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INTRODUCTION 

The World Health Organization (WHO) worried about 

the recurrence pf the 2009 outbreak of H1N1 pandemic 

worldwide as it consumed then many human lives. What 

is H1N1? The disease H1N1 is a swine Flu (as it 

expresses H or N antigens). The H1N1 case is confirmed 

only by a lab test and not by its symptoms: fever, sore 

throat, nasal congestion, cough, respiratory problems, or 

body aches. Smith et al.1 narrates the origins and 

evolutionary genomics of the 2009 swine-origin H1N1 

influenza A epidemic. The name “swine” was selected 

because people caught it first in direct contact with the 

pigs. Why do we have to understand H1N1 pandemic 

thoroughly? The health/medical professions could 

prevent such pandemic in future. On June 11, 2009, 

WHO declared that H1N1 was the first global pandemic 

since the 1968 Hong Kong flu. Saito et al.,2 Jain et al.,3 
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Smith et al.,1 and Vijaykrishna et al.4 provide details 

about the 2009 H1N1 pandemic.   

The H1N1 virus is destroyed only by heat at a high-level 

167-212°F (equivalently, 75-100°C). On October 25, 

2009, the U.S. President Barack Obama declared that 

H1N1 was a national emergency. In May 2009, the 

Chinese government confined 21 U.S. students and 3 

teachers to their hotel rooms. Australia ordered a cruise 

ship with 2000 passengers to stay at sea because of a 

swine flu. Japan quarantined 47 airline passengers in a 

hotel for a week in mid-May. In mid-June 2009, India 

ordered pre-screening the “outbound” passengers from 

the countries thought to have a high rate of infection. 

Pregnant women have a higher risk to be a H1N1 case. 

About 18,138 deaths occurred worldwide before the start 

of year 2010. Only on August 10, 2010, the WHO 

declared that the H1N1 pandemic is over. Hence, this 

article gives an importance to this pandemic and analyzes 

the 2009 data (http://www.cdc.gov/h1n1flu/qa.htm). 

A closer look at the 2009 H1N1 incidences makes one 

wonder why a late start of H1N1 in a nation ends early. 

What triggers the H1N1 to start late? Their relationship 

results in a negative correlation in all five continents: 

Africa, Asia, Europe, Americas, and Oceanic. Is it 

because there exist deterrents to the epidemic in the 

nations of a continent or knowledge of medical 

expediencies based on learning from other countries past 

performance to extinguish the pandemic H1N1? 

How should a data analysis proceed to answer the above 

question? Definitely, an appropriate underlying model for 

the data needs to be first identified. What is a model? 

Model is an abstraction of the reality. A search of the 

literature reveals that there is no appropriate bivariate 

distribution currently available in the literature to serve as 

an underlying model for the 2009 H1N1 data.  

Hence, this article first develops a new bivariate discrete 

distribution to suit the H1N1 data and names it incidence 

Rate Restricted Bivariate Geometric Distribution 

(IRRBGD). The statistical properties IRRBGD and a 

methodology based on those properties to analyze data 

and answer the above stated question are done in this 

article.  

An illustration of all derived new results of this article is 

made using the 2009 H1N1 incidences in five continents: 

Africa, Asia, Europe, Americas, and Oceanic. The 

similarities and the differences among the five continents 

are compared and commented in the end. A few thoughts 

are pointed out for future research directions in the end.   

DERIVATION OF INCIDENCE RATE 

RESTRICTED BIVARIATE GEOMETRIC 

DISTRIBUTION     

First, we need to derive a new discrete bivariate 

probability distribution with reasons. To be specific, let

Y be a random variable denoting the number of elapsed 

weeks since the beginning of the clock when the 

pandomic H1N1 first appeared in a nation with a chance

0 1   . The possibilities for Y are integers

{0,1,2,3,....}  . A natural candidate to be the 

underlying probability mass function (PMF) of Y is the 

geometric distribution (GD) and it is 

 
yPr[Y y ] (1 ) ;y 0,1,2,3,...,,;0 1         

. (1)  

The odds for no H1N1 to occur in a week is the ratio  

 

Pr[Y 0] 1
dds 1

1 Pr[Y 0]



   

   .  (2) 

The
dds

increases if the incidence rate  decreases. The 

expected number,
E[Y y ] 

of elapsed weeks after which 

the H1N1 occurs and the volatility (which is recognized 

as variance,
Var[Y y ] 

 in mathematical statistics) are 

respectively  

y

y 1

1
E[Y y ] y(1 )

(1 ) dds





 


         

  


, (3)  

and  

2 2 y

y 1

(1 )
Var[Y y ] [y ] (1 ) ( 1)



  



 
            




. (4)  

The expected number of weeks happened to be the 

inverse of the odds of H1N1 outbreak. The mean 

number of elapsed weeks for H1N1 to occur first 

increases when the incidence rate  increases. The 

volatility,
2

 increases when the mean,  increases as 

their relationship (6) is parabolic. The most likely (that is, 

mode) is mode 0 
. The GD (1) is skewed and the amount 

of skewness is 
k

1
S   

 . An excessive kurtosis 

(which is tail flatness in the frequency trend) exists and is

u

1
K 4   

 . The entropy of GD (1) is 

[ ln ln(1 )]
(1 )




     

 
. The probability that the 

number, Y of elapsed weeks since the beginning of clock 

for H1N1 to occur exceeds the
th(w 1) week is the 

survival function and it is  

 

y (w 1)

w

y (w 1)

S Pr[Y (w 1)] (1 )




 

        
. (5)  
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The survival probability (5) becomes slim when "w"  

increases. In other words, the chance for H1N1 to occur 

is more in an earlier week than in the later weeks. 

Nevertheless, the 2009 H1N1 data contradicts it and it 

necessitates a need to modify the GD (1) as it is done 

below.  

Chiolero et al.5 has advocated the versatility and 

importance of generalizations. If a pandemic like H1N1 

has a late start in a location, it must have been due to a 

deterrent level: 0 1     . The probability for a H1N1 

incidence to occur in a week under the framework of a 

deterrent level is dampened to a low level,

1
( 1)

(1 )


  

where it is clear that 

1
( 1)

(1 )


     . In other words, the 

parameter   portrays the deterrent level at the location, 

which delays the H1N1 epidemic. By fusing in the 

deterrent level into the GD (1), the probability model 

becomes more versatile and extra informative. An 

extension of the GD (1) to consider is  

 

1 1
( 1) ( 1)

yPr[Y y , ] [1 (1 ) ][ (1 ) ] ;

0 1;y 0,1,2,3,...,,;

 
           

      . (6)  

Is the expression (6) bona-fide PMF? First, note that 

clearly, 

1
( 1)

(1 ) 1


     because 0 1    and 0 1   . 

Consequently, 

1
( 1)

0 (1 ) 1


    . Furthermore,  

 

1 1
( 1) ( 1)

y

y 0 y 0

1
( 1)

1
( 1)

Pr[Y y , ] [1 (1 ) ] [ (1 ) ]

1
[1 (1 ) ][ ] 1

1 (1 )

  
 

 







          

     

   

 

.  

Hence, the expression (6) is indeed a bona-fide PMF. 

Being new to the literature, the PMF (6) is named 

incidence rate restricted geometric distribution (IRRGD) 

in this article.  

When the deterrent level is at its maximum, (that is, 1 

), the IRRGD (6) reduces to the GD (1) as a special case. 

This is truly ideal situation but impractically fictitious, 

because no nation really is at a complete deterrent. 

Hence, using the GD (1) amounts to making a 

preponderous assumption that the nation offers a full 

deterrent with respect to H1N1 occurrence. The value
1  is recognized as the target baseline level. Otherwise, 

the odds for no H1N1 to occur in a week is the ratio  

 

, ,Y 0

1
( 1)

Pr[Y 0 ]
dds

1 Pr[Y 0 ]

1
1

(1 )

  




 
 

  

 

   .  (7) 

The ,dds 
 (7) for no H1N1 to occur is 

1
( 1)

1

(1 )


 

percentage more than its counterpart 
dds

(2) with a 

complete deterrent and it reflects the impact of the 

existing deterrents in the nation. The mean and variance 

of IRRGD (6) are derived and they are respectively  

 

1
( 1)

, 1
( 1)

1

(1 )
E[Y y , ]

[1 (1 ) ]

1
[ ]

(1 )




 








 

  
     

   

 

  
  (8)  

and  

 

1
( 1)

2

, 1
( 1)

2

1

, , 1

2

1
( 1)

2

1

2

(1 )
Var[Y y , ]

[1 (1 ) ]

(1 )
( 1)

[(1 ) ]

(1 )
[ ]

{(1 ) }




 






 
   



 










 

  
     

   

  
    

  

 
 

  
. (9)  

The mean , 
(8) changes by an amount 

1

1
[ ]

(1 )   

from its counterpart mean  (3) due to the deterrent 

level,  . When 1  , there is no change in the mean.   
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Figure 1: Volatility bends and twists due to the 

preventive protection.  

Likewise, the change in the volatility
2

, 
(9) from its 

counterpart
2

 (4) is 

1
( 1)

1

2

(1 )
[ ]

{(1 ) }









 

 

  
 due to the 

deterrent level  against H1N1. The volatility,
2

, 
of 

IRRGD (6) increases when the mean, , 
increases as 

their relationship is 
2

, , ,( 1)         
like the volatility,

2

 of GD (1) increases when the mean,  increases as 

they have a similar relationship
2 ( 1)      

.  

By letting the volatility in the y axis , the mean  in the 

x axis and the deterrent level,  in the z axis , the 

volatility 
2

, 
(9) and the volatility 

2

 (4) are compared in 

Figure 1. An interpretation of the configurations (the bent 

and twisted is for 1  and the light-shaded is for 1  ) is 

the following. Notice that when the volatility is more, the 

deterrent level,  is more. The volatility steadily decreases 

in the absence of the deterrent but swiftly decreases in the 

presence of deterrent as the mean number of weeks for 

H1N1 to occur increases.   

The mode is mode 0 
. It is clear that the IRRGD (6) is 

skewed and the amount of skewness is 
1

( 1)

k
1

( 1)

1
S (1 )

(1 )







    

  
. The excessive kurtosis is 

1
( 1)

u 1
( 1)

1
K 4 (1 )

(1 )







     

   . The entropy of the 

IRRGD (6) is  

 

1
( 1)

1
( 1)

1
( 1)

(1 ) 1
[ {ln ( 1)ln(1 )}

[1 (1 ) ]

ln{1 (1 ) }]












  
       


   

     . 

The probability that the number, Y of elapsed weeks since 

the beginning of clock will exceed the
th(w 1) week under 

the existing deterrent level,   is the survival function and 

it is  

w,

1 1
( 1) ( 1)

y

y (w 1)

1
( 1)

(w 1)

1
( 1)(w 1)

w

S Pr[Y (w 1)]

[1 (1 ) ] [ (1 ) ]

[ (1 ) ]

(1 ) S



 
 

 




 


  

       

   

  



.   (10) 

It is clear from the survival probability w,S  in (10) that the 

H1N1 incidence is delayed to occur by an amount 
1

( 1)
(w 1)[ (1 ) ]


   due to the existing deterrent level  .  

We now follow a similar line of thinking as in 

Shanmugam6, which was used to address the delayed 

recording of HIV/AIDS data in the reporting system. The 

probability shortfall for H1N1’s delayed occurrence is 
1

( 1)
w w, (w 1)

w

(S S )
[1 (1 ) ]

S


 


   

. In other words, the 

shortfall in probability for the H1N1 not to occur in the 

beginning week is 

1
( 1)

[1 (1 ) ]


   .  

Given that the H1N1 has not occurred by the end of 
th(w 1) week, the probability that H1N1 will not occur in 

the next week is the Markov chain with an attained 

memory level,

1
( 1)

(1 )


   under an existing deterrent level 
1  in comparison to its counterpart ideal memory level

 under a full deterrent level 1  .  

Now, we discuss how long the H1N1 continues once it 

has occurred. To be specific, let X be a random number of 

weeks the pandemic H1N1 continues on once it started on 

the
thy week. For X , we could consider a conditional 

geometric distribution (CGD)   
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y yxPr[X x Y y, ] [1 e ]e ;0 ;

x 0,1,2,3,...., ;y 0,1,2,3,...,

         

    .  (11) 

The odds for the H1N1 to stop (not continuing on) is  

 

y

x y, y

Pr[X 0 Y y, ] [1 e ]
Odds

1 Pr[X 0 Y y, ] [e ]



 

   
 

   
.  (12) 

The 
x y,

Odds


(12) for H1N1 to stop (not continuing on) 

increases as the number y increases. Let the impact of the 

healthcare administrators’ efforts to stop H1N1 be a 

parameter 0  . When 0  increases, the 
x y,

Odds


(12) 

for H1N1 to stop increases. Hence, we recognize the 

parameter 0  as the healthcare administrators’ efforts. 

The importance of the healthcare administrators’ efforts 

is confirmed by the mean and variance of the CGD (11). 

The mean and variance are respectively  

y

x y, y

x y,

[1 e ] 1
E[X x y, ]

e Odds



 




     

               (13)  

and  

 

y
2

x y, x y,y 2

e
Var[X x y, ] (1 )

[1 e ]



 
      

 .             (14)  

The condtional mean,
x y,


in (13) points out that the 

expected number of weeks for the H1N1 to continue on is 

more when the 
x y,

Odds


for the H1N1 to stop is lesser and 

vice versa. Also, the conditional volatility, 
2

x y,


in (14) 

increases when the conditional mean number,
x y,


of 

weeks the H1N1 to continue on is more (that is,
x y,

 

).  

The mode of CGD is
x y,

0


 
. The CGD (11) is skewed 

and the amount of conditional skewness is 

y

k
y

1
S e

e




 

. The excessive kurtosis of CGD (11) is 
y y

uK 4 e e   
.  

The entropy is 

y

y

1
{ y ln{1 e }

(e 1)



 
    


. Entropy is 

the statistical information. The entropy increases when 

either  , y  , or both.  

The conditional probability for the H1N1 to continue on 

beyond the
th(w 1) week without stopping once it started 

in the
thy week is the survival function and it is  

 
y(w 1)

X y
S (w 1) Pr[X (w 1) y, ] e      

.       (15)  

In other words, we ask that given that the H1N1 has not 

stopped by the end of the
th(w 1) week, what is the 

probability that H1N1 would not stop in the next week 

also. It is
ye

.  

We now proceed to utilize the joint PMF of the random 

variables Y and X . From the marginal PMF (6) and the 

conditional PMF (11), we write the joint PMF and it is  

1 1
( 1) ( 1)

x y y

Pr[X x,Y y , , , ] Pr[Y y , ]Pr[X x Y y, ]

[1 (1 ) ][ (1 ) e ] [1 e )];

x 0,1,2,3,...., ; y 0,1,2,3,..., ;

0 1;0 ;0 .

 
  

            

        

   

             (16) 

The expression (16) is named an incidence rate restricted 

bivariate geometric distribution (IRRBGD) in this article.  

The marginal PMFs, conditional PMFs, conditional 

expected values, conditional variances, correlation, and 

regression of the random variables Y and X are next 

derived. The marginal PMF of Y is already displayed in 

(6). Next, we obtain the marginal PMF of X .  

y 0

1 1
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            (17) 

The expression (17) is a bona fide geometric distribution. 

Hence, the bonafide conditional distribution of Y given 
X x is  
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The expression (18) is not seen anywhere in the literature, 

and hence, it is named Shanmugam’s conditional 

geometric distribution (SCGD) in this article. The SCGD 

(18) is versatile enough to explain many real life chance 

mechanisms of earthquake incidences and modern 

astronomy theories, which will be explored separately in 

future articles. 

Now, we obtain the marginal and conditional expected 

values and the volatilities. The expected values are:  
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1
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1 1
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The variances are (26)  
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Hence, the correlation coefficient between the number, Y 

of weeks elapsed before the first appearance of H1N1 in a 

country and the number X of weeks the H1N1 continued 

on until it stopped is  

1
( 1)Cov[X,Y]

Corr[X,Y] e (1 )
Var[X]Var[Y]


      

.        (29.a) 

An estimate of the correlation is  

 

x y
ˆCorr[X,Y] ( )( )

1 x 1 y
 

 
.            (29.b) 

Next, we estimate the parameters of the IRRBGD (16) 

with a random sample 1 1 2 2 n n(x ,y ),(x ,y ),....(x ,y )
. Let y ,

2

ys
, 

x , and 
2

xs
denote their mean and variances. Then, their 

estimators are:  

 
2

y

y yˆ max[(1 )( ln[ ]),0.99]
s 1 y

   


               (30) 

 
2

y
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s

  

                                        (31)  

and  

  

xˆ ln( )
1 x

  
 .                                  (32)  

Following Maher et al.7’s concepts and tools of 

regression to the mean, we make the following assertions. 

Given that the number, Y of elapsed weeks after which 

the H1N1 first appeared, of interest to the healthcare 

administrators is the projection, projectionX̂
 of the number of 

weeks the H1N1 might continue on until it stopped. This 

projection is feasible with a suitable regression and it is  

 
projection 2

x (y y)
X̂ x ( )

1 x (1 y)


 

 
                            (33)  

using (19), (20), (24), (25), (29), (30), (31), and (32). All 

the above expressions are illustrated in the next section. 
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ILLUSTRATION WITH 2009 H1N1 EPIDEMICS  

Not all nations in each continental region are 

homogeneous. See the scatterplots (in Figure 2 through 

Figure 6) to realize that there are outlier nations in every 

continent. In fact, the nations in Oceanic are too 

heterogeneous to have any regular pattern in H1N1 

incidences. Hence, for the nations in the Oceanic 

continental region, the incidence rate restricted geometric 

distribution is somewhat unsuitable. In our discussion, 

the Oceanic continent consists of Australia, Fiji, New 

Caledonia, and New Zealand.  

 

Figure 2: Regressive relation between X and Y in 

Africa ( x,y
= -0.568 in Africa).  

 

Figure 3: Regressive relation between X and Y in Asia 

( x,y
= -0.649 in Asia).  

 

Figure 4: Regressive relation between X and Y in 

Europe ( x,y
= -0.41 in Europe).  

 

Figure 5: Regressive relation between X and Y in 

Americas ( x,y
= -0.842 in Americas).  

 

Figure 6: Regressive relation between X and Y in 

Oceanic ( x,y
= -0.87 in Oceanic nations).  

However, the conditional underlying model for the data 

on X , the number of weeks the H1N1 lasted, given that 

the H1N1 started in the
thy week is chosen to be a 

geometric distribution with y 0  denoting the rate of 

H1N1’s stopping. The joint PMF is then obtained. 

From the joint PMF, the marginal PMF of X happened to 

be the regular geometric distribution with parameter 

0   without an involvement of y .  

Hence, we obtained the conditional PMF of Y , the 

number of weeks to have elapsed for H1N1 to occur first 

time given that X x number of weeks H1N1 continued 

and it is named Shanmugam’s conditional geometric 

distribution (SCGD) in this article as it has not been 

mentioned anywhere in the literature.  

The marginal and conditional expected value and 

volatility (another name is variance) of the PMFs: 

Pr[Y y ] 
, 

Pr[X x , , ]   
, 

Pr[X x Y y, ]  
, and 

Pr[Y y X x, , , ]    
 are obtained.  

Using the marginal and conditional expected value and 

variances, the estimators ̂ . ̂ , ̂ of the model 

parameters and the estimator
ˆCorr[X,Y]  of the correlation 

between X and Y, and the regressive projection projectionX̂
 

of the number of weeks the H1N1 might continue on 
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occurring for a known Y y , the number of elapsed 

weeks for H1N1 to have first occurred. These values are 

calculated, summarized, and displayed in the Table 2 and 

Figure 7, 8 & 9.  

 

Figure 7: Incidence rate, prevention level, 

continuation rate of H1N1 (Comparison of Africa, 
Asia, Europe, Americas, Pacific).   

 

Figure 8: Estimated Probability of H1N1 in next week 

(Comparison of Africa, Asia, Europe, Americas, 

Pacific).   

 

Figure 9: Projected # weeks H1N1 to occur, 

(Comparison of Africa, Asia, Europe, Americas, 

Pacific).   

Surprisingly, Asia has the least deterrent against H1N1. 

The incidence rate and the continuation rate of H1N1 are 

closer to each other in other four continental regions 

except Oceanic (Figure 7). The survival probability for 

H1N1 to continue on in the next week once it has 

occurred in the 1st week of 2009 is consistently high in all 

five continental regions (Figure 8).  

The estimated negative correlation between Y, the 

number of elapsed weeks for H1N1 to occur first and X, 

the number of weeks H1N1 to continue in without ending 

in 2009 is consistently high in all five continental regions 

with no exception (Figure 8).  

The regressive projection projectionX̂
 of the number of weeks 

the H1N1 might continue on occurring for a known Y y

, the number of elapsed weeks for H1N1 to have first 

occurred ranges (Figure 9 or Table 2) from 16 weeks (in 

Africa) to 28 weeks (in Americas).  

However, the odds for no H1N1 to occur (Figure 9 or 

Table 2) is lowest in Oceanic and highest in Asia in the 

absence as well as presence of deterrents to H1N1. 

Table 1: Comparison of the results of 2009 H1N1 incidences (*IRRGD is not applicable because variance is smaller 

than then mean). 

𝐂𝐨𝐧𝐭𝐢𝐧𝐞𝐧𝐭 →

𝐑𝐞𝐬𝐮𝐥𝐭 ↓
 Africa Asia Europe Americas Pacific*  

Preventive protection of H1N1: ̂  0.55 0.28 0.647 0.544 0.99 

H1N1 Incidence rate of H1N1 without protection:  ̂  0.02 0.01 0.026 0.026 0.99 

H1N1 Continuation rate: ̂  0.03 0.04 0.04 0.049 0.04 

Odds for no H1N1 incidence without protection: ,Y 0dds   54.4 89 37.81 36.9 0.01 

Odds for no H1N1 incidence with protection: , ,Y 0dds    55.2 91.5 38.37 37.76 0.06 

Incidence rate of H1N1 with protection: 

1
( 1)

ˆˆ ˆ(1 )


    0.02 0.01 0.025 0.026 0.95 

Given H1N1 occurred in 1st week, probability for it to occur in 

next week X y
S (1)  0.97 0.96 0.961 0.953 0.96 

Estimated correlation: ˆCorr[X,Y]  -0.95 -0.96 -0.96 -0.96 -0.95 

Projected number of weeks H1N1 would continue if it 

occurred in 1st week: projectionX̂  
16.3 22.8 21.84 27.92 18.8 
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Table 2: Summary for Africa, Asia, Europe, Americas, and Oceanic continents *(IRRGD is not suitable).  

Description Africa Asia Europe Americas Pacific*  

Prevention level 0.55 0.28 0.647 0.544 0.99 

Incidence rate 0.02 0.01 0.026 0.026 0.99 

Continuation rate 0.03 0.04 0.04 0.049 0.04 

Odds of no H1N1 (no protection) 54.4 89 37.81 36.9 0.01 

Odds of no H1N1 (with protection) 55.2 91.5 38.37 37.76 0.06 

Chance H1N1 occurs next week 0.97 0.96 0.961 0.953 0.96 

Estimated Corr[X,Y] -0.95 -0.96 -0.96 -0.96 -0.95 

Projected # weeks for H1N1 16.3 22.8 21.84 27.92 18.8 

 

 

 

COMMENTS AND CONCLUSIONS   

From our analysis, we notice that no continental region is 

safe with respect to the occurrence of H1N1. The 

deterrent level ought to be strengthened. The healthcare 

administrators should perhaps look into ways and means 

of creating new deterrent measures. Such a conclusive 

recommendation to the worldwide healthcare 

administrators in all five continents has become possible 

with the help of the new and novel contents of this article 

primarily based on the seminal new distribution named as 

Shanmugam’s Conditional Geometric Distribution 

(SCGD). 

This new distribution is versatile enough for applications 

in other areas such as earthquake events, marketing, 

internet-security, and medical tourism. The statistics 

community ought to explore further research direction of 

SCGD. 
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