severe environmental Pb
pollution than in the unexposed population (162). However,
this excess incidence was not confirmed in following studies
carried out in the same province (163) or in the neighboring
province of Reggio Emilia (164), although the possibility of
delayed effects of such extensive Pb contamination cannot yet
be ruled out.

Several studies examined the Pb-ALS relation through an
analysis of biomarkers of exposure, but their results were
inconsistent. Studies from one group reported that, compared
with controls, ALS cases had higher Pb levels in plasma
(165), cerebrospinal fluid (166), and muscle (165). Kurlander
and Patten (167) reported that even after chelation therapy,
postmortem concentration of tissue metals was consistently
increased. Other studies yielded null results (168-172),
including the population-based investigation by Bergomi
etal. (55) on toenails trace elements concentrations in 22 ALS
patients and 44 matched controls. In this study, no evidence of
an association between ALS risk and toenails trace elements
(including Pb) was detected.

All the above-mentioned studies have limitations, includ-
ing small size, possible confounding by uncontrolled factors
affecting Pb levels, and potential bias introduced by the use
of hospital-referred controls in some cases. Several factors
related to blood and bone Pb levels, including age, gender,
cigarette smoking, alcohol use, and education, are known to
be potential confounders in the Pb-ALS relation. A recent
study, however, combined biological measures and inter-
views to analyze this issue (143). The authors studied 109
cases and 256 controls and found that ALS risk was associ-
ated to self-reported occupational Pb exposure (OR=1.95)
and also with increased blood and bone Pb levels, with
OR=1.9 for each pg/dL increase in Pb blood levels, OR=3.6
for each unit increase in log-transformed patella Pb, and
OR=2.3 for each unit increase in log-transformed patella
Pb. The same group also found that Pb exposure was associ-
ated with longer survival in ALS cases (151), an observa-
tion apparently contrasting with the previous observation
of an excess disease risk in Pb-exposed subjects (143). The
same conflicting results had been previously reported by
Campbell et al. (154) in the 1970s, which may indicate that
Pb exposure might have different effects on ALS onset and
progression.

In conclusion, the data on Pb as a possible risk factor for
ALS are conflicting and inconsistent, and methodological
limitations of the epidemiological studies hamper reaching
definitive conclusions about this issue. Nevertheless, the

possibility that Pb exposure increases ALS survival deserves
further evaluation.

Pesticides

The four major classes of pesticides include insecticides, her-
bicides, fungicides, and rodenticides, based on target species,
plus other pesticides included in narrower classifications. In
the human, exposure to pesticides can occur through the oral,
dermal, or inhalation route. Although some pesticides are neu-
rotoxic, these are not generally classified as such. Among pes-
ticides, the organophosphates (OPs, as insecticides) have been
associated with ALS following the report of increased inci-
dence of ALS in Persian Gulf War veterans, but no conclusive
epidemiological evidence supports this apparent increased
risk (69). Returning 1991-1992 veterans were reported to
have received prophylactic treatment containing cholinergic
inhibitors to protect them against nerve gas and insect pests,
and plausibly, such pretreatment could have exacerbated an
underlying genetic polymorphism or unmasked other factors
that increase the risk of motor neuron effects. The OPs have
wide agricultural and home uses.

The primary toxicity of OPs is associated with the acute
inhibition of acetyl cholinesterase, the enzyme responsible
for the destruction and termination of the biological activity
of the neurotransmitter acetylcholine (173-175). A second
distinct manifestation of OP poisoning is a paralytic condi-
tion called the intermediate syndrome, which consists of a
sequence of neurological signs appearing about 24-96 h after
the acute cholinergic crisis but before the onset of delayed
neuropathy. The major effects are muscle weakness, primar-
ily affecting muscles innervated by the cranial nerves (neck
flexors, muscle of respiration) as well as those of the limbs.
Cranial nerve palsies are common, respiratory depression and
distress are not responsive to atropine or oximes, and death
may occur. A third syndrome is the OP-induced delayed neu-
rotoxicity (or OP-induced delayed polyneuropathy), in which
the agent binds with neurotoxic esterase without effects on
ChE (176).

Other clinical signs and symptoms from impairment of
ChE in muscarinic, nicotinic, and central sites are headache,
dizziness, paralysis, ataxia, bradycardia, miosis, weakness,
anxiety, excessive sweating, fasciculations, vomiting, diar-
rhea, abdominal cramps, dyspnea, salivation, tearing, pulmo-
nary edema, and confusion.

No studies have been designed to specifically investigate
the potential association of OPs with ALS. Morahan et al.
(177) analyzed the potential of pesticides, heavy metals, and
chemicals to cause SALS and showed that an impaired capac-
ity of patients to detoxify these toxicants could be related to
differences in the MT family of genes, metal transcription
factor 1 and glutathione synthetase.

Other studies examined paraoxonase (PON) genes in the
investigation of the potential association as described by
Johnson and Atchison (69). PON is an A-esterase based on
its ability to detoxify the prototype OPs, paraoxon. PON1
detoxifies OPs and has several variants, i.e., PON1, PON2,
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and PON3. PON hydrolyses OPs, and its ability to detoxify
them is largely determined by different variants of PON1
as opposed to other variants. Genetic variations have been
found in the coding and promoter region of the human PON1
locus that determines the catalytic activity and enzyme lev-
els. Therefore, theoretically, the risk of developing ALS in
an individual could increase if the mutation of the PONI1
gene increases and if the body concentration of PONI is
suboptimal. Thus, mutations that impair the ability of PON1
to detoxify OPs could increase sensitivity to the toxicity of
these pesticides and possibly of Pb, favoring ALS develop-
ment, as well as the other effects specifically associated with
anticholinesterases. No consistency has emerged, however, in
establishing a causal link between OPs exposure and muta-
tions in the PON1 gene, based on epidemiological and animal
studies. Wills et al. (178) showed that the polymorphism of
PONI1 genes did not reduce enzyme activity, suggesting that
this gene product is unlikely to be involved in ALS etiology.
Other studies suggest that among veterans with Gulf War
syndrome, US veterans have significantly lower serum con-
centrations of one form of PON1 allozyme, whereas British
veterans have lower concentrations of both allozymes (Q and
R allozymes), when compared with healthy Gulf War veter-
ans (178). A report of two cases has shown massive increases
in CPK — a measure of the breakdown of muscle tissue — in
persons with occupational exposure to highly toxic anticho-
linesterases (179). The authors’ suggestion that medical pro-
grams for Gulf War veterans with Gulf War syndrome should
include surveillance for elevated CPK, abnormalities of neu-
romuscular conduction, and genetic susceptibility to guide
diagnosis and care may also be of value in helping to sort out
the possibility of mixed causes.

A case of a slowly progressive MND following chronic
exposure to pyrethroids that was indistinguishable from ALS
was reported in a 44-year-old woman who, as a food shop
proprietor, had been using cans of pyrethroid insecticides
containing imiprothrin, phenotorin, D-T80-resmethrin, and
D-T80-phthalthrin almost every day for 3 years in an unven-
tilated room (180). Further description follows:

Initially, she experienced tongue numbness, nausea,
and rhinitis while using the insecticides. Two years
after beginning to use the insecticides, she noticed dif-
ficulty lifting heavy objects with her left arm, and her
symptoms steadily worsened over the next 8 months.
Three months before admission, she developed slurred
speech, gait disturbance, and generalized muscle weak-
ness. On admission, neurological examination revealed
dysarthria, nasal voice, and dysphagia with fasciculat-
ing atrophied tongue, moderate muscle weakness with
fasciculation in both upper limbs, predominantly on the
left side, and fasciculation in the trunk and both lower
limbs. Jaw jerk was hyperactive, and hyperreflexia was
seen in all limbs without pathological reflexes. Sensory
and autonomic systems were all normal. The patient
showed upper and lower motor neuron signs in bulbar,
cervical, and lumbosacral regions, consistent with signs
in bulbar, cervical, and lumbosacral regions, suggesting

clinically definite ALS based on El Escorial criteria.
Neurophysiologic studies also indicated both upper
and lower motor neuron involvement. Her illness was
thought to be caused by pyrethroids for two reasons:
[1] the usual manifestations of pyrethroid intoxication,
such as tongue numbness, nausea, and rhinitis, pre-
ceded the motor dysfunction; [2] the motor symptoms
and ongoing denervation potentials partially improved
after the cessation of pesticide usage. The case indi-
cates that chronic pyrethroid intoxication may cause an
ALS-like disorder in humans, similar to Pb and domoic
acid intoxications. Pyrethroids are synthesized from
chrysanthemum extracts, and they disturb ion chan-
nels, such as voltage-dependent sodium channels and
voltage-sensitive chloride channels, and readily induce
neuronal excitation by current prolongation. Moreover,
deltamethrin, one of the pyrethroids, is reported to
impair axonal transport and then degenerate axons in
rats, with impaired axonal flow causing motor neuron
death in various animal models of MND. Although
pyrethroids have low toxicity, due in part to their rapid
detoxification via ester hydrolysis in mammals, some
human populations are thought to be poor metabolizers
of pyrethroids, whereas carboxyesterase inhibitors can
enhance pyrethroid toxicity. Therefore, chronic expo-
sure to pyrethroids may cause MND through distur-
bance of either ion channels or axonal flow, especially
in poor metabolizers (180).

A case simulating MND closely associated with overexpo-
sure to a pyrethrin and chlordane-based insecticide has also
been reported (181, 182). For pyrethrins, such as pymethrin,
the elimination of metabolites 4’-hydroxy-3-phenoxy benzyl
alcohol or 4’-hydroxy-3-phenoxy benzoic acid occurs by sul-
fate conjugation, which is the major metabolic pathway in the
rat. MND patients have a defect in their ability to convert
cysteine into inorganic sulfate and also show a poor capacity
to form the sulfate conjugate of paracetamol. Therefore, these
two metabolites may be responsible for neurotoxic effects,
resulting in MND-type illness.

In human populations, various investigators have exam-
ined the potential association of pesticide exposure with
ALS risk. Studies have been conducted in different coun-
tries, including Italy (Ferrara, Reggio Emilia, and Sardinia),
France (Britanny), USA (states of Massachusetts, Michigan,
Minnesota, and Washington), Scotland, Sweden (Scaraborg),
Australia (all states), and Greece (Athens), as summarized in
Table 1. Included are reports that referred to MND and ALS
interchangeably, reports that include ALS as one type of MND,
and reports that referred to all MND with no mention of ALS,
plus reports that are literature reviews of some of the studies.
Table 1 also summarizes the methodological strengths and
the weaknesses of these studies. The human studies reported
on the potential association of pesticides to ALS, or the lack
thereof, are also shown in Table 2. ‘Potential association’ is
based on increased rates or risk in the exposed subjects, sug-
gesting a possible but not definitive role of pesticides, taking
into account occupation in an agricultural environment, being
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(Table 1 continued)

Remarks

References

Findings Conclusion

Method

Location-subjects

In the present series, 4.4% of the

cases were familial.

Giagheddu
etal., 1983

(194)

Sardinia has a mean

Mean ALS incidence higher in farm workers

Case records from the archives of the

Sardinia, Italy 182 cases
of ALS 1957-1980.

ALS diagnosis:

annual incidence of
0.51 per 100,000

inhabitants and a

and shepherds. The ratio between the incidence
in farmers and in the other two occupational

groups is 5.42

Neurological Departments of Cagliari,

Sassari, Ozieri, and Nuoro (operating since
1920, 1920, 1993, and 1992, respectively).

(i) Symptoms of a lesion

prevalence rate of

The mean yearly ALS incidence per

1,000,000 population according to

All ALS patients in Sardinia hospitalized in

one of the above 4 departments.

of the upper and lower

motor neuron;

3.65 for 100,000

inhabitants (prevalence
day 21 October 1971).

Incidence in various

=2.39

occupational status: Farming;

Housewives

Death certificates not considered, as initial

(ii) Absence of objective

disturbances of

=0.5

cause of death (ALS) was often not specified.

0.28.

0.51/100,000/year.

Other non-active population

Mean incidence:

sensation of loss of

areas of the island was

divergent. The

control of sphincters;

(iii) Normal CSF values
and no signs of cervical

common form was

9

<

ol
£55
R =
Z 27388
g5 &=
2 © =
“ 585
.2 =25
= = I >
c5tt
Ea)cl)rr
>

5

=

I}

o

5}

2

[5]

g

a farmer, or environmental risk factors, such as contact with
soccer fields assumed to have been treated with herbicides.
The pattern relating ALS to occupational exposure is incon-
sistent, as, in addition to agriculture and farming, some stud-
ies reported associations of ALS with different occupations,
such as heavy metal work, electric trauma, use of pneumatic
tools, employment in the plastics industry, exposure to heavy
metals, acids, and animal carcasses, and truck driving (193).
Even when farmers were identified, the subjects might not be
the traditional thinking of farmers who use pesticides (e.g.,
pesticide applications for agricultural crops), but rather sheep
breeders as in the case reported by Rosati et al. (196). Of the
18 reports, 13 suggest a weak potential association, and five
do not report any association. The potential association is
examined mainly in terms of occupation and environmental
risk factors, generally using existing records of ALS patients
along with control populations and questionnaire surveys. A
major weakness of these studies is inadequate exposure assess-
ment due to insufficient information on the actual chemicals
involved or about their use (amount, application method),
exposure pattern (air, dermal; intermittent; short, medium, or
long-term; job category), frequency (hours, daily, monthly),
duration (total time period), level of exposure (measured
concentrations), industrial hygiene (protective measures).
Much of the potential association is assumed (e.g., assumed
exposure to pesticides because of agriculture-related work),
with no specific pesticide products identified. That the studies
were conducted in the different parts of the world offers some
level of ‘consistency’, which is a key aspect of causal infer-
ence, although no cause-effect relation was clearly identified.
Nevertheless, a suggestion of consistent results can be seen
across studies from different areas and different researchers,
using different methods and subjects. Other limitations of
these studies include small sample size (183, 187), unavail-
able information about confounders, such as lifestyle (e.g.,
diet, smoking), and other chemical exposures (e.g., chemicals
used on farms, in hobbies). Another limitation is the self-re-
porting nature of certain studies, which might be a subjec-
tive process and also may carry recall and selection biases
(133, 185, 187). Therefore, that the increased ALS incidences
observed in these studies were actually caused by pesti-
cides cannot be definitively confirmed, although the overall
evidence is suggestive of an association between increased
ALS risk and pesticide exposure.

As noted above, one potential relation of pesticides to
MND is the neurotoxic properties of several pesticides, such
as OPs pesticides, and the genetic susceptibility of individuals
to such toxicity. As PONs are involved in the detoxification of
this group of pesticides, studies have been conducted to exam-
ine the potential association between sALS and PON gene
cluster variants. Saeed et al. (197) investigated the associa-
tion between SALS and PON gene cluster variants in a large
North American Caucasian family-based and case-control
cohort. Clinically definite and probable ALS was diagnosed
according to the revised El Escorial criteria, exclusion of
family history of ALS, and SODI mutation analysis. Single-
nucleotide polymorphism (SNP) genotyping was done using
TagMan gene expression assay. A haploblock of high linkage
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Table 2 Summary of reports on human studies on potential association of pesticides to ALS.

References® Potential association® Characteristics used to link study subjects to pesticides®
Bonvicini et al., 2010 (183) + Agricultural work
Furby et al., 2010 (184) + Contact with agricultural chemicals

Weisskopf et al., 2009 (185) -

Chio et al., 2009 (186) +
Qureshi et al., 2006 (187) +

Morahan and Pamphlett, 2006
(133)

Govoni et al., 2005 (188)
Burns et al., 2001 (189)
McGuire et al., 1997 (159)
Gunnarsson et al. 1991 (193)
Giagheddu et al., 1983 (194)
Holloway et al., 1982 (195)

+

+ 4+ + + +

+/— (frequency of exposure
9% in patients and 5% in the
control population)

Rosati et al., 1977 (196) +

No background information (e.g., occupation). American Cancer
Society Cancer Prevention study participants self-reporting on
exposure to 11 different chemicals classes or X-rays

Soccer players

No background information (e.g., occupation). Neuromuscular
clinic patients self —reporting on toxic exposures.

No background information (e.g., occupation). ALS patients
self-reporting on pesticide/herbicide exposures

Occupation in agricultural work

Manufacture or formulation of 2,4-D

Exposure to agricultural chemicals (in men)

Farm workers (and office workers)

Farm workers

Farmers and agricultural workers (including three clinical
variants of MND: progressive muscular atrophy, progressive
bulbar palsy, and ALS).

Agricultural workers, mainly farmers (majority sheep breeders)

“The limitations of the studies are summarized in Table 1 and discussed in the text. ®‘Potential association’ (+) is based on increased incidence
or RR when the exposed population is compared with the unexposed one, suggesting a possible but not a definitive role of pesticides. ¢‘Potential
association of pesticides’ to ALS is inferred or assumed based on potential association of increased incidence or RR with characteristics that
linked study subjects to pesticides, such as occupation in an agricultural environment, being a farmer, or reports on environmental risk factors
(e.g., contact with soccer fields assumed to have been treated with herbicides).

disequilibrium (LD) spanning PON2 and PON3 was associ-
ated with sALS. The SNPs rs10487132 and rs11981433 were
in strong LD and associated with sALS in the trio (parents-
affected child triad) model. The association of rs10487132
was replicated in 450 nuclear pedigrees comprising trios and
discordant sibpairs. No association was found in case-control
models, and their haplostructure was different from that of
the trios with overall reduced LD. Resequencing identified an
intronic variant (rs17876088) that differentiates between det-
rimental and protective SALS haplotypes. The authors con-
cluded that there is an association of variants in the PON gene
cluster with sALS, which is compatible with the hypothesis
that environmental toxicity in a susceptible host may precipi-
tate ALS.

Some PON1 promoter polymorphisms may predispose to
SALS, possibly by making motor neurons more susceptible to
OP-containing toxins. To determine whether an impaired abil-
ity to break down OPs underlies some cases of SALS, Morahan
et al. (177) studied 143 sALS patients and 143 matched con-
trols and compared frequencies of PON1 polymorphisms,
investigating gene-environment interactions based on infor-
mation on self-reported pesticide/herbicide exposure. The
PON1 promoter allele 108t, which reduces PON1 expression,
was strongly associated with sALS. Overall, promoter hap-
lotypes decreasing PON1 expression were associated with
SALS, whereas haplotypes increasing expression were asso-
ciated with controls.

Wills et al. (178) tested the hypothesis of an association
that correlates with functional changes in PON1 (PONI,
MIM 168820) within a case-control study. Sera from 140

ALS patients and 153 matched ‘healthy’ controls and CSF
samples from 15 patients and 15 controls were tested for
PON, diazoxonase, and arylesterase activities. Participants
with ALS were genotyped using tagging SNPs across the
PON locus, and survival data and enzyme activity were cor-
related with genotype. A trend toward increased PON activity
was noted in ALS compared with controls, which correlated
with increased frequency of the homozygous arginine (RR)
variant of PON1QI192R. Contrary to expectations, PON1
protein, PON1, diazoxonase, and arylesterase activities were
not reduced in ALS patients. OP hydrolysis rates had no
effect on ALS survival. The authors noted that the increase in
PON1R192 frequency in ALS in this study supported previ-
ous genetic susceptibility studies, and the findings suggested
that the influence of PON1 polymorphisms on ALS suscepti-
bility was not due to reduced OPs hydrolysis. A limitation of
this study, however, is the lack of a population-based design
for cases and controls, an approach that might have been
responsible for selection bias.

Conclusions

Overall, our analysis supports the view that Se and pesticides
are likely to be involved, either as triggering factors or as
causal agents, in ALS etiology, based on epidemiological evi-
dence and some biological plausibility. The evidence is par-
ticularly impressive for Se due to its selective toxicity to motor
neurons. Less suggestive is the involvement of Hg, Cd, or Pb
in disease etiopathogenesis due to the limited evidence from
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both epidemiological and laboratory studies and because the
studies carried out thus far are inconclusive. Apart from the
PONSs genes, little is known about the possible role of genetic
susceptibility in mediating the effects of environmental toxins
in triggering ALS onset. Various methodological limitations of
the studies, such as low statistical power, exposure misclassi-
fication, and inadequate control of confounders, might explain
the conflicting results found in the literature on these issues.
Further in-depth investigation of the involvement of Se, heavy
metals, and pesticides in ALS etiology is warranted.
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